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Abstract
Most hair follicles on the human body have evolved to be miniaturized, rendering us
practically ‘naked’. Despite sparse body hair, we retain thick hair on our scalps that
varies significantly among populations. Yet little is known of the evolutionary history of
our scalp hair and its variation. It has been suggested that scalp hair, and tightly curled
hair in particular, evolved to moderate thermal load in humans. However, this functional
hypothesis has never been directly tested. Existing research on human hair variation
has relied on subjective and qualitative descriptors of hair morphology and samples have
been historically had a strong Eurocentric bias.

Despite its relevance to several evolutionary hypotheses, scalp hair has yet to be studied
in a comprehensive evolutionary, functional, and genetic framework. The functional work
described in this dissertation revisits the recurrent question of the role of thermoregulation
in shaping early human evolution. This work is the first to extensively investigate the
potential role of scalp hair and variation in its morphology in modulating heat balance in
humans. More broadly, the methods, samples, and hypotheses tested in this dissertation
serve to replace racialized terminology and conceptions of human scalp hair variation.

Current public discussions of human biological variation demonstrate that anthropol-
ogists must continue to oppose tendencies to perceive human variation in racial terms,
and focusing on hair–one of the most visible and variable human traits–will provide
anthropologists with evidence of how and why variation evolved. This dissertation
synthesizes methods and knowledge from various disciplines with new data, generating
an innovative perspective on both human origins and modern variation and laying the
foundation for future work.
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Chapter 1 |
Introduction and background

Humans have famously been dubbed “The Naked Ape” in honor of our seemingly hairless
bodies (Morris, 1967). Human bodies have a few truly hairless (glabrous) body parts,
including the palms of the hands and the soles of the feet, but the majority of our
epidermis is covered in vellus hairs produced from miniaturized hair follicles (Jablonski,
2006). The most conspicuous exception to this mostly naked body is the tuft of terminal
hair that graces the human scalp. The evolutionary function of this specifically human
trait is not well understood. Similarly, the remarkable range of variation in scalp hair
morphology among populations remains an evolutionary mystery.

1.1 What is missing in our methods: a racialized lens
and limited lexicon
The evolutionary function of scalp hair is unclear, but the variability of scalp hair
morphology has been widely considered a fundamental trait distinguishing human groups.
In fact, scalp hair morphology (alternatively hair form, texture, type, or shape) is part of
a suite of traits that have historically been used to classify humans into discrete groups
(Pruner-Bey, 1877; Garn, 1950, 1951; Linnaeus, 1758; Jablonski, 2020; Seta, Sato, &
Miyake, 1988). Hair has been used alongside skin color and a number of other physical
attributes to construct a racialized framework of human biological variation as neatly
divisible into mutually exclusive categories. The taxonomic approach to continuous
human variation developed by European scholars during the Enlightenment has affected
all subsequent thinking and hindered our ability to understand these traits outside of a
racial paradigm.

The study of racialized traits, such as hair morphology, necessitates objective (quan-
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titative) methods to remove (or, at least, reduce) observer bias. The development and
improvement of reflectance spectrophotometry for skin pigmentation has drastically al-
tered the scientific study of this phenotype (Jablonski, 2012). These methods have allowed
scientists to describe the clinal nature of skin pigmentation variation (Relethford, 2000;
Jablonski & Chaplin, 2000), test hypotheses about its evolutionary function (Jablonski
& Chaplin, 2000; Madrigal & Kelly, 2007), and uncover the genetic architecture that
underlies it (Crawford et al., 2017; Martin et al., 2017; Beleza, Santos, et al., 2013). Sim-
ilar advancements in cranial morphometrics and 3D facial image analysis have facilitated
the complete departure from racial typologies and a sophisticated exploration of these
complex traits (White et al., 2019; Zaidi et al., 2017; Relethford, 2002; Betti, Balloux,
Hanihara, & Manica, 2009; Claes et al., 2014).

However, the absence of such methodological advancements has left the study of human
variation in hair morphology relatively stagnant. The continued racialized framing of hair
morphology was so strong that when anthropologists abandoned racial classifications in
the second half of the 20th century, the study of human variation in hair morphology also
fell out of favor. Indeed, we see that this object of study persisted most clearly in forensic
science—a discipline where racial typologies were not only tolerated, but considered
a central goal (Seta et al., 1988; Cole, 2020; Ogle & Fox, 1998). Dermatological and
cosmetological interest in human hair variation has led to a significant body of research
describing human hair morphology (De La Mettrie et al., 2007; Lindelöf, Forslind, &
Hedblad, 1988; Franbourg, Hallegot, Baltenneck, Toutain, & Leroy, 2003). However,
without a clear framework for understanding human biological variation, much of this
literature has oscillated between using explicit racial paradigms (Khumalo, 2007) and
presenting ethnicity as an essential and immutable biological category (Franbourg et al.,
2003; He & Okoye, 2017; Cruz et al., 2013), or completely ignoring the potential effects
of population structure by using distantly related populations as proxies for particular
extremes of hair morphology, such as straight vs. curly (Thibaut, Gaillard, Bouhanna,
Cannell, & Bernard, 2005; Wortmann, Wortmann, & Sripho, 2019).

Across disciplines, hair texture is described as “straight”, “wavy”, or “curly” giving
the impression that every individual falls into a clear and mutually exclusive category.
But the lines between hair texture categories are highly subjective. Additionally, when
implicitly racialized categories such as “frizzy” are added, the apparent objectivity of
these descriptors disappears as certain terms are exclusively used to describe particular
populations, in much the same way that corresponding racial frameworks have done
historically (Linnaeus, 1758). Moreover, the manner in which these terms are used, often
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gives the erroneous impression that European populations have a wider range of variation
than African or East Asian populations (against whom they are often compared).

The limitations of our lexicon suggest the need for methods that minimize subjective
interpretations and, ideally, quantitatively reflect the continuous and multi-faceted nature
of the phenotypic variation that is subsumed within the broad umbrella of human scalp
hair morphology. There have been many attempts to solve this very problem, but the lack
of universal (or even widespread) standards for the characterization of hair morphology
ostensibly points to the complexity of the task. On the scale of the individual hair fiber,
one can measure longitudinal curvature and cross-sectional properties. The cross-sectional
morphology of hair fibers can be accurately assessed using a variety of established methods
(Pruner-Bey, 1864; Kneberg, 1935; Hrdy, 1973; Lasisi, Ito, Wakamatsu, & Shaw, 2016),
but curvature has proven much harder to characterize (Lasisi et al., 2020; Hrdy, 1973;
Mkentane et al., 2017). These problems are compounded by the divergent needs of
practitioners in different disciplines who want to measure hair, but who are limited by
the materials, equipment, and skills available to them.

1.2 Phenotype-genotype associations: how much do we
know about hair morphology?
The laborious nature of existing methods for quantifying hair morphology have resulted
in the propensity of large-scale genome-wide association studies (GWAS) to rely on
simple subjective qualitative descriptions of hair, either by participant’s self-reporting or
by the evaluation of the observer collecting participant samples and information (Liu et
al., 2018). This qualitative approach coincides with the complete exclusion of African and
African-descendant populations from these studies, who, in the straight/wavy/curly/frizzy
framework, would be invariably described as having “frizzy” hair and thus, no variation
to speak of that could be investigated in a GWAS1. Nevertheless, these qualitative
approaches have yielded some significant associations with hair texture in some (mainly
North European and East Asian) populations (Liu et al., 2018; Adhikari et al., 2016;
Medland et al., 2009; Tan et al., 2013). The most notable exception to the qualitative
approach is the landmark study associating a single nucleotide polymorphism (SNP)

1The one seeming exception to this would be the Adhikari et al. 2016 study as it featured a large
sample of admixed Latin American populations. However, upon closer inspection, there is a surprising
dearth of African ancestry in any of their samples, and, more problematically, their supplementary
materials reveal that individuals describing their hair as “frizzy” were excluded from the analysis due to
their small relative sample.
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within the ectodysplasin A receptor (EDAR) in East Asian populations (Fujimoto et al.,
2008a). This non-synonymous SNP, also referred to as the 1540C allele, was associated
with an increase in hair thickness, which highlights the importance of the efforts the
authors took to quantify the cross-sectional shape of each individual, as that variation
would have been invisible otherwise. Other attempts to use quantitative approaches
have relied on the application of methods used for sheep’s wool, without necessarily
demonstrating the validity of those methods for the measurement of human hair (Ho et
al., 2020, 2016).

Other avenues of research informing the genetic architecture of scalp hair morphology
include Mendelian diseases and animal models. The inheritance patterns of a number of
scalp hair disorders various families around the world. Conditions described as “woolly
hair syndrome” and “uncombable hair syndrome” have been used to medically categorize
hair that is considered to be uncharacteristically coily, “frizzy”, “unmanageable” or
“woolly” for the population (or racial category) that the diagnosed individual is considered
to be (Pavone et al., 2017; Horev et al., 2009; Calderon, Otberg, & Shapiro, 2009). Though
the medical diagnostic validity of these conditions may be questionable, research tracing
so called “affected individuals” in pedigree studies are an important source of information
for potential gene candidates for normal-range variation (non-Mendelian) GWAS. Such
cross-validation of gene function is seen for EDAR for example, where certain variants in
the locus (albethey different) cause both Mendelian disorders and affect normal-range
variation (Fujimoto et al., 2008a; Stecksén-Blicks, Falk Kieri, Hägg, & Schmitt-Egenolf,
2015; Lee et al., 2014).

Lastly, a large body of literature exists in developmental biology with regards to
gene expression associated with hair morphology in animal models. In mouse models,
a number of genes have been found to be expressed in hair follicles, including Prss53,
Gata3, and Wnt10a among many others (Adhikari et al., 2016; Vidal et al., 2005; Kimura
et al., 2015; Peters et al., 2003). Though mouse models are traditionally used in many
functional genomic studies, there is some question of the extent to which hair/fur results
are transferable as mice, like many other mammals, have pelage that is different from
human scalp hair in a number of ways, including the tendency to express crimped rather
than curled hairs (Koch, Tridico, Bernard, Shriver, & Jablonski, 2020). Other non-model
organisms used to explore the genetic architecture of hair morphology broadly include
dogs and cats, where the wide variability of coat morphology across breeds has been
leveraged to uncover a number of genes that play a role in this phenotype and may be of
some relevance to human hair morphology (Cadieu et al., 2009; Gandolfi et al., 2010).
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Overall, elucidating the genetic architecture of human scalp hair morphology is
important on a number of levels for evolutionary anthropologists. Firstly, the remarkable
variation among human populations begs the question of what selective pressures have
shaped the evolution of human scalp hair diversity. Knowing the genetic underpinnings
of this trait would allow us to investigate this question and test various hypotheses on
the nature and timing of the selective events. Furthermore, investigating the evolutionary
genomics of hair-related genes is the only window that allows us insight into the long-term
evolutionary history of this trait in the hominin lineage. Hair leaves little to no trace in
the fossil record, so interrogating the record left in the genomes of contemporary and
available archaic genomes is the best chance we have at confidently inferring when, how
and why scalp hair and its subsequent variation evolved.

1.3 How does heat factor into the evolutionary history
of human head hair?
In order to fully understand the evolution of human scalp hair, we must consider
specific hypotheses that might explain the evolution of this phenotype and its subsequent
morphological diversification. However, the anthropological literature on human evolution
contains surprisingly little information on the topic, beyond surface-level speculation.
Most commonly, sexual selection is invoked as the “functional” explanation for the
presence and variation of human scalp hair. Darwin attributed much of human variation,
including skin color, hair color and hair texture to sexual selection and different preferences
of “races” (Darwin, 1871). Later discussions of the presence of scalp hair (particularly its
relative length) has been attributed to social communication or sexual signalling (Neufeld
& Conroy, 2004; Caldararo, 2005; Thierry, 2005). However, none of these has offered any
explicitly testable hypotheses.

Among the few other discussions of human scalp hair evolution is the hypothesis
that hairy scalps may have evolved as protective barriers against solar radiation in
bipedal savannah dwellers (Wheeler, 1984). Managing thermal load would be particularly
important in the context of a large thermogenic and thermosensitive brain. Furthermore,
there exists a hypothesis that tightly curled hair may have been particularly adaptive
under such intense solar regimes (Jablonski, 2006; Jablonski & Chaplin, 2014). If one
considers the question of human scalp hair function in the broader context of mammalian
fur, it is quite striking that thermoregulation has not been investigated more extensively.
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For most mammals, hair plays an important role in thermoregulation, not only
through insulating air warmed by body heat in cold environments, but also by reflecting
much of the solar radiation before it reaches the skin. This protection from solar radiation
does not merely protect from the effects of UV damage, but it also reduces the total
heat load on an animal (Wheeler, 1985). In this context, variation in mammalian hair
coats has been studied to understand how they may be adapting to different levels of
solar radiation. Research on radiative heat gain in two species of squirrel (Spermophilus
lateralis and Spermophilus saturatus) demonstrated using a heat flux plate that, while a
lighter colored coat can avoid heat gain by reflecting most of the solar radiation, a similar
reduction in radiative heat gain may be achieved by a deeper coat of fur (Wheeler, 1990).
Additional studies in koalas, kangaroos, and polar bears confirmed the role of hair depth
in thermal insulation (Dawson & Maloney, 2017; Dawson, Webster, & Maloney, 2014).
In humans, hair depth can be created by the tight curling of hair, as well as thick fibers
that create more volume, both of which maximize the distance between the surface of
the hair and the surface of the scalp.

There are a few empirical studies in humans suggesting that, at the very least, scalp
hair may have some effect on thermal balance. In particular, a number of studies have
pointed to a significant effect of absence/presence of scalp hair in the context of heat
loss. For example, Cabanac and Brinnel (1988) found that bald men evaporated sweat
on their heads at a higher rate than men with scalp hair and this was corroborated by
a recent study (Coelho et al., 2010). At face value, it appears that a bald head would
be superior due to the increased sweat rate, however the Coelho et al. study suggests
that this higher sweat rate may be offset by a higher heat load. Taken together with
the mammalian fur research, there is certainly sufficient evidence to warrant a more
thorough study of the potential effects of scalp hair, and variation in its morphology, on
human heat load.

1.4 Motivation for the work
There are significant gaps in our knowledge of human scalp hair variation due to the
culmination of a number of historical factors. First and foremost, the role of scalp hair
as a trait for distinguishing human groups has led to the entanglement of scientific
study of scalp hair with racial views of human biology. The interest anthropologist
had historically shown in human scalp hair variation gave way to an avoidance of this
phenotype due to its seemingly inextricable link to race. The inescapable link to a
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history of scientific racism thus forms an obstacle to the study of this subject. This
impediment is further exacerbated by the lack of practical methods for the study of hair
morphology. For these reasons, it is likely that the topic of human scalp hair variation
has appeared to many biological anthropologists to be a costly investment of time and
effort with a considerable amount of uncertainty in the reception of this work among
the larger scientific community. As a result of anthropological avoidance of human scalp
hair variation, consideration of this phenotype is absent from crucial work on human
evolution. A few scholars have called attention to the potential importance of scalp hair
in the context of our species’ evolution (Wheeler, 1985; Jablonski & Chaplin, 2014). Still,
the relatively small surface area our scalp hair covers has misled many to assume that its
effects could not possibly have significant consequences on our thermal biology (Hora,
Pontzer, Wall-Scheffler, & Sládek, 2020). With such assumptions, this trait has been
relegated to the status of superficially interesting, but superfluous in the grand scheme
of evolutionary anthropological research.

