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Abstract

Background: Many problems in comparative biology are, or are thought to be, best expressed as phylogenetic
“networks” as opposed to trees. In trees, vertices may have only a single parent (ancestor), while networks allow for
multiple parent vertices. There are two main interpretive types of networks, “softwired” and “hardwired.” The
parsimony cost of hardwired networks is based on all changes over all edges, hence must be greater than or equal to
the best tree cost contained (“displayed”) by the network. This is in contrast to softwired, where each character follows
the lowest parsimony cost tree displayed by the network, resulting in costs which are less than or equal to the best
display tree. Neither situation is ideal since hard-wired networks are not generally biologically attractive (since
individual heritable characters can have more than one parent) and softwired networks can be trivially optimized
(containing the best tree for each character). Furthermore, given the alternate cost scenarios of trees and these two
flavors of networks, hypothesis testing among these explanatory scenarios is impossible.

Results: A network cost adjustment (penalty) is proposed to allow phylogenetic trees and soft-wired phylogenetic
networks to compete equally on a parsimony optimality basis. This cost is demonstrated for several real and simulated
datasets. In each case, the favored graph representation (tree or network) matched expectation or simulation scenario.

Conclusions: The softwired network cost regime proposed here presents a quantitative criterion for an
optimality-based search procedure where trees and networks can participate in hypothesis testing simultaneously.
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Background
Many problems in comparative biology are, or are
thought to be, best expressed as phylogenetic “net-
works” as opposed to trees. The central idea being that
trees convey only vertical information transfer between
ancestor and descendant and networks can include retic-
ulation (“network”) events representing horizontal trans-
fer of information between lineages. This may be due
to hybridization (e.g some plants and parthenogenetic
lizards; [1]), exchange of particular genetic elements (e.g.
bacteria; [2]), or exchange of chromosome-like segments
(e.g. influenza viruses; [3]), among other causes.
Incongruence among data sets (usually molecular

sequences) is the most frequently cited evidence for
invoking networks and their multiple character histories.
Molecular sequences with different histories (through
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horizontal exchange) would be expected to show incon-
gruence in the form of different trees as “best” historical
solutions. Unfortunately, other explanations are possible,
most obviously simple homoplasy (non-minimal change
of characters on a tree; [4]). It is rare to put it mildly, for
non-trivial datas sets (those with more than a handful of
characters and taxa) to be completely consistent. If this
were not the case, there would be no cause for most of
systematic theory or computational effort, since all prob-
lems would reduce to “perfect phylogeny” and allow exact,
polynomial-time solutions [5].
A powerful example of this homoplasy/multiple history

phenomenon is presented by [6]. In a case of whole Vibrio
genomes, none of 243 individual locally collinear genomic
regions, which yielded 286 unique topologies (the greater
number of trees than genomic regions is due to multi-
ple equally costly solutions for individual regions), agreed
with their combination (whole-genome phylogeny). On
the other hand, multiple random nucleotide samples of
the same size as the individual loci, but drawn across the
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entire genome agreed in each case with the whole-genome
phylogeny. The individual collinear regions are highly
localized samples that yielded unique phylogenetic trees,
while a single underlying signal was present throughout
the genome. The distinction between actual multiple his-
tory and simple homoplasy is central to the analysis of
networks and trees. The ability to distinguish between the
two is a fundamental purpose of phylogenetic network
analysis.
Whatever the motivating mechanism, there are many

types of networks, or at least network diagrams in the
literature (reviewed in [7, 8]). Some are not meant to rep-
resent historical scenarios, but summaries of conflicting
phylogenetic information (e.g. “split” trees and networks;
[9]), viral reassortment events (“reassortment networks”;
[10, 11]), or multiple, differing trees (e.g. “cluster” net-
works; [12]).
The networks considered here are “phylogenetic” net-

works as described by [13] that strive to explain transfor-
mation events in terms of vertical and horizontal events
on graphs that connect terminal (leaf ) taxa to each other
and to a single root as on a traditional phylogenetic
tree, but with additional, network edges. Furthermore,
this work only deals with networks as a parsimony prob-
lem, likelihood networkmethods have been proposed (e.g.
[14, 15]) but are not further discussed here.

