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Abstract

Two commonly used heuristic approaches to the generalized tree alignment problem are compared in the context of phyloge-
netic analysis of DNA sequence data. These approaches, multiple sequence alignment + phylogenetic tree reconstruction
(MSA+TR) and direct optimization (DO), are alternative heuristic procedures used to approach the nested NP-Hard optimiza-
tions presented by the phylogenetic analysis of unaligned sequences under maximum parsimony. Multiple MSA+TR implementa-
tions and DO were compared in terms of optimality score (phylogenetic tree cost) over multiple empirical and simulated
datasets with differing levels of heuristic intensity. In all cases examined, DO outperformed MSA+TR with average improvement
in parsimony score of 14.78% (5.64–52.59%).
© The Willi Hennig Society 2015.

A central goal of biological systematics is mapping
the relationships among organisms and groups of
organisms—both extant and extinct—based on the
reconstruction of phylogenetic trees using comparative
character data. The generalized tree alignment problem
(GTAP; Sankoff, 1975) is defined as the search for
phylogenetic tree(s)—and associated vertex (hypotheti-
cal ancestor) sequences—with lowest cost for those
data under maximum parsimony.
There has been an ongoing debate in the literature

regarding multiple sequence alignment (Katoh et al.,
2002; Edgar, 2004; Wheeler, 2007), with several aligners
available. In addition, much effort has been expended to
improving search on aligned sequences (Goloboff et al.,
2003). At the same time, other paradigmata for
approaching the GTAP are also available, chief among
those being direct optimization (DO) (Wheeler, 1996,
2003; Var�on and Wheeler, 2012, 2013). It has been the
experience of many investigators that DO gives signifi-
cantly better results than the two-step process of align-
ment followed by search for both real and simulated

data (e.g. Lindgren and Daly, 2007; Lehtonen, 2008;
Liu et al., 2009; Giribet and Edgecombe, 2013). In addi-
tion, the high degree of complexity in the settings of the
software tools used for alignment and search only con-
fuses the matter, as default settings are often used, and
these defaults do not necessarily correspond between
aligner and search engine. Here, we compare DO with
two-step solutions directly. We also test whether the
results of searches where alignment and search setting
correspond are better (i.e. more optimal) than those in
which they do not. We find that DO results in the dis-
covery of shorter trees, by an average factor of 15%. In
addition, using the two-step approach we found signifi-
cantly (approximately 4%) shorter trees when using set-
tings on alignment that match the settings of subsequent
tree search (as opposed to the default settings of multi-
ple sequence alignment (MSA) implementations).

Software tools

We ran comparisons using several pieces of align-
ment software. What follows is a brief description of
each package.
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CLUSTAL OMEGA (Sievers et al., 2011) uses a
guide tree to align sequences. It is similar to CLUS-

TAL W, described below, but speeds the process of
creating the guide tree by re-encoding each
sequence as an n-dimensional vector, which can be
viewed as its similarity to n reference sequences.
This allows for more rapid clustering using hidden
Markov models.
CLUSTAL W 2.0.12 (Larkin et al., 2007) pre-dates

CLUSTAL OMEGA and uses neighbour-joining (Saitou and
Nei, 1987). In addition, CLUSTAL W weights the
sequences, giving more-divergent sequences more
weight, in an attempt to get improved results in pairwise
comparisons.

MAFFT v7.029b (Katoh et al., 2002) performs pro-
gressive alignments, also using a guide tree, and
uses fast Fourier transform to speed up identifica-
tion of homologous regions in sequences. Depend-
ing on the number of taxa, MAFFT uses either
progressive or iterative alignment algorithms. Both
MAFFT and MUSCLE, described below, use UPGMA
(unweighted pair group method with arithmetic
mean, a hierarchical clustering method using a simi-
larity matrix), rather than neighbour-joining, as in
CLUSTAL W.