The absence of biological anthropologists from the development of scientific knowledge
on human scalp hair variation has been to the detriment to other disciplines as well as our
own. The relatively abrupt pivot away from racial science within most of anthropology
was achieved largely by the pursuit of research on human variation in traits relatively
devoid of racial connotation (e.g. lactase persistence, disease resistance, high-altitude
adaptation). The study of racialized traits in biological anthropology was largely guided
by the availability of technologies that would allow for the almost complete detachment
of subjective descriptions that risked alluding to race. For example, the reflectance
spectrophotometer enabled biological anthropologists to describe variation around the
world with numbers expressing skin reflectance, rather than perceived color categories.
Similarly, the historically racist descriptions of stereotypical cranial and facial variation
among populations had given way to geometric morphometric study of the head with
unsupervised statistical approaches, such as Principal Components Analysis, that could
be asserted as impervious to racial thinking.

The relative dearth of recent anthropological work on hair is in contrast to the
considerable interest this trait has received from forensic scientists, dermatologists and
the cosmetic industry. Unlike anthropology, the departure from racial approaches in these
fields has been slower and, in some cases, faced active resistance due to the perceived
usefulness of race as a biological concept. Rather than engaging with issues, disciplinary
silos have led to an unspoken understanding that such critique is unfruitful and fields
studying the same topic are separated by a seemingly insurmountable epistemic schism.
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Yet, the many calls to interdisciplinary and transdisciplinary science suggest that, on
some level, there is consensus that our status quo is undesirable (Leshner, 2004; Manlove
et al., 2016; Luke et al., 2015; Croyle, 2008). The work I present in this dissertation
is thus driven by the desire to address critical gaps in our own field by developing new
methodologies and cross-disciplinary bridges that will promote the future study of a
neglected facet of human variation.

1.5 Outline of chapters
In this dissertation, I preface my investigation into the evolution and genetic architecture
of human scalp hair morphology by examining the racialized nature of this phenotype
in Chapter 2: "The constraints of racialization: how classification and valuation hinder
scientific research on human variation" and is based on a published article in the American
Journal of Physical Anthropology (Lasisi, 2021). Here, I present the motivation for my
focus on developing objective, quantitative methods that can be applied without reference
to ancestry, ethnicity, or race. In this chapter, I set out a framework for examining the
racialization of phenotypes based on two processes: classification and valuation. Using
examples from the scientific literature on skin and hair color, I illustrate the ways in
which classification facilitates the racialization of traits by distorting continuous variation
in a manner that overemphasizes European variability and homogenizes other groups
of people. Furthermore, I demonstrate how classification works synergistically with
valuation to present certain subjective categories as superior to others. Specifically, I use
examples of persistent, unsubstantiated claims of the universal preference for lighter skin
presented as a legitimate sexual selection hypothesis, and the unjustified pathologization
of hair that is typified as “African” when it is expressed in Eurasian populations.

In Chapter 3, I present the methodological contributions of this dissertation to
the quantitative assessment of hair fiber curvature and cross-sectional morphology.
This chapter is based on an article that has been submitted to Scientific Reports and
can be found as a preprint manuscript on bioRxiv (Lasisi et al., 2020). As discussed
above, hair morphology is of professional interest to dermatologists, cosmetologists,
anthropologists, forensic scientists, and geneticists, but is poorly understood because hair
itself is difficult to work with in the lab and continues to be studied with outdated methods
and racialized typological frameworks. In light of this, I put my efforts towards developing
a complete set of methods that include protocols for embedding hairs for sectioning,
washing, and preparing hairs for curvature imaging, and an open-source Python package
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(fibermorph) for the analysis of the image data. These methods are the culmination of
seven years of work on the development of replicable high-throughput protocols, and they
establish a much-needed baseline for future research on hair morphology. The fibermorph
image analysis program is freely available through PyPi.org and on GitHub, where the
source code can be found. The sample preparation protocols are publicly available on
Protocols.io and include videos of the steps (Lasisi, 2020c, 2020b).

One of the primary motivations for the development of the hair quantification methods
was to generate phenotypic data that better represented the complex continuous nature
of the underlying biological structure. To test the usefulness of these methods, I applied
the methods to a sample of admixed African-European individuals (n = 192) for whom
we had previously collected genotype data and hair samples. In Chapter 4, I describe
the results from my investigation of the genetic architecture of quantitative scalp hair
morphology. This chapter illustrates how previous literature has failed to take into
account population structure when interpreting the co-occurence of different aspects
of hair morphology. Specifically, the persistent contrasting of what is categorized as
(East) Asian hair with (West) African hair, has led to the erroneous conclusion that the
round cross-sections considered archetypical of “Asian” hair are the cause of straight hair
while the “flat” cross-sections associated with “African” hair are the cause of curled hair.
This chapter demonstrates that, in our sample, the association between hair curvature
and cross-sectional morphology is explained by population structure, pointing to the
possibility of multiple independent factors contributing to the macromorphology of hair.
Additionally, I report the successful replication of previously reported hair loci and the
results of an exploratory admixture mapping analysis.

In Chapter 5, I present experimental results on the effect of scalp hair on thermal
load. This work is based on a collaboration with the Environmental Ergonomics Research
Centre (EERC) at Loughborough University in the United Kingdom. This chapter
describes the findings of a series of thermal manikin experiments undertaken at the
EERC under the supervision of Drs. George Havenith and James Smallcombe. The
study takes a biophysical approach to the question, by using human hair wigs and a
thermal manikin–a life-sized human model used to simulate heat transfer between the
skin and the environment. Such an approach allows for the direct collection of data on
the thermal properties of hair in isolation from physiological responses that humans may
have to heat stress. Our results demonstrate that there is a distinct inverse relationship
between hair curl and solar heat gain, where increasingly curled hair appears to reduce
the heat gained from solar radiation on the scalp. Finally, in Chapter 6, I reflect on
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lessons learned from the questions explored in each chapter and future directions for
research on the evolution of human scalp hair.
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Chapter 2 |
The constraints of racialization:
how classification and valuation
hinder scientific research on
human variation

Racial thinking is deeply entrenched in the science of human biological variation. In much
of the anthropological and biomedical work on human variation, we see the reproduction
of race categories with new terminology due to an inability to surmount racialized
frameworks (Bliss, 2012; Panofsky & Bliss, 2017; Benn Torres, 2019). As a consequence
of this, scientific research has stagnated and reiterated thinly veiled race-based groupings
(Saini, 2019).

Here, I illustrate how the use of classification systems and (implicit) valuing of certain
trait variants over others entrenches the racialization of human variation. In light of this,
I conclude with some thoughts on how we might move forward and overcome the issues
that have led to our current state.

2.1 Classification and Distortion
A considerable number of classification systems used for human phenotypes are subjective
and strongly influenced by racial ideas about human variation. This leads to the distortion
of the biological variation they seek to represent and, frequently, the misdirection of
scientific inquiry into those traits based on these biased perceptions. Examples of this can
be found for every trait that has historically been used as a so-called “racial character”
(Gates, 1925; Garn, 1951; Ogle & Fox, 1998). Many such typological approaches are still
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used today. Most importantly, we can see a distinct Eurocentric bias in many of these
examples.

2.1.1 The perceived variability of European traits

Eurocentric bias in classification schemes often manifests as the illusion of a wider range
of variability in European populations than all other populations. The Fitzpatrick scale is
one such example. This scale was originally developed exclusively for the classification of
“white skin” according to its response to solar radiation (Fitzpatrick, 1975). The original
scale only consisted of four categories (Roman numerals I through IV) of “white skin”
(though type IV is often described as “light brown” in color). Additional “brown” and
“black” skin categories (V and VI, respectively) were, by Fitzpatrick’s own admission, an
afterthought (Fitzpatrick, 1988).

This skin typing system classifies an individual according to skin color, sunburn, and
tanning response. However, the scale only allows for particular combinations of these
distinct epidermal traits. Only types I to III burn and the distinction between these
three types is in their ability to tan (type I does not tan, type II tans minimally and
type III tans). Types IV, V and VI do not burn and do tan—their only distinction is
skin color. This information is collected through self-report.

Unsurprisingly perhaps, there has long been evidence that this system does not work
for “non-white” populations (Gupta & Sharma, 2019; Kumar, Suliburk, Veeraraghavan,
& Sabharwal, 2020; Pichon et al., 2010; Ware, Dawson, Shinohara, & Taylor, 2020; Park,
Suh, & Youn, 1998; Willis & Earles, 2005). If we look at distributions of objective
measures of skin reflectance around the world, the range of variation among European
populations is the narrowest, while many populations that would be simply described as
‘brown’ or ‘black’ according to the Fitzpatrick scale, possess a range of skin color that is
quantifiably more vast (Martin et al., 2017; Crawford et al., 2017).

Even among so-called “white-skinned” individuals the validity and value of this skin
typing system is questionable. Rampen et al. attempt to apply this system to a sample
of Dutch students and find that only 41% of these cases can be classified according to
the original scale (Rampen, Fleuren, de Boo, & Lemmens, 1988). The authors explicitly
criticize “the assumption that there is a reciprocal interdependence between the tendency
to burn and the ability to tan”.

Despite these extensively discussed limitations, it continues to be used, even in such
applications as DNA-based phenotyping (Chaitanya et al., 2018). Moreover, the literature
contains many examples of studies that attempt to link other phenotypic traits (freckles,
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hair color, eye color) to the Fitzpatrick skin types, demonstrating the strong appeal of the
idea that humans can be classified into types with coherent and categorically exclusive
phenotypic attributes (Azizi, Lusky, Kushelevsky, & Schewach-Millet, 1988; Guinot et
al., 2005; Gupta & Sharma, 2019). While the limitations of classification of skin type
is well known and there are quantitative alternatives, classification of other phenotypes
remains relatively unchallenged.

There are many examples of the perceived uniqueness of European populations with
regard to their hair and eye color, as well as their scalp hair texture (Biasutti, 1953;
Adhikari et al., 2016; Morgan et al., 2018; Ogle & Fox, 1998). Even when privileging
Eurocentric hair color typologies, the uniqueness of this European variability does not
hold. For example, Melanesians are a well-known population in which blond hair is found
(Kenny et al., 2012; Norton et al., 2006). This perception of unique European variability
is heavily influenced by the range of variation that is encompassed by classificatory
terminologies.

Categorical groupings of eye color, hair color and hair texture are inconsistent.
Moreover, the categories that exist give a higher resolution to the variation associated
with European populations. For example, eye color categories generally include blue
and brown eyes, but may also distinguish grey, honey, hazel, brown, black, and various
shades thereof.

Davenport and Davenport (Davenport & Davenport, 1907), for instance, claimed
that “blue/grey and brown suffice”, the DNA phenotyping tool HIrisPlex-S claims to be
able to predict eye color as being blue brown or “intermediate” (Chaitanya et al., 2018),
and a recent genome-wide association study (GWAS) on admixed Latin Americans used
the categories: blue/grey, honey, green, light brown, and dark brown/black (Adhikari
et al., 2019). This inconsistency in the names and number of categories points to the
subjectivity of these perceived phenotypes. The existence of these categories is asserted
with little to no justification.

We see a similar pattern in hair color, where red, blond, brown and black are seen
as distinct categories (Hysi et al., 2018; Branicki et al., 2011; Guenther, Tasic, Luo,
Bedell, & Kingsley, 2014; Balanovska et al., 2020). Even more expansive hair color
classification systems, such as the Fischer-Saller scale still present more categorical options
for gradations of color seen across and within European populations (Fischer & Saller,
1928). With regards to hair texture, the most common classification is straight, wavy,
curly, and sometimes the addition of a “frizzy” category or further subdivisions within
these qualitative descriptors (Liu et al., 2018; Adhikari et al., 2016). These qualitative
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descriptors are inconsistently interpreted and mask the range of variation that exists
within tightly curled or “frizzy” hair (Lasisi et al., 2020).

In the cases where typologies are being proposed or justified, even a cursory ex-
amination of the populations informing these typologies reveals that Europeans are
the main—if not, exclusive— pool of data (Fischer & Saller, 1928). Mostly, however,
phenotypic typologies are invoked without any rationalization of their validity—they are
simply asserted as self-evident truth. To some, it may be tempting to conclude that,
while vague, existing qualitative categories of eye color, hair color, and hair texture are
distinct and that there simply exists more biological variation in Europeans. However,
a closer look at the known biology of each of these traits reveals that emphasis on the
European range of variability is not only disproportionate to any objective quantitative
measure of phenotypic variability, but that the categories themselves are unwarranted on
the basis of the underlying biological processes.

2.1.2 Objective variation and subjective salience

Our perception of hair color is mainly influenced by the type and quantity of melanin
that hair fibers contain. The chemical analysis of degradation products associated
with eumelanin (a brown melanin) and pheomelanin (a red melanin) can quantitatively
describe the hair color in terms of the amount and relative proportion of these two
fundamental components (Ito et al., 2011; Ozeki, Ito, Wakamatsu, & Thody, 1996).

These chemical analyses reveal that perceived hair categories differ on two main axes.
The first is whether they have a significant amount of pheomelanin; such hair almost
invariably appears red to some degree or another. The second axis of variation is a
continuous increase in eumelanin that corresponds with our perception of light (blond)
to dark brown and black hair (Ito & Wakamatsu, 2011).

However, existing data show a significant overlap in the eumelanin content between
different perceived categories. Moreover, the range of variation seen black and dark
brown hair, respectively, exceeds the collective range of variation seen in blond, light
and medium brown hair combined (Ito & Wakamatsu, 2011; Lasisi et al., 2016). This
suggests that while apparently less salient according to the literature, from a biological
perspective, there may be more meaningful variation that is being subsumed within these
darker categories, as has been suggested elsewhere (Norton et al., 2016).

Eye color is pigmented by the same two melanins, but unlike hair and skin, where the
melanin is deposited by the dendritic melanocyte that produces it, melanin in the eye is
contained within the cytoplasm of the melanocyte (Wakamatsu, Hu, McCormick, & Ito,
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2008). Additionally, there are two divergent developmental lineages of melanocytes that
contribute to pigmentation of the eyes: epithelial (of neural ectodermal origin) and uveal
(of neural crest origin). Ocular pigment epithelium does not appear to contribute to any
visible variation. Most variation in apparent eye color appears to come from the uveal
melanocytes, located in the iris and the choroid (Wakamatsu et al., 2008).