Trees and networks
A tree is typically defined as a directed acyclic graph
(DAG) with vertices (nodes) of three types: those with
indegree=0 and outdegree=2 (root), indegree=1 and out-
degree=0 (leaves or terminals), and indegree=1 and out-
degree=2 (internal or HTU nodes) (summarized in [16]).
Networks are a superset of this, allowing for reticulate
(i.e. network) nodes with indegree > 1. Here the con-
ventions and definitions of Moret et al. [13] are followed.
This limits (rooted) network nodes to indegree=2 and
outdegree=1, and forbids edges that directly connect net-
work nodes. Edges that end in tree nodes are referred to
as tree edges, and those that end in network nodes as
network edges. Furthermore, potential network edges are
constrained that they be, at least potentially, contempora-
neous (no ancestor to descendent network edges) consis-
tent with the notion of lineages exchanging information at
a particular time (Fig. 1).
Soft and Hard–there are two fundamental interpreta-

tions of the meaning of phylogenetic network edges: “soft-
wired” and “hardwired” [7]. Softwired networks and their
edges represent alternate edges only one of which is found
in any given “display” or resolved binary tree (Fig. 2). A
softwired network with n network nodes will have at most
2n binary resolutions of display trees [17]1.
Network edges in hardwired networks are all present

and signify potential transformations between multiple

Fig. 1 Network with leaves A–F, root node I, tree nodes II–VI, and
network node VII. Edges V–VII and III-VII are network edges, other
edges are tree edges

ancestors and a single descendant. These alternate inter-
pretations (soft and hard wired) lead to alternate defini-
tions of the parsimony cost of these network types. For
a network N with set of display trees τ (N), and a set of
characters C to be optimized on N, the parsimony score
of a given character c will be the best score found for that
character on any tree T in τ (N). The overall softwired
parsimony score, S(N ,C) [18–20] will be :

S(N ,C)score = �c∈Cmin (T∈τ(N))Tc
score. (1)

One immediate problem with such cost, as pointed out
by [20], is that there is a trivial minimum cost where each
character is assigned its best tree. In essence, when there
are many display trees in a network each character can be
optimized on a tree that provides minimal cost. To over-
come this, [20] recommended partitioning the character
set into blocks that would be optimized on the same dis-
play tree. These blocks could be more or less subjective,
based on gene sequences or other criteria.
Hardwired costs on the other hand (H(N ,C)score) do not

depend on display trees, but are the sum of the weights
of all edges (e) in the network N, where the edge weights
(w(e)) are the minimum number of character changes
between vertex states that bound each edge [21, 22].

H(N ,C)score = �c∈C�e∈Nwc(e). (2)

The time complexity of determining the softwired parsi-
mony score is exponential in the number of network nodes
(r) but polynomial for non-additive/unordered [23] type
characters when r is fixed. Determining the hardwired
cost is NP-hard (but fixed-parameter tractable in the par-
simony score) [24] when the number of character states
exceeds 2.
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Fig. 2 Binary “display” trees of network in Fig. 1. Node VII (now indegree=outdegree=1) can be removed by contraction

Biologically, the softwired interpretation is in general
more attractive in that it allows for multiple ancestor sce-
narios, but only a single ancestor for a given character.
Scenarios of horizontal gene flow are thought to repre-
sent alternate binary tree (ancestor-descendent) scenar-
ios, such that a given taxonmight have multiple ancestors,
but a given feature only one. For example, when horizon-
tal gene transfer occurs, the ancestry of bacterial genomes
can be represented by multiple independent trees, one for
each set of loci that have been transferred. Even charac-
ters in hybrid origin lineages are generally thought to have
a single ancestral origin, just mixed in a 1:1 ratio through-
out the genome as opposed to the much smaller fraction
implied by single gene horizontal transfer (this could also
be said of biparental inheritance systems).

Optimality and hypothesis testing
Given the scoring differences among softwired and hard-
wired networks and binary trees, it is impossible to com-
pete them on an equal footing in a hypothesis testing
framework. Softwired will always be shorter (or worst case
equal to trees), and hardwired always longer (or best case
equal to trees).
Due to the seemingly greater biological utility of soft-

wired networks, the remainder of this discussion will be
restricted to the issue of optimality and hypothesis testing
among competing tree and softwired network (referred
to simply as “network” hereafter) scenarios. Basically,
some penalty, dependent on the degree of “network-ness”
(defined below), must be applied, such that tree costs and
network costs are comparable.