MUSCLE v3.8.31 (Edgar, 2004) also uses a guide
tree to direct alignment. To build the initial tree,
MUSCLE uses the approximate kmer pairwise dis-
tances. A kmer is a subsequence sample of length k,
and the kmer distance used by MUSCLE is the frac-
tion of kmers in common in a compressed alphabet.
This initial tree build is followed by progressive
alignments using the Kimura distance (Kimura and
Ohta, 1972).
In contrast to the above packages, POY (5.0 and

antecedents; Wheeler et al., 2015, 2013) uses DO. This
approach optimizes median sequences on trees created
via heuristic search. The tree search itself is performed
using heuristics similar to those implemented in TNT

(Goloboff et al., 2003), but because the median opti-
mization and scoring are done as each tree is con-
structed, a POY search is computationally more
complex than a TNT search. In short, TNT is dealing
with one NP-Hard optimization (tree search), whereas
POY is dealing with two (tree search and tree align-
ment).
After the alignment stage, we used TNT to search

for the shortest trees. In an attempt to compare
DO with two-step searches more thoroughly, we
also ran TNT on the implied alignment results of
POY searches.
Finally, to create synthetic data with length varia-

tion in a more controlled manner (i.e. gaps, and thus
simulate unaligned sequences), we used DAWG 1.2-re-
lease (Cartwright, 2005).

Materials

Biological data

We ran alignment and search on six biological data
sets and six synthetic data sets. The biological data
sets were chosen for their sizes. Each of the software
packages allows for the input of either genetic or pro-
tein data. Here, we restricted our comparisons to
nucleotide sequence data.

• 62 mantodean small subunit sequences (Svenson
and Whiting, 2004);

• 208 metazoan small subunit sequences (Giribet
and Wheeler, 1999, 2001);

• 585 archaean small subunit sequence data from
the European Ribosomal RNA Database
(Wheeler, 2007);

• 1040 metazoan mitochondrial small subunit data
from the European Ribosomal RNA Database
(Wheeler, 2007);

• 1553 fungal small ribosomal subunit sequences
extracted from GenBank (Benson et al., 2013);

• 1766 metazoan small subunit sequences extracted
from GenBank (Benson et al., 2013).

Synthetic data

The synthetic data were created, using DAWG, by
varying the number of taxa and the distribution of
edge (branch) lengths. Each of the synthetic data sets
was rooted, and included an outgroup. All had initial
sequence lengths of 1800 bp (comparable to metazoan
small subunit data). We chose taxon counts to match
(approximately) the sizes of the smaller biological data
sets, thus creating sets of 51, 201 and 601 taxa, includ-
ing a root taxon. For each of these taxon sets, we used
a Python script to create a random tree, then assigned
edge lengths to the tree using two distributions, an
exponential distribution with mean of 0.1, and a uni-
form distribution with values between 0.0 and 0.5. We
therefore generated a total of six synthetic data sets
using DAWG.

Methods

For each of the 12 data sets, a two-step process was
followed. First, the sequences were aligned by each of
the aligners (including POY implied alignment). The
resulting alignments were then fed into TNT for tree
search (specifics below). Thus, for each data set eight
total alignments were generated (two each for MAFFT,
POY/TNT and CLUSTAL OMEGA, one each for MUSCLE

and CLUSTAL W), and for each of the eight alignments,
two TNT searches were run. Runs using POY alone (DO
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without MSA) were performed on each unaligned data
set (labelled “POY” in the tables and figures). This
yielded a total of 192 runs through TNT, but 216
searches, including POY solo searches.
On several of the runs, POY found multiple trees.

Rather than performing multiple TNT searches on each
of the implied alignments, in these cases we used the
first tree and implied alignment output. As POY outputs
these trees in the order that they were encountered
(with a randomized component), this choice was arbi-
trary. DAWG takes as input a rooted tree with edge
lengths and a sequence length, then evolves sequences
following the tree. We generated random trees using a
Python script, with edge lengths as noted above. Each
of the six trees used to create the synthetic data was
fed into DAWG. We used a GTR model with defaults
settings for the frequency and parameters settings. The
lambda parameter was set to 0.05 for both insertions
and deletions. The gap model was power law with a
gap rate of 1.67 and a maximum gap size of 2000
(these values were based on suggestions of the DAWG
wiki). All other settings were default.
DAWG output includes gaps, and is aligned. Thus,

after using DAWG to create alignments, the files were
run through a Python script to delete gap characters,
to generate unaligned sequences, which were then
saved in FASTA format.
Due to the complexity of the software packages