Much like hair color, current evidence does not suggest qualitative differences, but
rather a continuous spectrum of melanin production. But unlike hair, there is no
equivalent pheomelanogenic outlier (like red hair) - all eye color appears to vary primarily
in eumelanin content. The qualitative difference we perceive (blue vs. brown) is a result
of structural coloration that occurs when light scatters on (relatively) depigmented layers
of the iris (Sturm & Larsson, 2009).

Classification of hair texture goes even one step further than hair and eye color
typologies: it presents a tautology where the classification of humans by race or ethnicity
is eponymous for the classification of hair texture (e.g. “Caucasian hair” or “Oriental
hair”). This is seen most frequently in dermatology, cosmetology and forensics (Ogle &
Fox, 1998; Cruz, Costa, Gomes, Matamá, & Cavaco-Paulo, 2016; Franbourg et al., 2003;
Lima, de Almeida, Velasco, & Matos, 2016). In the case of dermatology and cosmetology,
this practice ironically stems from a relatively recent effort to cater to patients and
consumers who, historically, have been excluded (Cruz et al., 2016; Franbourg et al.,
2003; Lima et al., 2016). Forensic science, on the other hand, has a longer history of
working with racialized hair categories, in part due to the overvaluation of racial profiling
in criminal investigation (M’charek, Toom, & Jong, 2020; Ogle & Fox, 1998).

Yet, what we know about hair biology suggests that variation is more complex than
the asserted racial classifications suggest (Khumalo, 2007; Lasisi et al., 2016, 2020;
Loussouarn et al., 2007; Adeola, Khumalo, Arowolo, & Mehlala, 2020). Various studies
of hair fiber curvature and cross-sectional geometry show continuous variation across
populations (Lasisi et al., 2016; Loussouarn et al., 2007; Hrdy, 1973; Fujimoto et al.,
2008a). Still, qualitative descriptors of hair morphology persist and are the main mode of
phenotyping for large-scale GWAS (Liu et al., 2018; Medland et al., 2009; Eriksson et al.,
2010; Adhikari et al., 2016) and other fields of research (Lima et al., 2016; Mieczkowski
& Newel, 2020; Thibaut et al., 2005). The persistence (and continued justification) of
all these classification systems demonstrates deep-rooted beliefs about whose variation
actually matters.
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2.2 Thinly veiled value judgements
Classification works synergistically with valuation to add a dimension of racial hierarchy.
While explicit mention of certain populations being superior to others is generally rebuked,
more subtle echoes of longstanding ideas of racial superiority permeate much of the
literature. By framing value judgements in the language of selection, much the same effect
is achieved by designating certain populations as (representative of) ancestral humans
that give a window into the primitive history of more derived populations (Reardon &
TallBear, 2012).

2.2.1 Valuation as sexual selection

This “ancestral vs. derived” dynamic that reproduces racial hierarchies is especially
evident in narratives of sexual selection among human populations, which is corroborated
by the recurrent (and widely cited) claim that sexual selection explains the evolution of
depigmented populations (Aoki, 2002).

The issue with the particular example cited here is that it argues for the significant
influence of mate choice (specifically selection exerted over female individuals) and the
existence of a universal preference for lighter skin. Aoki supports his claim of universal
preference for lighter skin with a series of literary anecdotes and with selective evidence
from social psychology experiments.

The historical narratives he uses including descriptions of beauty standards in Ancient
Rome and 8th to 20th century Japan. Quite disturbingly, Aoki interprets the sexual
exploitation of enslaved (light skinned North European) women by ancient Romans as
a “predisposition to find light-skinned females attractive even when they are members
of a conquered group.” If sexual exploitation of enslaved women is evidence for their
attractiveness, it is quite puzzling that Aoki does not mention the preponderance of
evidence for Y-chromosomal contributions from (light-skinned) European males to (darker-
skinned) Indigenous American, Pacific Islander and African women (Kayser et al., 2003;
Brucato et al., 2010; Hurles et al., 1998). By his own reasoning, there appears to be far
more evidence supporting the preference for darker skin.1

The selective evidence Aoki draws from social psychology are based on convoluted
1I make this argument to point out the lack of logic in Aoki’s reasoning (as well as other supporters

of these ideas). However, it is important to note that the sexual violence should not be interpreted
simplistically as a manifestation of attraction (a naturalistic fallacy) when there is extensive evidence
that humans use this as a means of domination against individuals across the spectrum of gender and
other identities (Armstrong, Gleckman-Krut, & Johnson, 2018).
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(and misleading) interpretations of results based on “Caucasian” university students
from the 1970s2 and a misrepresentation of a flawed analysis of ethnographic data
across 312 groups.3 Furthermore, he fails to include mention of the lengths to which
lightly pigmented individuals consciously risk skin cancer and cover themselves with
tanning preparations (Fogel & Krausz, 2013; Cho, Hall, Kosmoski, Fox, & Mastin, 2010;
Abdel-Malek et al., 1995; Garone, Howard, & Fabrikant, 2015). Despite these flaws
and thorough critique (Madrigal & Kelly, 2007), the article continues to be cited as a
scientifically valid and defensible hypothesis.

Selection (sexual or otherwise) is not inherently racist. But in its application, as far
as the scientific literature is concerned, it has invariably depicted Europeans (and other
populations with colonialist histories) as the culmination of evolutionary progress. These
narratives of linear progress or racial superiority go against the very Darwinian theories
they purport to apply. It is quite ironic that Aoki’s article has the subtitle “Darwin’s
hypothesis revisited” when Darwin, himself, had the following to say on the matter:

“It seems at first sight a monstrous supposition that the jet-blackness of the
negro should have been gained through sexual selection; but this view supported
by various analogies, and we know that negroes admire their own colour."
(Darwin, 1871)

Among other similar passages,4 it appears a strange omission for Aoki to focus solely on
2Aoki makes reference to a 1978 study of around 1000 undergraduates identified as Caucasian who

were surveyed about their likes and dislikes(Feinman and Gill 1978). He summarizes the findings as
follows “Most individuals regardless of sex preferred ‘medium white that tans to gold’, which is the
fourth lightest (fifth darkest) category on the list. In other words, both sexes appear to prefer a slightly
lighter-than-average–more precisely, a lighter-than-median—skin colour”.

Aoki also notes that “Many males dislike ‘black’, whereas the great majority of females dislike the two
lightest shades.” Of the eight possible choices students were given, the most “liked” options were the
darkest options that are associated with their own “Caucasian” group. Leaving aside that the category
of “dark white” is an oxymoron and that the authors of the study acknowledge racial connotations likely
played a part in the student’s choices, the data do not support Aoki’s statements. Even the emphasis on
dislike for ‘black’ skin in males is incomprehensible considering that the absolute largest percentage of
dislike in that category was ‘light skin which freckles’.

3The way Aoki summarizes the data from Van den Berghe & Frost (van den Berghe & Frost, 1986),
one would assume that the majority of the data showed a preference for lighter skin (as concluded
by the original authors themselves). However, the article describes that of the 312 societies for which
ethnographic data was available on beauty ideals, only 51 included any mention of skin color as part
of those. The authors then focused on the categories that did mention something about the matter to
draw their conclusions, but this dismisses the more readily apparent conclusion that: the majority of
societies give no importance to skin pigmentation.

4Chapter 19 from Darwin’s Descent of Man gives many more anecdotes on which he bases his
conclusion that each “race” prefers their own group’s appearance. Another particularly interesting
passage, cited from Mungo Park’s Travels in Africa: “With respect to colour, the negroes rallied Mungo
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evidence of the preference of light skin. A non-biased application of (sexual) selection
should focus more directly on testable hypotheses that make predictions related to fitness.

If Aoki could for example demonstrate evidence that (within a population) female
individuals with less pigmented skin have more offspring, his claim would be more
convincing. In absence of direct evidence, at the very least, a hypothesis arguing for the
selection of a particular trait variant should articulate the mechanism by which it would
affect fitness. But this absence of a clear link to fitness (and focus on value-laden proxies
such as “beauty” and “preference”) is in line with the general tendency of research that
implicitly naturalizes valuation using the language of selection.

This is not to say that it is impossible for mate choice to influence human phenotypic
variation. A better example based on skin pigmentation data is seen in the complex
and nuanced landscape of assortative mating seen in Indian populations (Iliescu et al.,
2018). But even here, the effects of skin color preference did not drive Indian populations
unidirectionally towards some uniform level of depigmentation, as Aoki would predict. If
a case study with such clear social pressure for light skin does not result in a depigmented
population, it is hardly imaginable that fickle individual “preference” could make a dent
in the grand scheme of human evolution.

By contrast, strong, consistent, directional selection is very much plausible in a
scenario where there is a selective pressure on biological factors (such as folate and
vitamin D) directly affecting fetal development and numerous other aspects of human
health (Jones, Lucock, Veysey, & Beckett, 2018; Clemens, Adams, Henderson, & Holick,
1982; Branda & Eaton, 1978; Jablonski & Chaplin, 2010; Walsh et al., 2020). It would be
unfair to judge Aoki’s conclusions on the basis of the preponderance of evidence that has
been uncovered in the 20 years since this publication. Still, considering the subjective
nature of the anecdotal evidence he presents in favor of a universal preference for lighter
skin, it is quite interesting that supporters of this hypothesis could more readily believe
selection based on the power of “white skin” as the pinnacle of beauty, rather than
selection based on the abundance of a vitamin known to affect human health.
Park on the whiteness of his skin and the prominence of his nose, both of which they considered as
"unsightly and unnatural conformations." He in return praised the glossy jet of their skins and the lovely
depression of their noses; this they said was "honeymouth," nevertheless they gave him food. The African
Moors, also, "knitted their brows and seemed to shudder" at the whiteness of his skin. On the eastern
coast, the negro boys when they saw Burton, cried out, "Look at the white man; does he not look like a
white ape?" On the western coast, as Mr. Winwood Reade informs me, the negroes admire a very black
skin more than one of a lighter tint. But their horror of whiteness may be attributed, according to this
same traveller, partly to the belief held by most negroes that demons and spirits are white, and partly
to their thinking it a sign of ill-health.” (Darwin, 1871)
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2.2.2 Devaluation as pathologization

In contrast to the unmistakable valuation of traits associated with beauty, we can consider
the manifestation of devaluation as pathologization. Something that is pathological (in
the medical sense), causes disease. But there is general recognition for the fact that
disease is not self-evident or absolute (Scully, 2004). Defining what is “pathological” or
“disease” requires a corresponding definition of what is “normal” or “healthy”. While
some definitions of particular pathologies have changed as a result of advances in scientific
knowledge, other “conditions” have moved in and out of the realm of pathology, not on
the basis of self-reported patient suffering, but on the basis of political recognition for
what is acceptable (or unacceptable) human variation (Bayer & Spitzer, 1982; Scully,
2004; McCrea, 1983; Scott, 1990). Thus, pathologization can be considered a special case
of valuation.

Though many debates surrounding definitions of pathology pertain to mental, be-
havioral and cognitive variation, the definition of a physical pathology is not clear-cut
either, as is especially evident in discussions of the pathologization of differences in
sex development (Carpenter, 2018; Davis, Dewey, & Murphy, 2016; Davis, 2014). The
medicalization of individuals threatening a rigidly essentialized biological sex binary finds
some parallels with pathologies defined on the basis of comparably deep-rooted ideas
about what is “appropriate” phenotypic variation for an individual within a population
according to racial paradigms. In a framework where humans must exist in discrete
types, relegating aberrant individuals to the category of “pathological” functions as a
tourniquet for a scientific paradigm unable to account for their existence.

Extreme overt examples of racialized pathology include the antiquated diagnosis of
“mongolism” stemming from a paper entitled “Observations on Ethnic Classifications of
Idiots” (Down, 1867). In this diagnosis, “mental retardation” is associated with “certain
characteristic oriental features” (Wagner, 1962). This description violently illustrates the
successful dehumanization of both “races” perceived to be inferior, as well as individuals
who do not live up to the narrow, ableist “racial standards” of their own group. The
question is not whether any of the individuals described could justifiably be considered
to suffer from a condition that benefits from medical treatment. The issue, rather, is the
inclusion of certain racialized markers as diagnostic criteria.

The dermatological conditions of “woolly hair syndrome” and “uncombable hair
syndrome” illustrate an inconsistent cluster of diagnostic criteria that center around the
appearance of scalp hair in these individuals. Or, more specifically, the socially-determined
unacceptability of their hair’s appearance. “Woolly Hair (WH) is an uncommon congenital
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abnormality of the scalp hair consisting, by definition, of strongly coiled hair localized in
a side or totally involving the scalp occurring in non-black people” (Pavone et al., 2017).
Other descriptions give descriptions much to the same effect (Ramot & Zlotogorski, 2015;
Shimomura et al., 2009; Horev et al., 2009; Chen, LeBoit, & Price, 2006) varying maybe
only in the terminology they use to communicate what “race,” “ethnicity,” or population
this condition is (not) associated with. Interestingly, these descriptions lack concomitant
medical issues (heart or skin related) that might justify “woolly” hair as a proxy for an
underlying disease. The emphasis in the clinical literature is strongly on the abnormality
of the hair morphology for the “race” in question.5

Uncombable hair syndrome differs in that there is no emphasis on explicit racial
context, but the language used to describe the hair aligns with pejorative racialized
descriptions of what is commonly stereotyped as “African” hair. Additionally, there is
sometimes an emphasis on the association with blond or lightly pigmented hair, which
can be used as a racialized proxy for who this condition affects due to ideas about the
racial associations of blond hair.

The justification for the medicalization of this “syndrome” revolves entirely around
the “unruliness” of the hair. Indeed, the name itself describes the central fault with this
phenotypic variant: it cannot be combed. But the combing of hair hardly seems like
a criterion for determining health. If styling potential were indeed a medical concern,
there is an apparent lack of an equivalent “unbraidable hair syndrome” for individuals
whose hair is too limp to hold a braid. But holding hair’s ability to be “combed flat” in
higher esteem than its ability to be braided can be explained by the regard for criteria of
“whiteness” and associated beauty standards (Thompson, 2009).

Some of the descriptions speak to the absurdity of pathologizing this phenotype:
“The family and the boy have psychologically accepted the scalp hair anomaly without
particular problems”(Pavone et al., 2017). Though some parents did indeed appear
distressed as evidenced by one case of “uncombable hair syndrome” describing “a healthy
6-year-old girl with blond hair who sought medical attention for the frizzy, unmanageable,
and unusual appearance of her hair” (Calderon et al., 2009). Without minimizing the
potential suffering that might be inflicted on individuals presenting “undesirable” traits
associated with other “races”, one must ask where the medical reasoning is for treating
this as a pathological medical condition.