Network edge penalty
There are several behaviors that are desirable in a net-
work penalty. First, the penalty should be dependent on
the number of extra (i.e. non-tree) edges in the network
scenario, the less tree-like, the higher the cost. Second,
this penalty must be applied on a character-by-character
basis. Since characters can have different histories (or we

wouldn’t be bothering with networks in the first place),
most character state transformations may be represented
by a single optimal display tree, while other character
transformations may be following multiple, alternate dis-
play trees. Third, networks containing superfluous edges
(those unused by any character transformations) must be
assigned an infinite cost. This is to ensure that only the
minimum number of edges required are identified. Oth-
erwise, the solution to all cases would be a network that
contains all possible binary trees.
The basic idea of the network penalty is to account for

the “expected” change in cost as extra edges are added
to a tree. The factor suggested here is that the improve-
ment in parsimony score for a network as edges are added
is 1

2 of the expected cost of each edge for a tree with
n leaves, Tcost/ (2n − 2). The factor of 1

2 is motivated
from the minimum metric cost of inserting characters
de novo, as opposed to substitution in character change
on a given edge. This factor is derived from the tri-
angle inequality setting a lower bound on the ratio of
insertion-deletion events and character substitution [25].
Basically, metricity demands that that the cost of charac-
ter change between states (say nucleotides adenine and
cytosine) must be less that the cost of deleting one and
inserting the other. If this were not the case, substitutions
would never be optimal since paired insertion and dele-
tion would always be lower cost. This requirement offers
a non-arbitrary method to establish the benefit of extra
(ie. network) edges. The degree to which improvements
in network costs are greater than this amount determines
the optimality of the network scenario.
Consider a network N = (V ,E), as commonly defined

with an edge set E and vertex setV. Furthermore, consider
the set of display trees T derived from the resolutions
of network edges in E with n leaf taxa. For a set of k
charactersC = (C1, . . . ,Ck), there is at least onemost par-
simonious (for all characters combined) display tree τmin

at cost cost
(
τmin) with edge set Emin and vertex set Vmin.

Other trees in the display set T, τ ∈ T have edge sets E
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and vertex sets V. We further denote the display tree with
minimum cost ci for a given character Ci as τi with edge
set Ei.
We can then define a (as opposed to the) network cost

as the softwired cost (eq. 1) augmented by a penalty:
S(N ,C)cost + P (N ,C) where

P (N ,C) =
{

�k
i=1ci×|Ei\Emin|
2×(2n−2) , if all network edges “used”

∞ otherwise.
(3)

This penalty assigns a cost for each edge in the trees of
minimum cost for each character (individually) not found
in the overall best (for all characters) display tree with the
multiplicative factor |Ei \ Emin|. Since the penalty for any
tree is 0 (since there are no extra edges) and the softwired
cost is equal to the tree cost, the penalty only affects the
optimality of networks. P(N ,C) is set to ∞ if any edge

is “unused” in the network. Unused is here defined as an
edge that is not a member of a minimal cost display tree
for any character.

Methods
Example cases–observed and simulated
To explore the behavior of this network penalty, two bio-
logical and one linguistic data sets were employed. For the
biological data, several simulated versions based on sin-
gle and multiple gene history were created to further test
the penalty. This demonstration is not meant to repre-
sent an exhaustive treatment of the network penalty, but
an illustration of how this penalty behaves in tree-like and
network-like cases.
The biological examples consist of a data set of 12

microhylid frogs and 7 loci (2 mitochondrial and 5
nuclear) drawn from [26], and an H1N1 2009 influenza
data set of 9 complete genomes of 8 segments drawn from
[3]. The linguistic data are the Uto-Aztecan data of 40
languages and 102 words of [27].

Fig. 3Microhylid trees for individual loci and their strict consensus (a–Tyrosinase, b–Seventh in Absentia, c–Histone H3, d–Cytochrome Oxidase 1,
e–Cellular Myelocytomatosis Oncogene - Exon 2 (CMYC), f–Brain-derived Neurotrophic Factor (BDNF), g–16SrDNA, and h–strict consensus of all
loci;. Data from [26]
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The two biological data sets were chosen as cases where
networks were (influenza) and were not (microhylids)
thought to be reasonable historical scenarios. The linguis-
tic data set is based on words (Swadesh 100 list; [28])
thought to be less prone to borrowing (horizontal trans-
fer), but several have been hypothesized to have under-
gone some exchange in subsets of Uto-Aztecan languages
and exchange from non Uto-Aztecan languages that are
geographically adjacent.