used, it is often the case that researchers run the appli-
cations using default settings. It is worth noting that
the default settings of TNT (and probably all other tree-
search software) differ from the defaults of the align-
ment software. That is, TNT uses (in essence) a gap
opening cost of 0 and a gap extension cost of 1,
whereas each of the aligners has a more sophisticated
gap model. In fact, it is impossible to run TNT searches
using the same settings as the alignment models, as all
of the aligners studied here use affine gap models, and
TNT does not (and cannot and maintain character inde-
pendence). To measure the effect of this difference
between the models, each of the data sets was aligned
first with default settings in each aligner, and then with
a gap cost of 0 and a gap extension cost of 1, which
matches TNT’s gap-cost scheme. This allowed us to
track the effect that this difference in settings has on
downstream tree lengths. In addition, when possible,
we set all substitutions to a cost of 1, again to match
the default of TNT. We hereafter refer to this as
0 : 1 : 1 settings (0 gap cost, 1 gap extension cost, 1
substitution cost). We also note that TNT can treat
gaps as missing data (a commonly used option), which
is the opposite of an indel—a hypothetical event, and
not the same as a missing or mis-read character. To
avoid this, make all tree costs comparable and account
for all sequence transformation events, gaps were
coded as a fifth state.

For the alignment stage, we first ran MAFFT with
default settings, then reran it with gap opening cost of
0 and extension cost 1 (–op 0 –ep 1 –lop 0 –
lep 2). MAFFT uses different alignment settings
depending upon the size of the input data. To recreate
those settings while changing the defaults for gap
costs, three different profiles were created: L-INS-i,
with commands –localpair –maxiterate
1000, FFT-NS-i (–retree 2 –maxiterate
2) and FFT-NS-2 (–retree 2 –maxiterate
0). For each data set, MAFFT was first run with default
settings. Its terminal output was then read to deter-
mine which of the three profiles was used, and that
profile was used when running MAFFT again with the
custom gap costs. The specifics of MAFFT options are
detailed in Katoh et al. (2002). The individual data
sets and profiles used are listed in Table 1.
As we were unable to run MUSCLE using a custom

gap cost, it was run only with default settings. Like-
wise, CLUSTAL OMEGA does not provide for the ability
to run with custom gap costs, and it was therefore run
only with default settings.
As with the other aligners, we ran CLUSTAL W first

with default settings on each of the data sets, then
with 0 : 1 : 1 settings: -gapopen = 1 -gapext
= 0 -ENDGAPS, and using a custom base substitu-
tion cost matrix with costs of 0 for non-substitution
and 1 for substitution.
We in turn ran POY using both less and more aggres-

sive search strategies. The first run used build(),
which builds ten random addition sequence Wagner
trees using DO (referred to as “POY default”). The
more aggressive run (build() swap(trans-
form(static_approx)) swap()), builds
Wagner trees, then creates an implied alignment and

Table 1
MAFFT settings for various data sets

Dataset MAFFT settings

Mantodea L-INS-i
Metazoa short FFT-NS-i
Archaea FFT-NS-2
Mitochondrial FFT-NS-2
Fungi FFT-NS-2
Metazoa long FFT-NS-2
51-taxon exponential distribution FFT-NS-i
51-taxon uniform distribution FFT-NS-i
201-taxon exponential distribution FFT-NS-i
201-taxon uniform distribution FFT-NS-i
601-taxon exponential distribution FFT-NS-2
601-taxon uniform distribution FFT-NS-2

For the 0 : 1 : 1 runs we needed to match MAFFT’s default set-
tings as closely as possible. However, MAFFT’s default settings for
any given size of data set were unclear from the documentation.
These settings were thus chosen by running MAFFT on each data set
under default settings, then examining MAFFT’s output to the inter-
face to determine which settings were used for each data set. These
determinations were then double-checked against the MAFFT manual.
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does a hill-climbing search looking at TBR neighbour-
hoods, followed by an additional hill-climbing search
on TBR neighbourhoods using DO.

In addition, we exported the implied alignment from
the resulting POY search, essentially using POY only to
do alignment, with search done by TNT.

Table 2
Alignment results, biological data

Data set No. of taxa Aligner Settings
Aligned
length (bp)