5For example, in Chen et al. (Chen et al., 2006) : “We report woolly hair in an Asian family, a race
in which we have not found woolly hair reported.” and in Horev et al. (Horev et al., 2009): “Woolly
hair is a structural variant of scalp hair that, when found among Caucasians or Asians, is considered
abnormal.
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Dermatology and plastic surgery are both branches of medicine that straddle pathology
and enhancement, so it is not necessarily inappropriate to see attempts to “improve”
appearance in these particular medical settings. However, labeling certain racialized
traits as pathological with no further justification than their inherent undesirability is
not scientifically justifiable.

Both in the case of selection and pathology, we see clear cases where the valuation
of certain phenotypic variants over others crosses the line into subjective, unjustified
(and unjustifiable) value judgement. Entire branches of philosophy would allow those
interested in generating knowledge about the value of traits and aesthetic superiority to
engage in appropriate scholarly discourse on the matter.

However, scientific inquiry is bound by method, as well as subject matter (Hansson,
2009, 2017; Gieryn, 1983; Mahner, 2013). As regards the scientific study of human
biological variation, the ascertainment of value is simply not appropriate as subject
matter. The scientific method is not equipped to evaluate the kinds of knowledge
encompassed in values and aesthetics. In examples where those boundaries are crossed,
we enter into the realm of pseudoscience, which is precisely where scientific racism exists
(Zuberi & Bonilla-Silva, 2008).

2.3 The constraints of racialization
The overemphasis of European variability and the homogenization of other “races” is
in line with expected cognitive biases of the people who have, for most of Western
history, contributed to this body of knowledge (Saini, 2019). The overemphasis on (and
overvaluation of) European variability, especially in combination with the homogenization
of the Other reflects the biases of the people who have contributed most extensively to
the canon of scientific literature on human biological variation. Science is not immune to
subjectivity despite its objective ideals.

The formalization of these Eurocentric biases was facilitated by the use of subjective
classification systems, as well as the inherent biases of the languages used to develop
those systems. The various classification systems discussed in this paper illustrate that
categories are based not on the objective range of biological variability, but on the
range of variability that appears salient to the scientist in question. Moreover, there is
extensive psychological literature on the existence and hypothesized basis of the subjective
perception of one’s own (racial) group as more variable than others (Hughes et al., 2019;
Wheeler & Fiske, 2005; Hugenberg, Young, Bernstein, & Sacco, 2010; Sporer, 2001).
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But even in cases less controversial than racial profiling, we see subjectivity elevated
to fact through classificatory language. This is especially evident in linguistic differences
in the categorization of colors. For instance, English distinguishes between blue and
green, while many languages around the world do not (Davies, Davies, & Corbett, 1994;
Davies & Corbett, 1997; Goldstein, Davidoff, & Roberson, 2009; Raffaelli, Katunar, &
Kerovec, 2019). Even other European languages have linguistic color nuances that differ
from English categories. For example, Russian has a distinct word for lighter blue and
darker blue, which has been demonstrated to allow Russian speakers to more readily
discriminate between the two (Winawer et al., 2007).

These linguistic differences and related cognitive biases do not show a fundamentally
altered capacity to perceive color, but rather a fine-tuned capacity to culturally (and
linguistically) describe salient variation (Goldstein et al., 2009). This can explain why
existing categories appear so distinct for both eye and hair color. But with the inclusion
of eye color terms like “hazel” and “honey”, we delve into levels of nuances with cultural
relevance, i.e. colors are named in reference to a naturally occurring object (Davies &
Corbett, 1997; Gatschet, 1879). The linguistic limitations of classification are evident,
but the effect of concomitant cognitive biases does not end there.

2.3.1 Biased perceptions lead to misguided questions

The effect of language on our conceptualization of reality and subsequent scientific inquiry
is significant. For example, a very palpable example of how misconceptions can misguide
science is found in the scientific literature on skin color evolution.

In the mid-20th Century there was a distinct push against the idea that dark skin
might confer some adaptive benefit in regions of high solar radiation. Despite the
well-known geographical distribution of skin pigmentation and solar radiation, these
scientists were perplexed at the seeming contradiction in “black” skin being advantageous
over “white” skin in such conditions (Thomson, 1955). Their racialized idea of skin
pigmentation as being comparable to the colors themselves set scientists up to formulate
questions that were based on the complete absorption (black) and reflection (white) of
light. Therefore, the inability of “Negro skin” to reflect as much light as “the white
skinned race” was framed as a disadvantage causing Africans to absorb more solar
radiation, which would (in the researchers’ view) obviously be negative (Thomson, 1955;
Kuppenheim & Heer, 1952; Blum, 1945).

However, skin pigmentation is not described by the complete reflection or absorption
of light (as the categories “black” and “white” would suggest). Rather, skin pigmentation
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is a function of the quantity of melanin in the epidermis. As such, humans do not vary
in color so much as they vary from translucent to opaque due to the melanin content in
their skin.

Melanin has a fascinating photochemistry. It is absorbed over the entire visible light
spectrum, which is why it is perceived as brown.6 The broad absorbance spectrum of
melanin contributes to its quality as a photoprotectant (Premi et al., 2015; Brenner &
Hearing, 2008; Krol & Liebler, 1998; Kollias & Baqer, 1987; Chen et al., 2014). Therefore
the perceived disadvantage of skin that contains these photoabsorbant chromophores is,
in fact, the mechanism by which “black” skin stops UV-damage which can penetrate
translucent, reflective “white” skin with little resistance. This misconception may appear
silly in hindsight, but the way we currently classify hair and eye color is comparable in
its level of misguidance considering the emphasis on perceived color and RGB spaces
rather than measures of constitutive melanin content (Chaitanya et al., 2018; Adhikari
et al., 2019).

2.3.2 Reckoning with the remnants of race

Confronting racial paradigms is crucial to an improved understanding of human biological
variation. Advances we have made in the evolutionary genomics of human skin pigmen-
tation were facilitated by the use of objective quantification methods and they have
highlighted the extent to which we have underappreciated African and African-descendant
variation (Martin et al., 2017; Crawford et al., 2017; Beleza, Johnson, et al., 2013).

Moreover, there is an increasing awareness of the ways in which racialized dermatology
has failed all of us, but especially non-Europeans (Khumalo, 2007; Ware et al., 2020;
Nelson, 2020). As a consequence, there is a push for the use of objective measures which
will allow practitioners to evaluate their patients without relying on racial stereotypes
(Granstein, Cornelius, & Shinkai, 2017; Pandya, Alexis, Berger, & Wintroub, 2016).

New methods will supplant old subjective classification systems. However, we must
still actively evaluate whether these new methods are objectively informed by the
biological processes underpinning traits of interest, or whether they simply provide a
way to give subjectivity the appearance of objectivity. The reproduction of race under a
new name is particularly of concern in DNA phenotyping and broader genomic science

6Brown does not exist as a distinct “color” in the sense of other colors that represent peaks in the
range of visible wavelengths. However, reflection spectra that cover a broad range between red and green
appear to us as brown (Andreae & Gelencsér, 2006; Sun, Biedermann, & Bond, 2007; Strutt, 1871). In
RGB space, however, brown is achieved by creating an orange with low luminosity.
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where classifications of populations and ancestries can border on essentialism (Panofsky
& Bliss, 2017; M’charek, 2020; Bliss, 2011).

To stop reproducing racial paradigms of human variation, we must additionally do the
work of critically evaluating existing work and halting the circulation of pseudoscience.
An approach to our scholarship that relies on merely generating new and better data is, in
effect, reliant on a flawed “marketplace of ideas” approach to manifest the “self-correcting”
nature of science (Ball, 2017; Ingber, 1984).

As illustrated by the widely cited example arguing for the universal preference of
light skin (van den Berghe & Frost, 1986), our current scientific process is not immune
to poor scholarship permeating the literature. Moreover, as the work of human biology
is extremely interdisciplinary, it is unlikely that we are able to fully evaluate the quality
and validity of each citation we rely on. As such, it is our responsibility to do our part
as reviewers and members of the scientific community to clearly articulate honest and
constructive assessments of work we are qualified to speak on.

2.3.3 Transforming knowledge and practice in human biological sci-
ences

Transforming the way knowledge is created in human biological sciences requires changing
the theoretical frameworks we use to interpret our data, but also changing the ways
in which we "do" science. Knowledge is not created in a vacuum, but in intricate
networks with actors and institutions whose influences are sometimes unnoticed and often
unchallenged. Two ways of dealing with these influences are: centering marginalized
scientists and scrutinizing institutionally imposed standards.

Certain parts of our scientific work are inherently subjective. The questions we have,
the way we see the world, the variation we consider salient—all of this is affected by
our positionality (Haraway, 1988; Wylie, 2003; Harding, 2004; Rose, 1983; Smith, 2011;
Moreton-Robinson, 2013). The kind of bias embedded in scientific knowledge generated
by a group with homogeneous lived experiences can be mitigated by the active inclusion
of diverse perspectives - especially, ones that have historically been marginalized (Page,
2008; Hong & Page, 2004).

The key to propelling scientific paradigm shifts is the ability to live in multiple
paradigms at once (Chen, 1997). Marginalized individuals are likely to have experienced
this by force; living both in their own marginalized spheres and (trying to live) in
the spheres of groups that oppress them (Nelson, 2019a; Athreya, 2019; Torres, 2019).
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This experience is aptly described by Du Bois’s concept of double consciousness: “this
sense of always looking at one’s self through the eyes of others” (Du Bois, 1903). Such
experiences allow marginalized scientists to transcend certain limitations experienced by
those who can only see the world from the perspective of dominant identities (Bolnick,
Smith, & Fuentes, 2019; Moreton-Robinson, 2013; Collins, 2002, 2015; Tsosie, Begay,
Fox, & Garrison, 2020; Claw et al., 2018; Smith & Bolnick, 2019; Watkins, 2020).
Consequently, these individuals are able to hold both paradigms at once and elucidate
the incommensurabilities that are solved by a new paradigm (Benn Torres, 2014; Nelson,
2020).

Regardless of the composition of the scientific community, little progress can be made
if institutions constrain work that ventures outside existing paradigms. Institutional
power is a key force promoting the use of outdated racialized frameworks (Ahmed,
2012). This power functions to promote science and scientists adhering to these ideas
while hindering those who wish to unburden themselves of such limitations (McLean,
2019; Nelson, 2019a; Du Bois, 1939). Progress also critically calls for a change in the
institutional structures that reinforce outdated racialized standards of scientific research
(DiGangi & Bethard, 2021).

This work is by no means easy, nor does it have a clear and absolute end-goal. Dealing
with racialized bias in science should be viewed as part of the perpetual process of
self-reflexivity that should be inherent to scientific inquiry. Moving forward, scientists in
human biology will need a more thorough understanding of and critical engagement with
how racialization manifests in their research, including the terminologies, typologies, and
citations they rely on (Nelson, 2019b; Wolf, Jablonski, & Kenney, 2020; Skinner, 2020).
Most importantly, this endeavor cannot succeed without a dedicated commitment to
challenging the broader institutional and societal structures that seek to reinforce the
very racial hierarchies that hinder scientific progress.

25



Chapter 3 |
High-throughput phenotyping
methods for quantifying
hair fiber morphology

3.1 Introduction
Human scalp hair morphology is an important, but poorly understood phenotype that
varies considerably within and among populations. Scalp hair morphology–alternatively
described as hair texture, form, shape or type–refers to the structural appearance of the
hair shaft protruding from the follicle. Hair morphology can be examined at multiple
scales, from characterization of the cortical cells, medulla, and cuticle to descriptions of
overall macroscopic "texture" perceived when considering a head of hair in its entirety.
Variations in hair morphology have been linked to variation in DNA sequence, as well
as in cellular, protein, and chemical structure (Koch et al., 2020). However, focus on
investigating the underlying causes of the perceived macroscopic variation has come
at the expense of developing language and methodology for the phenotype itself. This
need is illustrated by the multitude of subjective and, at times, race-based classification
systems used across disciplines interested in the variability of this trait (Adhikari et al.,
2016; Khumalo, 2007; Trotter, 1938; Loussouarn et al., 2007).

The morphology of an individual hair shaft is the most immediate "macroscopic"
scale after considering a head of hair as a whole. At hair-shaft scale, two objectively
quantifiable aspects of hair morphology can be delineated: its longitudinal curvature and
its cross-sectional geometry (see Fig. 3.1).

Work in this field has been plagued by a lack of standardization in methods and issues
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of replicability, in part due to inadequate detailing of methods used and subjectivity in
their application (Appendix A). In light of these challenges, we have developed sample
preparation and image analysis methods that allow for the high-throughput phenotyping
of hair fiber cross-sectional geometry and curvature. Our aim was to develop methods
that would 1) be appropriate for the full range of human hair diversity, 2) minimize or
eliminate subjective observer input, 3) require no specialized skills or equipment, and
finally, 4) be efficient and scalable. Here, we present a comprehensive description of the
protocols used for sample preparation and a novel computational tool for the analysis of
images created with those protocols.

Figure 3.1. Quantifiable aspects of hair morphology.a, Diagram of cross-sectional
eccentricity and area. b, Curvature is calculated as the inverse of the radius in mm (radius−1),
ergo an increase in curvature corresponds with a decrease in the radius of the circle fitting the
curve.
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3.2 Results
Using a low melt point plastic for immediate embedding of multiple hairs. Cutting hairs
at a perpendicular angle is crucial for the accurate visualization of a fiber’s cross-section.
Traditional methods using resin or paraffin require long (∼24h) curing times and make it
difficult to embed curled hairs for sectioning. We found that a low melt point plastic such
as polycaprolactone allowed us to lay multiple hairs of any morphology in parallel lines.
The material immediately encases curled hairs even when they are stretched straight.
For our purposes, we embedded six hairs from each individual using polycaprolactone
plastic sheets (Polly Plastics, Michigan, USA). We heated a strip of moldable plastic
on a hot plate and stretched hair samples over this strip affixing them to the material.
We then placed a second strip of plastic on top of the hairs and put a heated block on
top to fuse both strips of plastic and embed the hairs completely. After storing the
embedded samples in a 4C room for a minimum of two hours and we sectioned them with
a PanaVise 507 Flat Ribbon Cable Cutter fitted to a PanaVise 502 Precision PanaPress.
We found that a regular razor blade was equally capable of cutting through the samples,
but the PanaVise set up allowed us to process samples at a higher rate. We then mounted
the sectioned samples upright between two Plexiglas blocks for visualization and imaged
with a Leica DMLS microscope (Leica, Wetzlar, Germany) at 10x with a Lumina GX8
camera (Panasonic, Osaka, Japan) attachment. Illumination was provided through the
sides of the Plexiglas hair chip support using fiber optic dissecting scope lights. See
Figure 3.2a and Methods for step-by-step protocol.