Analysis of observed sequences
For each of the three data sets, the most parsimonious
(“best”) heuristic tree solution for combined and parti-
tioned loci/segments was created using POY5 [29, 30].
The cost regime was completely homogeneous (substi-
tutions = insertions = deletions =1) using unaligned
sequences.
A combination of Wagner random addition sequences

(100 replicates), TBR refinement, and tree recombina-
tion (fusing) [31, 32] was employed for each analysis.
Partitioned analyses are shown in Figs. 3 and 4. Candi-
date network scenarios were created in two ways. For
the microhylid data, loci were analyzed independently
(Fig. 3) and edges added to the simultaneous tree solution
to create the candidate network. These network edges

were based on minimum hybridization networks derived
using Dendrosope [33] (Fig. 5). Networks were diagnosed
using a prototype network tool, PhylogeneticCompo-
nentGraph (PCG; https://github.com/wardwheeler/
PhyloComGraph.git) reading fasta and extended newick
[34] files using the commands read("*.fas") read
(newick:"network.enewick"). Currently, net-
works can only be diagnosed from input, not searched.
With the influenza data, the reassortment scenario of
[3], was used for network diagnosis (Fig. 6). For the
linguistic data, the base tree of [27] was used, augmented
by a scenario of Yuman-Takic exchange (in loanwords
suggested by Jane Hill recorded in Kenneth C. [35]) (one
edge; Fig. 7). Other exchanges regarded as unlikely (e.g.,
Aztec–Shoshone, Western Mono–(Eudeve + Òpata))
were tested as well.

Analysis of simulated sequences
In order to add greater control to test cases, the two
biological data sets were used as a basis for simulations
using DAWG [36]. The linguistic data set was not a basis
for simulation due to its large sequence alphabet. In both
cases, the length and number of loci in the datasets (7 for
microhylids, 8 for influenza) were simulated under three
scenarios. In the first, all of the loci/segments underwent

Fig. 4 Phylogenies based on analysis of sequence data from a sample of viral isolates [3] for each segment of the H1N1 2009 influenza genome (a. 1
(PB2), b. 2 (PB1), c. 3 (PA), d. 4 (HA), e. 5(NP), f. 6 (NA), g. 7 (MP), h. 8 (NS)) and their strict consensus (i.)

https://github.com/wardwheeler/PhyloComGraph.git
https://github.com/wardwheeler/PhyloComGraph.git
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Fig. 5Microhylid tree (top, based on concatenated data) and network (bottom). Network edges in red. Internal vertices are labelled “rN”. Data from
[26]

simulated evolution on the same tree with the same
branch lengths as determined by the combined tree analy-
sis in POY5 (“COM”). In the second, the same single COM
tree was used but with unique branch lengths (again based
on analysis in POY5) for each locus/segment (“SEP”). In
the third, each locus/segment had its own tree and branch
length set based on independent analysis using POY5
(“IND”). The first two cases reflect alternate scenarios
of tree-like evolution, whereas the third is network-like
(Table 1). For each of the 45 runs, a full GTR+G+I model
([37, 38]; rate parameters for AC, AG, AT, CG, CT, GT =
{1.5, 3.0, 0.9, 1.2, 2.5, 1.0}, nucleotide frequencies A, C, G,
T = {0.20, 0.30, 0.30, 0.20}, � = 1, I = 0.1) was used with
gapmodel “NB” using {1, 0.5} for insertions and {2, 0.5} for
deletions.

Results and discussion
The results of observed and simulated analyses for the bio-
logical data sets are summarized in Table 1. Those of the
linguistic analysis are contained in Table 2.

The analyses of observed data (both biological and
linguistic) show patterns that are largely as expected.
The microhylid data, where horizontal exchange was not
thought to occur, showed the optimal solution as a tree.
The influenza data displayed the opposite behavior with
(penalty adjusted), network cost superior to that of the
best tree solution, indicating that allowing reassortment
shows these viruses evolved not only via mutational pro-
cesses (Table 1). The linguistic data showed a marked
preference for the Yuman-Takic exchange scenario over
both the tree alone and other exchanges not thought
likely (although these showed marginal superiority-0.1 %-
to the tree solution as well) (Table 2). This is particularly
acute, given that, for the biological data sets, there is
no non-trivial pattern of relationships shared among all
loci/segments in either the microhylid or influenza data
sets. Both show near complete incongruence, but show
markedly different relative network optimality.
The simulated data show a series of consistent patterns.