Tree length
after standard
search

Tree length
after aggressive
search

Mantodea 62 CLUSTAL OMEGA Default 1829 1159 1159
Mantodea 62 CLUSTAL W Default 1828 1055 1055
Mantodea 62 CLUSTAL W One-one 1893 1042 1042
Mantodea 62 MAFFT Default 1832 1033 1033
Mantodea 62 MAFFT One-one-l-ins-i 1872 1006 1006
Mantodea 62 MUSCLE Default 1853 1044 1044
Mantodea 62 POY 1909 945 939
Mantodea 62 POY/TNT POY default 1909 942 942
Mantodea 62 POY/TNT POY aggressive 1912 939 939
Metazoa short 208 CLUSTAL OMEGA Default 2863 38 544 38 536
Metazoa short 208 CLUSTAL W Default 2866 31 105 31 103
Metazoa short 208 CLUSTAL W One-one 4777 29 317 29 317
Metazoa short 208 MAFFT Default 3377 32 842 32 837
Metazoa short 208 MAFFT One-one-fft-ns-i 3792 29 024 29 014
Metazoa short 208 MUSCLE Default 3307 35 237 35 228
Metazoa short 208 POY 6625 26 876 26 817
Metazoa short 208 POY/TNT POY default 6625 26 861 26 861
Metazoa short 208 POY/TNT POY aggressive 6651 26 812 26 812
Archaea 585 CLUSTAL OMEGA default 1810 39 840 39 814
Archaea 585 CLUSTAL W Default 1757 39 362 39 340
Archaea 585 CLUSTAL W One-one 3100 40 560 40 548
Archaea 585 MAFFT Default 1837 39 359 39 337
Archaea 585 MAFFT One-one-fft-ns-2 2518 41 304 41 292
Archaea 585 MUSCLE Default 1705 40 760 40 734
Archaea 585 POY 6770 37 914 37 118
Archaea 585 POY/TNT POY default 6770 37 777 37 775
Archaea 585 POY/TNT POY aggressive 6391 37 106 37 106
Mitochondrial 1040 CLUSTAL OMEGA Default 3908 96 656 96 590
Mitochondrial 1040 CLUSTAL W Default 3111 91 032 91 014
Mitochondrial 1040 CLUSTAL W One-one 7198 86 669 86 652
Mitochondrial 1040 MAFFT Default 5064 94 205 94 166
Mitochondrial 1040 MAFFT One-one-fft-ns-2 5501 87 997 87 938
Mitochondrial 1040 MUSCLE Default 2435 128 178 128 041
Mitochondrial 1040 POY 14 474 79 191 77 832
Mitochondrial 1040 POY/TNT POY default 14 474 79 065 79 065
Mitochondrial 1040 POY/TNT POY aggressive 14 060 77 819 77 819
Fungi 1553 CLUSTAL OMEGA Default 2622 83 726 83 654
Fungi 1553 CLUSTAL W Default 2539 68 973 68 910
Fungi 1553 CLUSTAL W One-one 4543 67 135 67 059
Fungi 1553 MAFFT Default 2844 69 185 69 125
Fungi 1553 MAFFT One-one-fft-ns-2 3695 68 501 68 437
Fungi 1553 MUSCLE Default 2350 76 132 76 014
Fungi 1553 POY 11 610 63 473 62 000
Fungi 1553 POY/TNT POY default 11 610 63 232 63 202
Fungi 1553 POY/TNT POY aggressive 11 652 61 944 61 943
Metazoa long 1766 CLUSTAL OMEGA Default 4891 243 149 242 941
Metazoa long 1766 CLUSTAL W Default 4282 198 870 198 780
Metazoa long 1766 CLUSTAL W One-one 12 535 187 940 187 882
Metazoa long 1766 MAFFT Default 7448 205 416 205 263
Metazoa long 1766 MAFFT One-one-fft-ns-2 9066 187 180 187 093
Metazoa long 1766 MUSCLE Default 3554 249 222 249 076
Metazoa long 1766 POY 37 005 169 595 165 563
Metazoa long 1766 POY/TNT POY default 37 005 169 447 169 443
Metazoa long 1766 POY/TNT POY aggressive 36 317 165 524 165 522
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After every alignment was generated, we used a
Python script to convert the resulting FASTA files to
Hennig format. In addition, at this point, all gaps were
coded as a fifth state, as mentioned above.

To measure the degree to which both search and
alignment affect the eventual tree length, we ran TNT

with two settings for each alignment. First, a relatively
modest run with mult, then with much more

Table 3
Alignment results, synthetic data

Data set No. of taxa Aligner Settings
Aligned
length (bp)