3.2.1 Cutting hair fibers into fragments as a scalable method for
washing and imaging hair fibers for curvature analysis

Multiple factors associated with grooming can temporarily alter the curvature of a hair
fiber (e.g. hair products, straightening irons, braiding). The first step of our sample
preparation was developed to remove the effect of these extrinsic factors and to allow
for the measurement of curvature in two dimensions. To achieve this, we cut hairs into
small fragments and used a multi-step washing process to remove any residue and allow
the hairs to revert to a shape representing the fiber’s intrinsic curvature. We used three
to five hair fibers from the crown of each individual in order to capture a representative
value of hair curvature for that individual. We placed hairs into a Petri dish containing
5mL of isopropyl alcohol (IPA) and cut them into fragments of 3mm with a curved-point
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scalpel blade. We then transferred them to 2mL tubes using transfer pipettes. At this
stage, lightly pigmented hairs were dyed black using a commercial hair dye kit to improve
final imaging contrast. We washed hairs with a sodium dodecyl sulfate (SDS) mixture
(1% SDS, 99% double distilled H2O) and rinsed them with H2O. Finally, we stored hairs
in 1mL of IPA until imaged. For imaging, we decanted each sample into a petri dish
containing 5mL of IPA and we used a Panasonic GH4 camera with Olympus f2.8 60mm
macro lens to capture the images (see Fig. 3.2b,a and Methods for step-by-step protocol).

Figure 3.2. Flowcharts of laboratory protocols used.a, Embedding protocol for cross-
sectional imaging. b, Sample preparation protocol for curvature imaging.
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3.2.2 Automated image analysis for unsupervised high-throughput
processing

Our Python package, fibermorph, is a user-friendly, fully automated image analysis
tool that provides a convenient way to estimate hair eccentricity and curvature from
cross-sectional and longitudinal images (see Fig. 3.3). We designed this package to run
on the command line and provide detailed guidance on its use so that any researchers
who have images of hair sections or curvature can use it without programming experience.
No comparable tools exist for these purposes, nor are there any computational tools that
are consistently employed by researchers studying hair fiber curvature and cross-sectional
morphology.
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Figure 3.3. fibermorph image analysis workflow. a, Cross-sectional image processing
and analysis. b, Curvature image processing and analysis.

3.2.3 Measurement error in hair fiber curvature estimation

fibermorph, is designed to simultaneously estimate curvature of multiple hair fragments
in an image. The program first processes the image to extract hair fibers from the
background and reduces each hair to 1 pixel width. The pixel coordinates are then used
to estimate hair curvature using a circle fitting algorithm, returning the curvature for each
fragment measured as the inverse of the (fitted) circle’s radius. The program returns a
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spreadsheet for each image containing the image ID, mean and median curvature (across
all hair fragments in the image), hair count, and mean and median length.

To test the accuracy of fibermorph’s curvature estimation, we simulated 20 images
with a range of curvatures. Each image contained 25 hair fragments of the same length
and curvature, but different orientations, representing a sample of hair collected from a
single individual. The simulated curvature ranged from 0.1mm−1 to 2mm−1 representing
the observed range of curvature in our sample of real hair. We used fibermorph to
estimate the mean and median curvature and length of hair in each image and compared
it to the known (simulated) length and curvature (see Fig. 3.4).

fibermorph accurately estimates hair curvature across a range of simulated curvature
values (r2 = 0.999; Fig. 3.4a). The error in estimation was minimal overall with mean
root mean squared error (RMSE) of 2.21× 10− 4mm−1 (0.47%) The estimated length of
each hair fragment was similarly accurate (Fig. 3.4b) with an RMSE of 4.31× 10− 4mm
(0.69%). See Appendix B for details on RMSE and percent error for curvature.

3.2.4 Measurement error in cross-sectional parameter estimation

fibermorph also processes micrographs of hair sections and measures a number of cross-
sectional properties. The program first crops the images, then segments out the cross-
section from the background using scikit-image’s implementation of the Chan-Vese
algorithm (Getreuer, 2012; van der Walt et al., 2014). The binarized image is then
used to calculate area, minimum diameter, maximum diameter in microns (µm), and
eccentricity, which is a measure of how elliptical the cross-section is (see Methods for
details).

To evaluate the measurement error in estimation of cross-sectional parameters, we
simulated 100 ellipses with minimum and maximum diameters chosen at uniform intervals
between 30 to 120 µm. The range of minimum and maximum diameters is based on
the range found in human scalp hairs. fibermorph accurately estimates the area and
eccentricity of ellipses (Fig. 3.4c). The RMSE for area is 0.51 µm2 (0.01%) and
6.49× 10− 4 (1%) for eccentricity. See Appendix B for details on RMSE and percent
error for cross-sectional geometry.
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Figure 3.4. Performance of fibermorph on simulated data. a, Correlation between
estimated and true (simulated) curvature. The red line represents y = x and the blue line
represents the line of best fit. b, Distribution of hair fragment length estimates. The dashed
red line shows the true simulated length of each fragment. c, Correlation between estimated
and true cross-sectional area. d, Correlation between estimated and true eccentricity.
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3.2.5 Self-reported hair texture and “objective” classification fail to
capture quantitative variation in curvature

. We compared quantitative hair fiber curvature with self-reported hair texture in a
sample of 140 individuals of admixed European and African ancestry. Self-reported hair
texture or form is often used for phenotyping purposes in genome-wide association studies
(GWAS) with ordinal categories such as “straight”, “wavy” and “curly”. However, we
find that while there is a correlation between these ordinal categories, individuals are
inconsistent in their perception of hair texture (see Fig. 3.5a). In other words, there
seems to be variation in the level of perceived hair curl each of these categories encompass.
An alternative to subjective hair form categorization is the classification of hair into
ordinal categories based on their objective curvature (Loussouarn et al., 2007). We also
analyzed the variation in hair curvature using the curvature thresholds described in the
2007 Loussouarn et al. paper (Loussouarn et al., 2007) (see Fig. 3.5b) and found that
the continuous variation was binned in a manner that unequally represented variation
across the categories.

Figure 3.5. Comparison of quantitative and qualitative hair morphology. a, Self-
reported hair form shows inconsistency among individuals with regards to the level of curvature
encompassed by each category. b, Classifying hair based on objective curvature Loussouarn et
al. 2007, obscures the wide range of variation that exists in the “Very Curly” category.
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3.2.6 Quantitative hair fiber morphology elucidates the relationship
between curvature and cross-sectional shape and genetic architecture

Many studies have reported a correlation between hair fiber curvature and cross-sectional
shape, an observation which has been interpreted as a causal effect of eccentricity on
hair curl. Specifically, the presence of elliptical cross-sections in populations with tightly
curled hair (i.e. West African) and the presence of round cross-sections in populations
with straight hair (i.e. East Asian) has been interpreted as evidence that cross-sectional
shape of hair dictates its curvature (Wortmann et al., 2019; Fujimoto et al., 2008a).
Whether these two traits are genetically and/or developmentally correlated is unknown
because of population structure, which induces spurious correlations between traits
(Parra, Kittles, & Shriver, 2004). For example, individuals with more West African
ancestry tend to have more pigmented skin and curlier hair, on average, than individuals
with more European ancestry. However, there is no reason to believe that these two
traits are correlated because of a shared genetic architecture. We illustrate this in a
sample of 140 individuals with mixed African and European ancestry. We show that
the positive association between melanin index and hair curvature (slope t-statistic =
12.50, p-value < 2× 10−16, Fig. 3.6c) is no longer significant when proportion of African
ancestry is used as a covariate in the model to correct for ancestry stratification (slope
t-statistic = 1.86, p-value = 0.065, Fig. 6d). Similarly, we show that the observed
positive relationship between eccentricity and hair curvature (slope t-statistic = 6.08,
p-value = 1.96x10−8, Fig. 3.6a) is also not significant when corrected for proportion of
African ancestry (slope t-statistic = 0.87, p-value = 0.386, Fig. 3.6b). This demonstrates
that the correlation between hair curvature and cross-sectional shape in people of mixed
African and European ancestry, as well as between Africans and Europeans, is driven by
population structure, similar to the correlation between melanin index and curvature.
More detailed analyses (e.g. estimation of genetic correlation and GWAS of both traits)
in a larger sample will be needed to elucidate whether some component of the relationship
between hair curvature and cross-sectional shape results from pleiotropy. See Appendix
C for full set of analyses and admixture breakdown of the sample.
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Figure 3.6. The effect of population structure on trait-trait correlations. a, The
correlation between hair curvature and melanin index without controlling for ancestry. b,
The correlation between hair curvature and melanin index controlling for African ancestry. c,
The correlation between hair curvature and cross-sectional eccentricity without controlling for
ancestry. d, The correlation between hair curvature and cross-sectional eccentricity controlling
for African ancestry.
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3.3 Discussion
Our results demonstrate that the methods we have developed can reliably quantify
cross-sectional morphology and curvature in hair fibers. Moreover, we illustrate that the
practice of categorizing hair either subjectively or by using arbitrary thresholds mischar-
acterizes the distribution of quantitative hair morphology, specifically, underestimating
the variation that exists in more tightly curled hair.

Our sample preparation protocols and computational image analysis tool represent
significant methodological advancements over previous attempts to quantify hair mor-
phology. The sample preparation protocol for curvature imaging described here is
considerably more scalable than methods used in other studies of hair curvature. Our
protocol introduces a standardized method of washing hair samples that more closely
resembles protocols used in sample preparation for trace element analysis in hair (Morton,
Carolan, & Gardiner, 2002; Pozebon, Scheffler, & Dressler, 2017) and that is superior
to previous methods that required handling of individual hairs with forceps (Lasisi et
al., 2016; Bailey & Schliebe, 1986). Our method operationalizes the measurement of
curvature by defining intrinsic curvature as the curvature that a hair fiber has when
reduced to a short length (∼ 1− 3mm) which reduces the three dimensional curvature of
certain hairs to a two dimensional curve that can be measured without the distortion
that was needed in previous methods or the weight of the hair fiber itself.

Our embedding protocol using the low melt-point plastic (polycaprolactone) overcomes
the problems of traditional embedding techniques that used resin or paraffin (Fujimoto
et al., 2008a; Lasisi et al., 2016). These techniques are feasible for straight hairs, which
can be easily manipulated to lie flat and parallel to each other, but are not practical for
curly hairs because non-straight hairs cannot be reliably embedded in a manner that
allows for a reproducible cross-sectional cut. Previous attempts to overcome this problem
included using a heat-shrink tube and drawing the hair through the tube (Wagner, Heine,
& Sachse, 2015), bundling hairs and slightly embedding them before embedding them
fully (Reis, Brandão, Rodrigues, Coelho, & Machado, 2020), and stretching hairs over
cardboard before embedding them in a large resin block (Lasisi et al., 2016). All of these
methods are laborious and cannot be scaled to the study of large samples. Our method
allows for the immediate embedding of hairs, regardless of shape, allowing researchers to
prepare dozens of samples per hour.

Our novel computational tool streamlines the analysis of curvature and cross-sectional
geometry of hair fibers. This tool requires no input from a user (other than the location
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of the image files), and so removes inter-observer error and subjectivity in assessing
curvature (Lasisi et al., 2016; Mkentane et al., 2017). It also saves time and improves
accuracy and reproducibility because tasks that would have previously required hours
of labor can now be executed unsupervised by an automated program that requires no
additional cost or training to use. In the absence of comparable computational tools for
hair fiber morphology, we demonstrated, in detail, the technical validity of these methods
by testing fibermorph’s performance on simulated geometric shapes of known parameters.
Most importantly, the laboratory protocols are hosted in open-access repositories that
allow for easy feedback and modification, and the code for the image analysis has been
made open source to facilitate collaboration and further elaboration.

Our results show that both self-reported hair texture and “objective” classification
obscure a considerable amount of variation (see Figure 5b). Moreover, our analysis of
quantitative curvature compared to self-reported hair texture suggests that participant
interpretations of subjective curl categories are inconsistent (see Fig. 3.5a). By applying
“racial” categorization to hair, forensic scientists and dermatologists alike are bound in
tautology that results from racial stereotyping, i.e. "African/Asian/European" individuals
have "African/Asian/European" hair morphology and vice versa, the hair of a particular
"racial" morphology is found only in those "races" (Ogle & Fox, 1998; Cruz et al., 2016;
Wolfram, 2003). This presents a paradigm wherein individuals, and entire populations,
who fall outside of those options cannot be considered or characterized. By applying
our methods to an admixed African-European sample, we demonstrate the potential for
uncovering the genetic architecture of hair morphology (see Figure 6b).

Researchers interested in understanding the biology underlying variation in hair
fiber curvature are severely hindered by the oversimplification resulting from the use
of qualitative hair types because these typologies preclude the analysis of the features
that may independently contribute to macromorphology (e.g. the effect of cross-sectional
eccentricity on curvature). In this sample, we were able to show that eccentricity does not
predict hair curvature, which is in line with the findings of other studies (Wortmann et al.,
2019; Lasisi et al., 2016; Hrdy, 1973). In fact, we explain this correlation as arising due
to uncorrected population structure, which induces correlations between traits that are
not necessarily genetically or physically linked. Nevertheless, the persistence of this idea
demonstrates the importance of using quantitative methods to disentangle the factors
contributing to hair morphology rather than relying on descriptive comparisons between
racialized groups or ethnicities. Human scalp hair morphology is a complex phenotype
that has remained poorly understood due to the high threshold of investment in time and
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resources required to apply existing quantitative methods. With these high-throughput
phenotyping methods, we provide researchers with a comprehensive starting point and
the option to identify specific components to focus on befitting their specializations.
Most importantly, due to the open access and open source infrastructure of this project,
collaboration is facilitated and democratized, allowing anyone who is interested to work
on this research. This work represents a much-needed baseline and standardization that
is fundamental to the incremental improvements that were previously unfeasible in the
study of this complex phenotype.

3.4 Methods

3.4.1 Hair samples and genotype data

The data consists of 140 hair samples and corresponding genotype data from individuals
of admixed European and African ancestry (Lasisi, 2020a). These were collected as part
of a larger study (Anthropometry, DNA, and Perception of Traits or ADAPT) with
informed consent and ethical approval by the Pennsylvania State University Institutional
Review Board (#44929 and #45727). To select these individuals, we merged the full
genotype dataset (n=4257 individuals genotyped on the 23andMe V4 array) with the 1000
Genomes reference panel. (Consortium, The 1000 Genomes Project, 2010) We pruned
SNPs for linkage disequilibrium (PLINK 1.9 “–indep-pairwise 100 10 0.” 1 yielding a set
of 118x SNPs) and estimated genomic ancestry using an unsupervised clustering approach
(k = 5) with ADMIXTURE. (Chang et al., 2015; Alexander, Novembre, & Lange, 2009)
We selected individuals with >80% combined African and European ancestry and <10%
ancestry from any other group for whom hair samples (more than 4 hair fragments per
person) and skin reflectance were available (n=140). The hair samples and genotype data
for the admixed individuals were collected with informed consent and ethical approval by
The Pennsylvania State University Institutional Review Board (#44929 and #45727).