Where independent evolution among genetic elements
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Fig. 6 Avian influenza tree (top, based on concatenated data) and network (bottom). Network edges in red. Internal vertices are labelled “rN”. Data
from [3]

was simulated, network solutions were favored. In the
cases of single tree simulations, whether with either com-
mon or independent branch lengths, there were unused
edges, hence, tree solutions were favored over networks.
A point to note is the close correspondence of simu-
lated and observed data costs (in terms of overall char-
acter change), supporting the utility of the modeled data.
However, the presence of unused edges suggests that the

simulations were perhaps overly “clean” in their tree-like
patterns.

Conclusions
Incongruence among sequence data (especially genetic
loci) has often been seen as evidence of multiple
ancestor origins of transformation. This is in oppo-
sition to narratives attached to non-sequence data

Fig. 7 Softwired network of Uto-Aztecan languages with a network node at the base of “Takic” languages, denoting contributions from Yuman as
well as Uto-Atecan parent languages (red edges). Internal nodes are labelled as “rN”. Data and base tree (without Yuman-Takic edge) from [27]
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Table 1 Results of tree and network analyses of observed and simulated data for microhylid frogs and influenza virus strains. Tree cost
values are the minimum of the display tree set. The simulated result procedures,“COM,” “SEP,” and “IND” are defined in the text. Values
of ∞ in “Penalty” and “Network” signify that there was at least one “unused” edge in the network

Tree, network, and penalty costs

Data set Scenario Observed COM SEP IND

Microhylids Tree 3962 3535 3695 4076

Softwired 3939 3535 3695 3964

Penalty 32.64 ∞ ∞ 83.59

Network 3971.64 ∞ ∞ 4047.59

Influenza Virus Tree 10272 8443 9169 9092

Softwired 9935 8443 9169 8775

Penalty 324.59 ∞ ∞ 270.56

Network 10259.59 ∞ ∞ 9045.56

(e.g. ,anatomy, codon position) where disagreements
among characters are ascribed to simple homoplasy
(e.g., reversal, parallelism). One of the key questions
to be addressed is when are such character incom-
patibilities indicative of multiple history as opposed to
simple non-minimal change? As discussed above, incon-
gruence among loci, even in whole-genome analysis,
can be due to non-random sampling effects (contigu-
ous sequence positions) as opposed to multiple historical
signals [6].
Obviously, not all incongruence can be ascribed to mul-

tiple history, but where is the line to be drawn? That is the
objective of this discussion. How can we compete network
and tree solutions on an equal footing?
Given the match of expectation with observation in

the biological and linguistic data, as well as the behav-
ior of the simulated data, the softwired network cost
proposed here is worth considering as such an opti-
mality criterion. In each of the 11 cases examined,
trees were favored where they were thought most
reasonable and networks where they had been pro-
posed or simulated. This success is tempered by three
caveats.
First, the networks generated were not chosen based

on any measure of quality. Network edges were added

to (parsimony searched) trees based on hybridization
networks. This is adequate to identify potential reticula-
tion events and illustrate the behavior of the proposed
network cost, but the quality of these networks (com-
pared to others) is unknown. A more complete discus-
sion awaits more effective network identification. Sec-
ond, the test cases discussed here are limited. A broader
sample of real and simulated data will be required to
explore fully the behavior of any network cost. Third,
although the network penalty proposed here is based on
the logic of metric character transformation and soft-
wired networks, other costs are possible. These might
weight particular edge cost components differently, or
have alternate expectations as to cost reductions (in com-
parison to trees) as networks become more complex. Fur-
thermore, different sorts of penalties will yield different
results.
Even acknowledging these concerns, the softwired net-

work cost regime proposed here presents a quantitative
criterion for an optimality-based search procedure where
trees and networks can participate in hypothesis test-
ing simultaneously. Only through such a procedure, can
we address questions of the competing influence of ver-
tical and horizontal transfer of information in evolving
systems.

Table 2 Results of tree and network analysis of Uto-Aztecan linguistic data. Tree cost values are the minimum of the display tree set

Tree, network, and penalty costs

Data set Scenario Yuman–Takic Aztecan–Shoshone WMono–Eudeve/Òpata

Uto-Aztecan Tree 10120 10120 10120

Softwired 10063 10118 10113

Penalty 21.833 0.94 4.23

Network 10084.83 10118.94 10117.23
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Endnote
1This motivates the [13] restriction that network nodes

cannot have another network node as a parent. Such a
situation can result if both descendants of a network
node are also network nodes yielding display trees with
internal vertices promoted to leaves.
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