Tree length after
standard search

Tree length after
aggressive search

Synthetic Exponential 51 CLUSTAL OMEGA Default 4099 34 033 34 033
Synthetic Exponential 51 CLUSTAL W Default 4057 30 210 30 210
Synthetic Exponential 51 CLUSTAL W One-one 8167 26 551 26 551
Synthetic Exponential 51 MAFFT Default 8066 29 345 29 345
Synthetic Exponential 51 MAFFT One-one-fft-ns-i 5597 26 537 26 537
Synthetic Exponential 51 MUSCLE Default 6975 30 477 30 477
Synthetic Exponential 51 POY 9182 22 631 22 261
Synthetic Exponential 51 POY/TNT POY default 9182 22 631 22 631
Synthetic Exponential 51 POY/TNT POY aggressive 8696 22 258 22 258
Synthetic Uniform 51 CLUSTAL OMEGA Default 4928 48 110 48 110
Synthetic Uniform 51 CLUSTAL W Default 6233 39 531 39 531
Synthetic Uniform 51 CLUSTAL W One-one 10 403 33 832 33 832
Synthetic Uniform 51 MAFFT Default 12 131 39 781 39 781
Synthetic Uniform 51 MAFFT One-one-fft-ns-i 5932 35 978 35 978
Synthetic Uniform 51 MUSCLE Default 5663 59 214 59 214
Synthetic Uniform 51 POY 12 493 30 698 30 073
Synthetic Uniform 51 POY/TNT POY default 12 493 30 695 30 695
Synthetic Uniform 51 POY/TNT POY aggressive 11 626 30 070 30 070
Synthetic Exponential 201 CLUSTAL OMEGA Default 7260 205 485 205 469
Synthetic Exponential 201 CLUSTAL W Default 6705 161 848 161 848
Synthetic Exponential 201 CLUSTAL W One-one 18 420 139 669 139 662
Synthetic Exponential 201 MAFFT Default 20 449 190 213 190 158
Synthetic Exponential 201 MAFFT One-one-fft-ns-i 9249 149 846 149 818
Synthetic Exponential 201 MUSCLE Default 10 748 242 761 242 578
Synthetic Exponential 201 POY 39 379 120 728 119 219
Synthetic Exponential 201 POY/TNT POY default 39 379 120 714 120 714
Synthetic Exponential 201 POY/TNT POY aggressive 40 599 119 638 119 638
Synthetic Uniform 201 CLUSTAL OMEGA Default 8629 305 445 305 445
Synthetic Uniform 201 CLUSTAL W Default 8589 243 764 243 724
Synthetic Uniform 201 CLUSTAL W One-one 24 951 207 577 207 577
Synthetic Uniform 201 MAFFT Default 29 779 311 846 311 846
Synthetic Uniform 201 MAFFT One-one-fft-ns-i 11 243 239 952 239 890
Synthetic Uniform 201 MUSCLE Default 9123 351 721 351 536
Synthetic Uniform 201 POY 58 379 179 608 176 956
Synthetic Uniform 201 POY/TNT POY default 58 379 179 589 179 589
Synthetic Uniform 201 POY/TNT POY aggressive 60 969 176 937 176 937
Synthetic Exponential 601 CLUSTAL OMEGA Default 11 610 697 257 697 196
Synthetic Exponential 601 CLUSTAL W Default 9922 540 882 540 792
Synthetic Exponential 601 CLUSTAL W One-one 33 936 470 991 470 945
Synthetic Exponential 601 MAFFT Default 27 241 628 005 627 958
Synthetic Exponential 601 MAFFT One-one-fft-ns-2 27 680 518 881 518 857
Synthetic Exponential 601 MUSCLE Default 11 190 837 326 836 892
Synthetic Exponential 601 POY 123 869 401 566 396 841
Synthetic Exponential 601 POY/TNT POY default 123 869 401 508 401 508
Synthetic Exponential 601 POY/TNT POY aggressive 125 486 396 802 396 802
Synthetic Uniform 601 CLUSTAL OMEGA Default 10 149 751 667 751 587
Synthetic Uniform 601 CLUSTAL W Default 9775 581 240 581 200
Synthetic Uniform 601 CLUSTAL W One-one 35 821 509 921 509 885
Synthetic Uniform 601 MAFFT Default 30 185 686 561 686 545
Synthetic Uniform 601 MAFFT One-one-fft-ns-2 20 684 558 978 558 911
Synthetic Uniform 601 MUSCLE Default 9620 895 416 894 773
Synthetic Uniform 601 POY 128 617 434 310 427 354
Synthetic Uniform 601 POY/TNT POY default 128 617 434 271 434 271
Synthetic Uniform 601 POY/TNT POY aggressive 133 799 427 284 427 284
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aggressive settings: xmult = replications
10 ratchet 50 drift 20 fuse 5;.