3.4.2 Hair embedding, sectioning and imaging protocol

In using polycaprolactone plastic sheets, we found that embedding hairs in this low
melting point plastic offered considerable benefits compared to the use of resin. We were
able to immediately encase hairs in the plastic, which solved the challenge of keeping
curled hairs stretched in position for 24 hours when embedding in resin. For our purposes,
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we used Polly Plastics (Michigan, USA) moldable plastic sheets which are readily available
and affordable.

For the embedding process, we cut down the plastic sheets to ∼15mm by ∼30mm and
heated them on a hot plate (lined with parchment paper) for 15 seconds until translucent
and softened. For each hair sample, we embedded six hairs by stretching hairs in parallel
lines over the heated plastic strip to encase them in the plastic. A second strip of heated
plastic was then placed over the strip containing the embedded hairs. A heated steel
block was then placed on top of the sample for 15 seconds to fuse both strips of plastic
and completely embed the hairs. The sample was then removed and cooled for 5 minutes
before cutting down excess plastic and hairs using a template. The sample was then
stored in a 4◦C refrigerated room for at least two hours to ensure the plastic was hardened
(see Methods for details).

To section the hairs, we were able to use a flat-edged razor, but to facilitate the
processing of a high volume of samples, we used a mechanical press with attached razor
(PanaVise 502 Precision PanaPress with PanaVise 507 Flat Ribbon Cable Cutter). The
low melting point of the plastic means that it will melt at body temperature, so it is
important to handle the samples minimally and to section quickly, hence our decision to
use this set up over manual sectioning with a razor. Sectioned samples were mounted
upright between two clear blocks for visualization and imaged with a Leica DMLS
microscope (Leica, Wetzlar, Germany) at 10x with a Lumina GX8 camera (Panasonic,
Osaka, Japan) attachment. See step-by-step protocol on Protocols.io (Lasisi, 2020b).

3.4.3 Hair sample preparation and imaging protocol for curvature

To obtain a representative sample for each individual we recommend that a minimum
of five hair fibers (≤ 30mm) are used per individual. For shorter hairs, a minimum of
10 hairs (≤ 10mm) is recommended. Because hair samples were collected prior to the
development of this protocol, we did not have enough hairs for each individual to adhere
to this rule. As such, we demonstrate the results of our analyses (described below) with
and without low hair count samples.

The first step of our protocol is to cut the hair sample into fragments in a Petri
Dish containing 5mL of isopropyl alcohol (IPA). We found that hairs were easier to
handle in this medium than in water, where hairs variably sunk to the bottom of the
dish or stuck to the tools we used to handle and cut them. Hairs were placed into a Petri
dish containing 5mL of isopropanol (IPA) and cut into fragments of 3mm with a new
#10 scalpel blade for each sample (these blades were cleaned between the processing of
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separate batches of samples). We found that scalpels with a curved point were easiest
to use in the Petri dish, so other similar scalpel blades (e.g. #20, #21 or #22) could
be used depending on preference and availability. Once cut, hairs were transferred into
2mL tubes using a fresh transfer pipette for each sample. Hair samples that appeared
lightly pigmented at this stage were dyed using a commercial hair dye kit (L’Oreal Paris
Feria 6.3fl oz in the color Bright Black) to ensure adequate contrast in the imaging stage.
After cutting (and dyeing, if applicable) hairs were washed with a sodium dodecyl sulfate
(SDS) mixture (1% SDS, 99% double distilled H2O) and rinsed with H2O. In this process,
we attached tubing to a faucet to create an aspiration system where the flowing water
created a vacuum. Using a pasteur pipette attached to the vacuum end of the tubing, we
aspirated as much IPA from the samples in the 2mL tubes as we could without disturbing
the hairs. We then filled the tubes with the SDS mixture until they reached the 2mL
mark. Samples were then mixed using a Vortex mixer and placed in a warm water
bath (99◦C) for 5 minutes. We found that microcentrifuge tube caps were necessary to
securely seal the tubes when in the water bath. The purpose of the warm water bath is
to thoroughly clean the hair fibers and to ensure all hairs go through the same process of
hydration and dehydration as variability in porosity may affect their morphology. Once
removed from the water bath and cooled, the hairs were microcentrifuged to collect all
hair fragments at the bottom of the tube. The SDS mixture was then aspirated from the
tubes, and we refilled the tubes with H2O and microcentrifuged again to rinse the hairs.
Finally, the H2O was aspirated and replaced with 1mL IPA. After this step, hairs were
stored in these 2mL tubes until imaged.

To ensure the same resolution for each image, we mounted a camera to a stand and set
the focus to the same standard for each sample. Immediately prior to imaging, samples
were decanted from their 2mL tubes into a Petri dish containing 5mL of IPA. We found
IPA to be a suitable medium as hairs invariably sunk to the bottom of the dish for
each sample, ensuring consistency between images and removing the effect of shadows.
Additionally, 5mL of IPA was enough to cover the hairs eliminating any glare from
surface tension related to hairs protruding through the liquid. We imaged the samples
using a Panasonic GH4 camera with Olympus f2.8 60mm macro lens producing images
that were 5200 by 3900 pixels and at a resolution of 132 pixels per mm. A complete
step-by-step protocol with images and video can be found on Protocols.io (Lasisi, 2020c).

Image analysis protocol for cross-section. The fibermorph section analysis program
requires grayscale TIFF images as input. Where necessary, images are cropped as part
of the preprocessing pipeline. Then, images are segmented using a Chan-Vese algorithm
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(Getreuer, 2012) in scikit-image (van der Walt et al., 2014). This algorithm was chosen
for its ability to segment images with poorly defined edges but significant differences in
grayscale intensity between the region of interest and the rest of the image.

The parameters of the section identified are calculated using scikit-image’s regionprops
function. We output the following: minimum diameter, maximum diameter, area and
eccentricity. Eccentricity is defined as:

ε =
√
a2 − b2

a

where b is the minimum radius and a is the maximum radius of the ellipse. Diagrams for
all the protocols were created using BioRender.com.

3.4.4 Image analysis protocol for curvature

The analysis of curvature begins with a grayscale TIFF image file as input. Our pipeline
applies a ridge filter to extract the regions of interest (hairs), then binarizes and cleans
the image before skeletonizing which reduces each hair fragment to 1 pixel width for the
curvature analysis. The functions applied in this process are from the Python library
scikit-image (van der Walt et al., 2014). The analysis of the processed image starts
by labeling each element (hair) and calculating curvature for each of these elements
using a Python function based on Taubin’s circle fitting algorithm (Taubin, 1991). The
spreadsheet for each sample provides the length and curvature for each fragment and the
summary spreadsheet provides the average length and curvature, as well as the number
of hairs per image.

The spreadsheets containing the curvature and length measurement for each hair
within an image are saved in the analysis folder. The default is to only produce this
summary spreadsheet but a user can use a simple command to create a folder with the
raw measurements per fragment should they so wish. The final summary spreadsheet
contains the mean and medians for the curvatures calculated from those data frames,
as well as mean and median length. Length for an element/hair is calculated from the
total number of pixels in the thinned element. As the length of horizontal/vertical vs.
diagonal pixels is a known issue in image analysis, we implement a correction by counting
the number of diagonal pixels using a correction factor of (1 +

√
2) as has been suggested

elsewhere (Smit, Sprangers, Sablik, & Groenwold, 1994).
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3.4.5 Data simulation for curvature and cross-sectional image anal-
ysis validation

To test the accuracy of fibermorph’s curvature estimation, we simulated 20 images,
where each image contained 25 hair fragments of the same length and curvature, but
different orientations, representing a sample of hair collected from a single individual.
The curvature for each image was chosen with a range of 0.05 to 2 mm−1 representing the
observed range of curvature in our sample of real hair. To generate randomly oriented
arcs, we sampled the start angle (θstart ) of each arc from a uniform distribution on
the interval (0, π) and drew a line through 25 points with angles (θi) uniformly spaced
between θstart and θend = θstart + π

2r where r is the simulated radius. The x and y

coordinates of these points were calculated as x = r × cos (θi) and y = r × sin (θi).
Our Python script for ellipse simulation creates a canvas of 5200×3900 pixels, sets the

resolution to 4.25 pixels/µm, and uses the chosen minimum and maximum diameters to
draw the ellipse using scikit-image. The maximum diameter is chosen first (50− 120µm),
then the eccentricity is chosen from a uniform distribution (0− 1) and finally, the ellipse
is set on an angle from a value chosen from a random distribution (0− 360◦). The
parameters (minimum diameter, maximum diameter, area, eccentricity) are saved in
a reference spreadsheet and the image is saved as a TIFF with the same name. We
simulated 100 ellipses using these parameters for our analyses (Lasisi, 2020a).

3.4.6 Analyses with simulated data and real data

We estimated all curvature, length and cross-sectional parameters on both simulated and
real data using our fibermorph Python package. In our analyses, we used the following R
packages: workflowr (Blischak, Carbonetto, & Stephens, 2019), tidyverse (Wickham &
Others, 2017), knitr (Xie, 2020), and cowplot (Wilke, 2016).

For simulated data, we estimated RMSE as
∑n

i
(x̂i−xi)2

n
where xi and x̂i are the

true (simulated) and estimated values, respectively. To test whether the correlation
between two traits was due to population structure, we fit the following linear model:
yi = α+ β0xi + β1zi where yi is the value for one of the traits (e.g. hair curvature), xi
is the value for the other trait (e.g. eccentricity) and zi is the proportion of African
ancestry of the ithm individual. Because our sample is composed of admixed individuals of
primarily African and European ancestry, the inclusion of African ancestry as a covariate
should correct for the effects of ancestry stratification in our sample (Parra et al., 2004).
To visualize the correlation between two traits after ancestry correction (e.g. in Fig.

43



3.6 ), we fitted a linear model between the first trait (yi) and African ancestry (zi) and
plotted the residuals against the second the trait (xi).
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Chapter 4 |
The genetic architecture of
human scalp hair morphology

4.1 Introduction
Human scalp hair morphology is remarkably variable among populations. This variability
is so considerable that it has historically been used as a marker of “race” (Pruner-Bey,
1877; Garn, 1951; Vernall, 1961) and the typological classification of hair by various
racialized categories is still pervasive in the literature (Lindelöf et al., 1988; He & Okoye,
2017), despite frequent calls to end this practice (Khumalo, 2007). Unlike other traits
that are comparably variable (e.g. eye and skin color), the adaptive function, genetic
architecture, and evolutionary history of this phenotype have received relatively little
attention.

The genetic architecture of human scalp hair morphological variation is not well known.
A derived EDAR variant (V370A), has been associated with thicker and straighter hair
in East Asian populations as well as straighter hair in South American populations with
significant proportions of Native American ancestry (Fujimoto et al., 2008b; Adhikari
et al., 2016). Genetic variation in the FGFR2 gene has also been associated with hair
thickness variation within East Asian populations (Fujimoto et al., 2009). In populations
of exclusively or predominantly European ancestry, genome-wide association studies
(GWASs) on variation in hair form have identified TCHH, PRSS53, and GATA3 variants
that are associated with straight hair (Medland et al., 2009; Adhikari et al., 2016; Liu
et al., 2018). These GWAS have relied purely on gross phenotypic descriptions of hair
morphological variation, as ‘straight’, ‘wavy’, or ‘curly’ (Medland et al., 2009), and,
in the admixed sample, ‘frizzy’ (Adhikari et al., 2016). The literature on hair fiber
morphology genetics reveals that there is no work on African populations or populations
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with significant proportions of African ancestry.
Our limited knowledge of the genetic underpinnings of hair from large-scale genome

wide association studies (GWAS) is further supplemented by many studies of Mendelian
inheritance patterns in humans, as well as animal studies. Family pedigrees have yielded
information on a number of genetic loci associated with conditions such as “woolly hair
syndrome” and “uncombable hair syndrome” (Hayashi, Inoue, Suga, Aoki, & Shimomura,
2015; Ü Basmanav et al., 2016). A number of studies using mouse models have found
evidence of differential gene expression in various strains of knockout mutants, resulting in
a better general understanding of genes involved in the developmental biology of keratin,
the hair follicle, and the epidermis, in addition to hair morphology, specifically (Adhikari
et al., 2016; Kamberov et al., 2013). Studies of genetic variation among domestic breeds
of cats and dogs have also revealed a number of genes of interest (Gandolfi et al., 2010;
Parker, Chase, Cadieu, Lark, & Ostrander, 2010; Cadieu et al., 2009). An extensive list
of previously associated genes can be found in Table 4.1.

The number of hair genes that have been implicated in hair related functions give the
impression that the genetic underpinnings of human hair should be well known. However,
as most of this knowledge comes from mouse studies and Mendelian conditions, there are
limits to how informative this can be for our understanding of normal variation in human
scalp hair morphology. Moreover, when we see that GWAS on hair have almost exclusively
focused on European and East Asian populations, it becomes apparent that there is a
considerable gap in the literature concerning global human hair variation. Furthermore,
the focus on populations of relatively homogeneous recent ancestry means that GWAS
have needed large numbers participants to have sufficient genetic and phenotypic variation
to pick up a signal. Even with large sample sizes, such GWAS cannot detect alleles
that are either at very low or very high frequencies even though these same alleles may
contribute significantly to variation between populations.

Admixed populations are an excellent and underutilized resource for studies of
scalp hair morphology. In admixed populations where a continuous trait has divergent
distributions between the inferred ancestral populations. This is particularly beneficial
in cases where genetic variants contributing to a phenotype are fixed in non-admixed
populations. A classic example of the utility of such an endeavour is seen in the numerous
studies that have discovered and replicated variants involved in skin pigmentation (Halder
& Shriver, 2003; Bonilla et al., 2004; Quillen et al., 2019; Shriver et al., 2003; Norton
et al., 2007). Admixture based approaches have been used to identify genetic variants
contributing to variation across numerous populations and for normal-range, as well as
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traits of clinical importance (Lopez et al., 2019; Perry et al., 2014; Tzur et al., 2010;
Winkler, Nelson, & Smith, 2010).

The key to successful admixture mapping lies in the choice of phenotype. An
admixture-based approach is most informative for phenotypes with a large mean difference
between the ancestral populations. For example, a two way admixture between small-
bodied Batwa rainforest hunter-gatherers and larger Bakiga agriculturalists has revealed
a number of genetic loci associated with small adult body size (Perry et al., 2014).
Likewise, skin pigmentation, as inferred from reflectance measurements of the inner
arm, shows divergent distributions in Western Europeans and West Africans (Quillen et
al., 2019). This divergence facilitates the discovery of significant associations between
ancestry informative markers and variation in the phenotype.