Results

For each data set, the 0 : 1 : 1 settings gave shorter
trees in the subsequent tree search than the default
alignment settings. On average, there was a 3.5%

improvement in tree length for the 0 : 1 : 1 setting
over default MSA values (Tables 2 and 3). In general,
running TNT with more aggressive settings gave very
little difference in tree length, 0.04% on average. In
contrast, there was a more marked improvement, of
1.59% on average, between Wagner build only and
more aggressive runs of POY.

TNT was able, in every case, to find a shorter tree
than POY, if given POY’s implied alignments as input.

Metazoa (208)Mantids (62) Archaea (585) Mitochondria (1040) Fungi (1553) Metazoa (1766)
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Fig. 1. Graphical depiction of tree lengths based on multiple sequence aligners + TNT and POY for biological sequence data sets. Bars are normal-
ized to the method (for a given data set) that yielded the longest (i.e. least optimal) tree. Data sets, aligners and tree search options are described
in the text.
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Uniform 51Exponential 51 Exponential 201 Exponential 601Uniform 201 Uniform 601

Fig. 2. Graphical depiction of tree lengths based on multiple sequence aligners + TNT and POY for DAWG simulated sequence data sets. Bars are
normalized to the method (for a given data set) that yielded the longest (i.e. least optimal) tree. Data sets, aligners and tree search options are
described in the text.

6 E. Ford & W. C. Wheeler / Cladistics 0 (2015) 1–9



The difference was 0.03% on average. This was due to
the more aggressive search options specified for TNT

(TBR, simulated annealing and genetic algorithm) as
opposed to POY (TBR only). When more aggressive
search options were specified in POY (using trans-
form(static_approx)) the tree lengths of
POY and TNT converged.
The most striking difference was in tree lengths for

DO versus two-step alignment. Comparing the aggres-
sive TNT search (based on the MSA aligners) with the
aggressive POY search, POY gave 14.78% shorter trees
than the two-step alignment. But because the differ-
ence in results was so minimal between MSA+ TNT’s
more- and less-aggressive runs, even the simple Wag-
ner build DO runs were 13.53% better than the more
aggressive MSA+ TNT results.
We did not find that one aligner was universally

superior to the others. For seven of the data sets,
CLUSTAL W (0 : 1 : 1) gave the best results, and for
five sets MAFFT (0 : 1 : 1) gave the best results. Like-
wise for the worst performance: MUSCLE gave the long-
est tree for seven data sets, CLUSTAL OMEGA for four
data sets and MAFFT for one. CLUSTAL OMEGA is specif-
ically designed for use on protein sequences, and gives
warnings when presented with DNA data, which might
explain its poor showing. These results are summarized
in graphical form in Figs 1 and 2.
In addition to tree cost, we also examined variation

in alignment length (in terms of aligned “columns”)
and tree topology [in terms of Robinson and Foulds
(1981) (R-F) distance]. For the comparison of align-
ment length, the number of columns of each align-
ment was normalized via division by the length of
the shortest (i.e. fewest columns) alignment. The lin-
ear regression fits for the biological and simulated

data were quite similar (y = �0.0371x + 0.9196,
R2 = 0.3174; and y = �0.0323x + 0.8146, R2 = 0.2978,
respectively). Power regressions are shown in Fig. 3
(regression fits y = �0.9058x�0.1667, R2 = 0.4691; and
y = �0.8222x�0.2179, R2 = 0.4345). The longest align-
ments (with lowest costs) are the implied alignments
generated by POY, but even apart from this, the high-
est cost trees were derived from the shortest align-
ments. Given that indel or “gap” costs were included
in the tree costs, this might be regarded as counterin-
tuitive. After all, longer alignments have greater num-
bers of gaps and could be expected to exhibit higher
costs. Clearly, this is not the case, as shorter align-
ments imply higher numbers of substitutions as well
as overall transformations—shorter is not better.
One question that has been raised about tree topol-

ogy results derived from alternativee methods of anal-
ysis is whether it makes a difference. The alignment
(and DO) methods might yield alternative homology
schemes, but the tree topologies they imply might well
be very similar. The differences in tree cost between
the various MSA and POY analyses were compared
with the (R-F) distances between the MSA analyses
and POY (Fig. 4). A normalized R-F distance was used

di;j ¼ R� Fij þ R� Fji

nSplitsi þ nSplitsj

 !

to remove the effects of variation in degrees of tree
resolution and number of terminal taxa. There is
clearly a direct relationship between tree cost differ-
ence and R-F distance. If the alignments had shown
variation, but the tree topologies not, the normalized
R-F values would have been consistently near zero.
The linear regression fits of normalized R-F to

Tree cost vs. alignment length (Biological data)
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Tree cost vs. alignment length (Simulated data)
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Fig. 3. Relationship between tree cost (normalized by the longest tree) and number of alignment columns for biological (left) and simulated
(right) data. Power fit regression lines are shown.
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normalized tree cost difference for biological and sim-
ulated data were y = 0.5094x + 0.3786, R2 = 0.2639;
and y = 0.5727x + 0.4581, R2 = 0.5215, respectively.
As with the alignment length comparisons, the fits for
the biological and simulated data were quite similar,
with lower levels of scatter for the simulated data.

Discussion

As can be seen readily in the tables and figures, the
algorithmic approach taken by DO is consistently and,
at times, dramatically more effective at producing opti-
mal trees than that embodied in the separated steps of
MSA and tree search. This is true even in the face of
“longer” alignments with greater numbers of columns
replete with gaps. Perhaps surprisingly, the deficiencies
created during the alignment phase cannot be overcome
even through the heroics of an implementation as effec-
tive as TNT. Furthermore, even using implied alignments
(provided by POY) based on ten simple O(n2) Wagner
builds with O(n3) TBR refinement (of n taxa), subject to
all measures of advanced tree search heuristics (tree-fus-
ing, drifting, ratcheting, etc.; Moilanen, 1999; Nixon,
1999; Goloboff, 1999), produces solutions that can be
improved only slightly (on the order of 1 part in
10 000). Presumably, applying such higher order heuris-
tics to the GTAP directly (such facilities exist in POY)
would generate a similar improvement.
The results found here are consistent with the analy-

ses of Lehtonen (2008) and Wheeler and Giribet
(2009) based on the over 5000 simulations of Ogden
and Rosenberg (2007). In those comparisons, DO, in
every case, yielded superior (in terms of tree length)
solutions. Similar improvements have been found for
likelihood-based analysis (Whiting et al., 2006).

One component of the relative success of the one-step
DO approach over the two step MSA+TR no doubt
comes from the number of alignment/sequence homol-
ogy scenarios examined. In the case of the multiple
sequence aligners examined here, a small number of
guide trees (usually one) are used to create alignments.
Although DO (as implemented in POY) does not use mul-
tiple alignments per se (implied alignments can only be
produced after analysis), it does examine larger numbers
of sequence homology scenarios. In essence, each tree
examined during the search process implies a unique
alignment set. A heuristic GTAP search using DO with
Wagner builds and TBR refinement will examine O(n3)
homology schemes. For the larger data sets examined
here, this easily extends into the billions.
The examination of such a large number of homol-

ogy scenarios is not without cost, however. The basic
time complexity of MSA+TR for n sequences of length
m would be on the order of (assuming a single pair-
wise distance-based guide tree and TBR-based tree
search) O(m2n2 + mn3). A one-step DO (at least as
implemented in POY) would contain another multiplica-
tive factor of m, O(m2n2 + m2n3), for Wagner build
followed by TBR refinement. The dominant cubic
terms would differ by a factor of m, the sequence
length, for similar levels of heuristic intensity (as any-
one comparing wall-clock times of POY and TNT can
attest). However, the optimality efficiency is so much
greater, that even O(n2) DO searches outperform
MSA+TR by large factors.

Conclusion

In every case, DO found a shorter tree than the
two-step process of alignment and search. In addition,
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as TNT’s rather more aggressive search strategy was
insufficient to find significant improvement in the tree
lengths (based on POY implied alignments), it is clear
that the majority of the optimality deficit in a two-step
search is a result of the alignment stage, which condi-
tions the subsequent search step. These cost improve-
ments are accompanied by changes in tree topology,
and hence have phylogenetic significance. Most phylo-
genetic researchers expend a great deal of computa-
tional effort, justifiably, in the tree search stage of
analysis. This is often based, however, on MSA proce-
dures that explore little of the tree-alignment space,
which is clearly the most important stage in identifying
heuristically optimal GTAP solutions. A more efficient
use of resources, then, would be to spend more effort
on the initial, sequence homology stage or, better, to
abandon the approach altogether in favour of more
efficient single-step DO approaches.
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