However, the utility of admixture mapping is limited by our inability to adequately
describe the continuous range of variation in scalp hair morphology exhibited in humans.
This limitation is caused by the reliance on Eurocentric typologies that aim to qualitatively
categorize hair by its macroscopic appearance as “straight”, “wavy”, “curly” or “frizzy”
(Adhikari et al., 2016; Liu et al., 2018; Medland et al., 2009). The variation encompassed
within these categories ignores much of the variation that is only apparent when various
aspects of the individual hair fibers are quantified explicitly (Lasisi et al., 2016; Loussouarn
et al., 2007; Hrdy, 1978). Even when the classification schemes are based on objective
measurements, the binning of continuous variation considerably reduces statistical power.
It is notable that one of the most frequently replicated hair-associated variants in
EDAR was discovered by the use of quantitative methods to measure cross-sectional hair
fiber area in East Asian populations. Therefore, it is reasonable to expect that using
quantitative methods can yield a high resolution view of the considerable phenotypic
variation in admixed populations. Given the large range of quantitative variation we
can measure around the world and especially in African and African-derived populations
(Loussouarn et al., 2007; Lasisi et al., 2016; Hrdy, 1973), quantitative phenotyping of
hair could reveal more genes involved in scalp hair variation.

In this study, we attempt to elucidate the genetic architecture of scalp hair morphology
in a sample of participants (n = 192) with admixed African-European ancestry (see
Methods for details). For our sample, we measured longitudinal curvature, cross-sectional
geometry and used previously collected Melanin Index (M-index) with genotype data
to investigate whether previously reported skin pigmentation and hair morphology loci
would be significantly associated with ancestry informative markers (AIMs) in our sample.
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4.2 Results
From a sample of 4257 individuals collected as part of a larger study, we selected
individuals with primarily African and European ancestry with at least 10% African
ancestry and available hair samples. From 192 individuals who fit these requirements,
we measured hair fiber curvature for all samples and cross-sectional hair properties for
all those who had sufficient hair (n=153) as both curvature and cross-sectional methods
required destructive sampling. We were able to find Melanin Index (or M-index) for most
of the individuals (n=176). A full description of the sample can be found in Appendix D.

4.2.1 Sample ancestry description

For the full sample (n=4257), we estimated genomic ancestry using an unsupervised
clustering approach (k=5) with ADMIXTURE (Chang et al., 2015; Alexander et al.,
2009). From this set, we selected individuals with primarily African and European
ancestry (N = 192). We then re-estimated ancestry for this subsample with k=2 and used
the inferred African ancestry from this analysis throughout our results (see Figure 4.1).
Details on ancestry estimation and correlation between African ancestry for k = 5 and
k = 2 can be found in Appendix D and a replication of our results with only individuals
who have >15% African Ancestry (K = 2) can be found in Appendix E.
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Figure 4.1. Proportion of various ancestry components for our sample. ADMIX-
TURE for our sample of 192 admixed individuals shows predominantly African and European
ancestries.

4.3 Genetic variation underlies hair morphology differ-
ences between European and African populations
We plot the distribution of M-index and our quantitative hair morphology phenotypes
for our sample and previously collected samples described elsewhere (Lasisi et al., 2016).
Figure 4.2 shows the distributions of these previous samples (African, European and
African Diaspora) and our current sample, labelled as Admixed (US). As expected,
there is a mean difference in M-index and curvature between Africans and Europeans,
with the African Diaspora and our Admixed (US) samples showing an intermediate
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distribution that overlaps both these populations. Interestingly, despite the widespread
use of eccentricity as a distinguishing feature between European and African individuals
in forensic science, our results suggest that there is no clear divergence and significant
overlap between these two populations (Ogle & Fox, 1998). While for most other
phenotypes there is a statistically significant difference in the means between Europeans
and Africans, the distributions overlap considerably (see Figure 4.2 and Appendix D and
F for other visualizations of this distribution).
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Figure 4.2. Violin plots of phenotypic trait values across samples of different
ancestries. a, Melanin Index, b, Hair fiber curvature (1/radius(mm)), c, cross-sectional area
of hair fiber (µm2), d, eccentricity of cross-section, e, minimum diameter of hair fiber (µm), f,
maximum diameter of hair fiber(µm). Only significant comparisons are shown.

One way to test if genetic differences underlie mean phenotypic differences between
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populations is to test for a correlation between the phenotype and ancestry in admixed
populations. For example, Melanin Index, a trait that varies substantially between
African and European populations is known to be strongly correlated with ancestry in
people with mixed African and European ancestry (Beleza, Johnson, et al., 2013). We
replicate this finding (r2 = 0.83, p = 2.72e− 42) and show that median hair curvature is
similarly positively correlated with African ancestry (r2 = 0.85, p = 5.17e− 51) in our
sample. This suggests, expectedly, that differences in hair curvature between Africans
and Europeans are highly heritable. Another interesting finding is that there is a very
wide distribution of cross-sectional eccentricity among the individuals with low African
(and high European) ancestry proportions (see Figure 4.2).
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Figure 4.3. PCA results for quantitative hair traits. a, Scree plot showing the percentage
of variance explained for each PC b, Contributing variables for first two PC dimensions c,
Individual points colored according to proportion of AFR ancestry d, Individual points colored
according to median hair fiber curvature
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Figure 4.4. Scatter plot of proportion of African ancestry (x-axis) against pheno-
typic trait values (y-axis). a, Melanin Index, b, Hair fiber curvature (1/radius(mm)) c,
cross-sectional area of hair fiber (µm2), d, eccentricity of cross-section, e, minimum diameter
of hair fiber (µm), f, maximum diameter of hair fiber (µm).

4.3.1 Correlation between curvature and cross-sectional eccentricity
are primarily driven by ancestry stratification

We find that the often described correlation between curvature and cross-sectional
eccentricity appears to be primarily driven by ancestry stratification in our admixed
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African-European sample. We plot a correlation matrix between all combinations of
the phenotypes without correcting for ancestry (Figure 4.5a) and with a correction for
ancestry, based on the phenotypic trait values residualized on ancestry (Figure 4.5b).
The correlations we see between the various cross-sectional properties are predictable as
they relate to increases in size (see Appendix D for more details on these correlations).
However, none of the remaining traits are correlated with each other after ancestry
correction, suggesting that these correlations are largely driven by ancestry stratification.

Figure 4.5. Correlation matrices for the various traits a, without ancestry correction
and b with ancestry correction.

4.3.2 Associations of genetic variants with quantitative scalp hair
morphology

4.3.2.1 Replication of known loci

First, we were interested in replicating loci that are already known to be associated with
either skin pigmentation or hair morphology. We curated the literature and assembled a
list of SNPs associated with skin pigmentation and for hair morphology. We highlight a
number of SNPs replicated from a recent met-analysis on hair morphology below (see
Table 4.1 and a full list of replicated SNPs can be found in Appendix F.

While the comparison between the effect size for both studies cannot be direct,
due to differences in phenotyping (i.e. four categories vs. continuous curvature) and
ancestry composition of the sample, the direction of the effect sizes was consistent across
studies (Table 4.1). One of the SNPs associated with curvature for example is rs310644
(P = 0.004326). The T allele is associated with an increase in curvature. Moreover, its

55



allele frequency distribution across the world shows that both African and Melanesian
populations have higher frequencies of the effect allele (C) which was associated with
higher hair fiber curvature in our sample (see Figure 4.7).

We replicated another previously reported locus with our quantitative measure of
cross-sectional area (Table 4.1). The negative direction of the A allele suggests that
this allele decreases the cross-sectional area (or thinner hair), with one exception having
a positive value corresponding to a larger cross-sectional area. Comparing this to the
reported effect sizes in Liu et al (2018), we see that for the same effect alleles, our study
shows thinner hair and their study shows a higher curvature. Such a correlation between
these traits has previously been reported for EDAR where a variant was associated with
both thicker hair and straighter hair.

The results for the replicated loci with all other traits and levels of correction are
available in Appendix D.

4.3.2.2 Genetic architecture of traits

Next, we scanned the genome for any new loci. We are primarily interested in finding
variants that contribute to differences in the mean phenotype between Africans and
Europeans. Therefore, we restricted our analyses to SNPs with a high frequency difference
(>0.5) between Africans and Europeans. Such markers are often referred to as ancestry
informative markers (AIMs). We did not find any variants above the genome-wide p-value
threshold. However, we note that even the large effect variant in SLC24A5 which is
associated with skin pigmentation did not reach genome-wide significance in our sample
due to a lack of adequate power. Nevertheless, the Manhattan plot for skin pigmentation
shows clear peaks at known loci (Fig. 4.6) including the one at SL24A5. In contrast,
the peaks are not as clear in the Manhattan plot for hair curvature. Given that both
skin pigmentation and hair curvature have similar correlations with ancestry, this might
suggest a more complex genetic architecture for hair curvature though we would need to
collect a larger sample size to show that.
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Figure 4.6. Manhattan plot of admixture mapping for various traits. a, skin pigmen-
tation. Highlighted SNP represents SLC24A5. b, hair curvature
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Curvature
CHR SNP BP EA N BETA STAT P

4 rs1385130 79293127 G 188 -0.02932 -2.192 0.0296
4 rs168283 79234317 G 186 0.02919 2.034 0.04339
4 rs6835769 79284694 T 188 -0.02835 -2.117 0.03561
20 rs310644 62159504 C 188 0.04405 2.889 0.004326
20 rs310654 62172269 A 186 0.05502 3.823 0.0001807
20 rs310655 62172281 T 183 0.04534 3.245 0.001401

Cross-sectional area
CHR SNP BP EA N BETA STAT P

1 rs499697 152493154 G 150 -419.6 -2.408 0.01729
1 rs6587673 152430152 A 149 352.5 2.866 0.004776
1 rs6661961 152442289 T 150 -290.1 -2.202 0.02922
1 rs6700998 152434009 T 150 -287.2 -2.17 0.03163

Table 4.1. Table of significant replicated loci from GWAS meta-analysis on hair morphology
(Liu et al., 2018)

SNP: rs310644

Ancestral Allele: T

Derived Allele: C

0˚ 30˚ 60˚ 90˚ 120˚ 150˚

−30˚

0˚

30˚

60˚

270˚ 300˚

0˚

30˚

Figure 4.7. Allele frequency map of rs310644. Derived C allele shows high frequencies
in African and Melanesian populations, while ancestral T allele is at high frequencies across
Eurasian populations.
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To ensure that our results were not driven by population structure, we examined
the QQ plots for the association results (for all SNPs) (see Figure 4.8). We show that
the observed distribution of test statistic follows the expected distribution showing
that our correction for population structure (both with proportion of AFR ancestry in
ADMIXTURE and using the first two PCs) is adequate.
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Figure 4.8. QQ plots for various ancestry corrections and phenotypes. Columns
represent different ancestry corrections and rows are different phenotypes. Shown here are (from
top to bottom): Melanin Index, curvature, cross-sectional area, cross-sectional eccentricity,
minimum diameter, and maximum diameter 60



Figure 4.9. QQ plots for various ancestry corrections and phenotypes. Columns
represent different ancestry corrections and rows are different phenotypes. Shown here are
(from top to bottom): PC1 for hair traits, PC2 for hair traits, PC1 for residualized hair traits,
PC2 for residualized hair traits, objectively classified hair texture.61



4.4 Discussion
Hair morphology is a complex trait with considerable variation among human populations.
Currently, our knowledge of its genetic architecture relies heavily on studies of European
and East Asian populations with a palpable dearth of studies considering variation in
African and African-descendant populations, despite their known genetic and phenotypic
diversity. A major barrier to our understanding of the genetic underpinnings of human
scalp hair morphology across populations is the overreliance on subjective typologies
of hair that overemphasize certain types of hair variation, while ignoring others. The
use of validated quantitative methods for measuring phenotypic variation in GWAS is
promising and has previously proven useful in detecting genetic associations for variation
in traits that cannot readily be discerned by typological approaches (Fujimoto et al.,
2008b; Crawford et al., 2017; Martin et al., 2017).

In this study, we measured skin reflectance and multiple aspects of hair morphology
using novel high-throughput methods in a sample of US-based participants of primarily
African and European ancestry. With our analyses of the phenotypic and genotypic
information on this sample, we were able to replicate a number of previously reported loci
and we found further evidence supporting the complex and polygenic nature of human
scalp hair morphology. Furthermore, we were able to elucidate the relationship among
various aspects of hair morphology and the extent to which they might be affected by
population structure in samples of similar ancestries.

4.4.1 Hair morphology

First, we examined the distribution of all collected phenotypic variation in our sample
with comparable quantitative data from participants of self-reported African ancestry,
European ancestry and individuals who described themselves as part of the African
Diaspora. Our findings show that as expected, for skin pigmentation our admixed sample
shows a distribution of M-index values that, similarly to the African Diaspora, spans
the range from European and African values (Figures 4.2 a and b). Interestingly, hair
curvature showed a similar pattern. Both these findings suggest that our terminology for
describing skin color variation and hair curvature variation overemphasize the relatively
small range of variation shown in European populations while minimizing the considerable
range of variation shown in African and African-descendant populations. In contrast,
other aspects of hair variation appear minor, including eccentricity, which is often
described in forensic textbooks as a key morphological distinction between African and
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European hair (Figures 4.2 c-f).
We use a Principal Components Analysis to explore the interrelation of the quantitative

hair traits we have measured and their relationship to genomic ancestry (see Figure 4.4).
The PCA for our sample does not show clear clusters according to ancestry or curvature.
We repeat the PCA for the residualized hair traits (correcting for ancestry) and use both
the unresidualized and residualized PC variables in our downstream analyses. We show
the correlation between our phenotypic data with proportion of African Ancestry (see
Figure 4.3) as well as the correlation among traits with and without ancestry correction
(Figure 4.5). What emerges is that certain traits and relationships among traits are
heavily driven by ancestry stratification in our sample. Most notably, the correlation
between cross-sectional eccentricity and curvature, which is often seen as causal, appears
to be primarily driven by stratification in our sample. Once we correct for ancestry, we
find that the only correlations remaining are expectable covariation in relation to increased
cross-sectional size and, interestingly, a significant correlation between eccentricity and
maximum cross-sectional diameter, perhaps relating to a mechanism by which hair shafts
are built. This finding may suggest that variation in cross-sectional shape is driven by the
increase of the hair in its maximum dimension, rather than the decrease of its minimum
diameter, but further work is needed to interpret this result.

4.4.2 Genetic architecture of skin and hair loci

As a baseline, we first tested the association for skin pigmentation (as measured by
skin reflectance) and found that we were able to successfully replicate SLC24A5 in our
sample. Even though SLC24A5 was statistically significant, it would not have reached
genome-wide significance if we were trying to find it in an agnostic scan. This suggests
that our study is currently underpowered even to detect large effect loci. Nevertheless, we
performed a GWAS and cross-referenced our significant SNPs with previously reported
skin and hair loci, and we found a number of variants that were successfully replicated
in our sample reaching a nominal significance level of at least P = 0.05 (see Table
4.1 and Appendix F for full table of replicated loci). When we compare the direction
of our effect size to those of the reference hair morphology GWAS (Liu et al., 2018),
we see that it is the same for curvature, which adds confidence to the validity of our
replication. Other replications are less straightforward to interpret, however the apparent
correlation between decreased cross-sectional area (our study) and increased curvature
(the meta-analysis) is a pattern that resembles the confounding association between the
EDAR V370A allele, which is associated with increased cross-sectional area as well as

63



straighter hair in East Asian populations (Fujimoto et al., 2008b; Mou et al., 2008).
One of our strongest associations with hair curvature, which was not replicated for

any other hair trait, is rs310644 on Chromosome 20. We examined allele frequency
distribution around the world for this pattern and found that, in the case of this SNP,
the derived allele (C) is present at a high frequency across African populations (it is even
fixed in some of them) and the only other group with comparably high frequencies of
the derived allele are Melanesian and Papuan populations who are also known to have
tightly curled hair. Alongside our replication of higher curvature with the C-allele, this
finding suggests that this locus warrants further investigation in the context of African
and Austronesian populations.

For our admixture mapping, we took the results of our GWAS and filtered for
SNPs that showed a high allele frequency difference (>0.5) between YRI and CEU
HapMap populations. Such SNPs would be the only variants that we could have the
statistical power to detect in our small sample. However, no SNPs approached genome-
wide significance. Using an adjusted P-value of 0.001, we were able to curate a list of
candidates for further investigation (see Appendix F). Our failure to find SNPs reaching
genome-wide significance in the context of our QQ plots suggest that hair curvature is
likely highly polygenic. Additionally, we demonstrate the usefulness of using continuous
quantitative phenotypic data over classification (even if based on objective data). The
replication of one locus, in particular, on Chromosome 1 for our binned hair typing
is likely a signal associated with TCHH, which has previously been associated with
straighter hair in European populations (Medland et al., 2009; Liu et al., 2018). This
demonstrates that certain signals are more readily apparent when categorical data is
used, but others (e.g. the locus on Chromosome 20) are only apparent with the full
resolution of the continuous data for variation on the end of the spectrum with higher
curvature.

4.4.3 Future directions and conclusions

This study represents a step forward in the study of the genetics of human scalp hair
morphology and suggests a number of promising future avenues of research. The most
imminent next step would be to investigate more exhaustively the data at hand. One
possibility is to calculate local ancestry for each region rather than relying solely on
ancestry informative markers derived from high allele frequencies (Grinde, Brown, Reiner,
Thornton, & Browning, 2019; Maples, Gravel, Kenny, & Bustamante, 2013). Additionally,
selection-based approaches could yield candidate loci. Examining patterns of locus-specific
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branch length across the genome in multiple populations would allow us to investigate
whether hair and keratin-associated genes have longer branch lengths, on average, in
African and Austronesian populations.

In summary, this study was able to replicate a number of previously reported loci and
elucidate the genetic architecture of human scalp hair morphology using novel methods
for phenotyping the continuous variation in this trait. By focusing on a sample with
significant African admixture, this study was able to offer insight into variation in a
population that has not received much attention from previous studies of hair genetics.
Future steps for this work include expanding the sample in size and including other
populations with high frequencies of tightly curled hair, such as South Africans and
Melanesians.

4.5 Methods

4.5.1 Participant recruitment, hair samples, and genotype data

The hair samples and genotype data for the African-European admixed individuals
were collected with informed consent and ethical approval by The Pennsylvania State
University Institutional Review Board (#44929 and #45727). The hairs used as reference
samples for the distribution of hair phenotypes (i.e., the African, European, and African
Diaspora groups) were collected in London and Cambridge, UK, with informed consent
and ethical approval by The University of Cambridge.

4.5.2 Phenotyping methods

A detailed description of the hair phenotyping methods can be found in Chapter 3. In
brief, we used new methods for both sample preparation and image analysis of longitudinal
curvature and cross-sectional morphology of hair. The sample preparation for curvature
consisted of cutting hairs into fragments which were then washed and decanted into a
Petri dish for imaging. Sample preparation of hairs for cross-sectional analysis involved
embedding the hairs in a low melt point plastic (polycaprolactone), cutting the embedded
sample and imaging it under a microscope.A Python image analysis program named
fibermorph was developed for the processing and measuring of variables of interest in
both images of curvature and cross-sections and can be downloaded from PyPi.org.
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4.5.3 Estimation of admixture

We used unsupervised clustering with ADMIXTURE (K=5) on the full sample (n=4257)
with 65218 LD pruned markers to estimate ancestry as described elsewhere (Zaidi et al.,
2017). We selected a subset of 192 individuals of primary African and European ancestry.
We redid the clustering for this sample at K = 2 and K = 3 and show that K = 2 provides
the lowest cross-validation error. Therefore, we used the ancestry components from the
K=2 run in downstream analyses. After removing related individuals and individuals
with fewer than 2 hair fibers in their data sets, we had between 136 and 188 individuals
in our analyses depending on the phenotypes involved in those particular comparisons.

4.5.4 Genotype-phenotype associations

We selected markers with a frequency difference of at least 0.5 between the YRI (Yoruba
from Ibadan representing West African ancestry) and CEU (representing Western Euro-
pean ancestry) from the 1000 Genomes Project data. We tested their association with
each phenotype using a simple linear model with ancestry (either African component or
PCs 1-2) as covariates. We used the –glm function in plink 1.9 (Chang et al., 2015)for
this. Code for the analyses presented in this dissertation can be found on GitHub at
https://github.com/tinalasisi/Afr_Admix_Assoc.
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Chapter 5 |
Experimental evidence from
thermal manikin for the role
of human scalp hair as an
evolutionary adaptation

5.1 Introduction

5.1.1 Thermoregulatory constraints in human evolution

Encephalization, bipedalism, and the loss of body hair are three traits of prime interest
in the study of hominins and early Homo (Wheeler, 1985; Falk, 1990). The main interest
has been in understanding what selective pressures may have acted to shape these
quintessentially human traits, and whether (if at all) their appearance in the human
lineage is linked. In each case, thermoregulation has been implicated as a potential
contributing factor.

Thermoregulation is important for all living organisms, but some of the physical
traits and behaviors that humans have evolved posed new challenges to their basic
primate physiological mechanisms of temperature regulation. Principally, the emergence
of prolonged bipedal striding and running occurred at the same time as the evolution
of a larger brain size (Ruxton & Wilkinson, 2011; Ruff, Trinkaus, & Holliday, 1997).
The possibility of overheating leading to cognitive deficit thus emerged as a significant
threat because of the combined effects of metabolic heat production in a hot environment
coupled with increased thermosensitivity of a large brain. These new thermoregulatory
challenges required new solutions.
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Sweating works in tandem with a seemingly hairless body to create a highly effective
cooling system. But this physiological function is not without cost. Dehydration
is a significant risk, even in modern humans. A negative water balance, in and of
itself, can accelerate the development of hyperthermia and cause cognitive impairment.
However, sweating also depletes electrolyte reserves, which in extreme situations can
cause physiological dysfunction (e.g. cardiovascular disturbance) and, if left unchecked,
can lead to death. In an environment where water may have been scarce and electrolytes
difficult to replenish, it becomes apparent that sweating may have come at a considerable
cost (Porter, 1993).

5.1.2 Hair plays an important role in mammalian thermoregulation

Thermoregulatory systems are exceptionally conserved in vertebrate evolution. The
extensive and fundamental interconnection between nervous and circulatory systems
forms an integral constraint on the possibility of evolving non-deleterious modifications
(Crawshaw, Moffitt, Lemons, & Downey, 1981; Siemens & Kamm, 2018). As such, the
success of mammals in a wide range of thermal environments rests, in part, on the
evolvability of hair - an adaptation that does not disturb the careful coordination of
systems involved in internal temperature regulation (Guerrero & Rogers, 2019; Dawson
et al., 2014; Wacker, McAllan, Körtner, & Geiser, 2016).

The multifaceted function and adaptability of hair explains why so few hairless
mammals are found. Marine mammals aside, the list of terrestrial mammals that have
evolved hairless skin, or more accurately miniaturized hair follicles, is very short. With
the exception of special cases such as the naked mole-rat (that is poikilothermic rather
than endothermic) and armored mammals, hairlessness is restricted to a few large-bodied
species in extremely hot environments: elephants, rhinoceroses and hippopotamuses
(Wheeler, 1984). The rarity of hairlessness among terrestrial mammals living in hot
climates suggests that there may be several factors that outweigh the improved heat loss
that comes with hairlessness.

The benefit of hair in cold environments is readily understood. But a mammalian
coat is capable of more than simple heat retention. Protection from solar radiation is
a key function of hair. This protection is not limited to UV damage, but is extended
to an overall reduction of the total heat load on an animal. Experimental studies of
the thermal conductance of various mammalian coats demonstrate that a reduction in
heat gain can be achieved by a short and lightly pigmented reflective coat, but also by a
sufficiently deep coat (Dawson et al., 2014; Dawson & Maloney, 2017; Walsberg, 1990).
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This illustrates the versatility of mammalian hair, even in contexts where its reduction
intuitively appears more beneficial.

5.1.3 Considering a thermal role for human scalp hair

The function of human scalp hair has received relatively little attention from evolution-
ary anthropologists because, unlike bipedalism, encephalization, and hairlessness, the
functional role of scalp hair is less apparent. A number of scholars have speculated
about the evolutionary pressures that may have initiated the emergence (or retention) of
scalp hair. Among these, the thermoprotective hypotheses stand out as the most readily
testable. Yet, thermoregulatory models of early hominins have not explicitly examined
the function of scalp hair.

By contrast, physiologists and environmental ergonomists have afforded the thermal
effect of scalp hair some consideration. A few studies have looked at the effect of scalp
hair on sweat rate and heat loss. Cabanac and Brinnel(Cabanac & Brinnel, 1988) found
that bald men evaporated sweat on their heads at a rate two to three times higher than
men with scalp hair. At first, this supports the intuitive expectation that a hairless head
would be at an advantage in terms of heat loss, as it would have the fewest barriers to
evaporation.

However, a more recent study by Coelho et al. (2010) suggests that this advantage
may obscure the net disadvantage of a hairless head, as it would also be subject to a
higher heat load. Coelho and colleagues compared sweat rate during exercise under the
sun in a sample of 10 men before and after shaving their head hair. They found higher
sweat rates in the "no hair" condition, suggesting that the head required more evaporative
cooling when there was no hair to protect it. Therefore, these human trials challenge the
common assumption that a bald head is best (Falk, 1990).

Nevertheless, the polar dichotomy of hair/no hair is not necessarily a realistic scenario.
A study by Shin et al. (2015) examined the potential role of hair length and found a
higher rate of heat loss in individuals who had trimmed hair (5mm) compared to those
men when they had longer hair (100 -130mm) when exposed to a cooling hood with 10◦C
water. This begins to offer some insight into the vast spectrum of possibilities between a
hirsute and hairless scalp. But one key question remains unexplored: how does scalp
hair morphology affect thermal load?

Scalp hair morphology is one of the most variable traits among human populations
(Lasisi et al., 2016; Koch, Shriver, & Jablonski, 2019; Hrdy, 1973). Moreover, tightly
curled hair, as seen in many African populations, is a uniquely human feature among
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mostly straight-haired mammals. This distinctive phenotype has been previously sug-
gested to have a specific advantage in the reduction of heat gain from solar radiation
(Jablonski & Chaplin, 2014). Additionally, the ubiquity of tightly curled hair in a
continent with unmatched genetic diversity, suggests the role of scalp hair morphology
deserves further attention.

In this paper, we re-examine the effect of scalp hair on thermal load and further
explore the effect of morphology. By using a thermal manikin in combination with solar
lamps and human hair wigs of various textures, we generate empirical data on how
differences in human scalp hair morphology influence heat transfer. This biophysical
approach to the question allows for the collection of data on the thermal properties of
different hair without noise that may be introduced through variability in the physiological
responses humans have when under heat stress. Finally, we interpret the results in light
of the hypothesis that (tightly curled) scalp hair may have evolved as a result of selective
pressures to reduce the heat load on an increasingly large human brain.

5.2 Results

5.2.1 Brief Methods

Experiments were conducted in a climate-controlled chamber using a full-body thermal
manikin (model “Newton”, Thermetrics, Seattle, Washington, USA). Data presented in
this paper are only from the head and face zone of the manikin (out of 20 independently
controllable zones on the manikin). The wigs used in the experiment ranged from straight
to tightly curled (see Appendix G) and were all naturally black human hair of Chinese
origin made with 8" hair fibers. Solar radiation was simulated with two lamps reaching a
net radiation of ∼788 W/m2.

The dry measurements were taken at two different temperatures - one with Tmanikin =
34◦C and Tambient = 10◦C, and another with Tmanikin = 38◦C and Tambient = 2◦C. The
second set of temperature options was needed as certain conditions led to overheating of
the manikin (See Appendix G for details). The wet measurements were taken with the
temperature settings Tmanikin = 34◦C and Tambient = 34◦C or Tmanikin = Tambient. For the
analyses below, we applied a correction to bring all the measurements to Tambient = 30◦C
with solar radiation (See Appendix G).
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5.2.2 Solar influx and evaporative cooling create distinct heat loss
patterns

When comparing the heat loss at Tambient = 30◦C for dry vs. evaporative conditions and
with/without solar radiation, we see distinct effects of solar influx and of evaporative
cooling (see Figures 5.1 and 5.2). Our results show that in a dry heat loss with solar
exposure setting, the absence of any barrier (nude/no wig) results in net heat gain. Curlier
wigs are associated with higher heat loss. But in all other conditions, this pattern is
reversed. Additionally, in the wet condition, the effect of wind speed is more pronounced
than that of the different wigs.

Linear models model predicting heat loss for dry and wet conditions this particular
pattern (see Figure 5.3) . In the dry condition, we see that radiation had the single
strongest negative effect on heat loss, while the interaction between solar radiation and
high curvature wig showed the highest positive effect on heat loss. All terms were found
to be significant.

Conversely, for the wet conditions, none of the interactions between wig and solar
radiation were significant with wind providing the single positive significant effect on
heat loss and the wigs reducing heat loss with increased curvature (complete results in
Appendix Thermoregulation Chapter).
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Figure 5.1. Solar influx as a function of wind speed at 30◦ C. Wind speed shown on the
x-axis with solar influx on the y-axis. Dry experiments shown on the left and wet experiment
results on the right.
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Figure 5.2. Heat loss vs. radiation across experimental conditions. Heat loss with
radiation off/on (top to bottom) and in dry and wet conditions (left to right) calculated for
ambient temperature of 30C. Dashed line represents y=0.
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Figure 5.3. Results for linear regression on heat loss. Dot-and-whisker plot of linear
models for heat loss at 30◦C for (a) dry and (b) wet conditions

5.2.3 Sweating potential vs. sweating requirements result in differ-
ent optimal scenarios

Based on our dry and wet data, we were able to calculate the amount of sweat evaporation
that would be biophysically possible under the various conditions (maximum sweating
potential) and the amount of sweating that would be required to achieve heat balance
(i.e. zero heat gain).

Our results show that to maximize the evaporative potential, the most beneficial
situation is one without any form of hair acting as a barrier. Interestingly, our results
appear to suggest that hair curvature reduces the evaporative potential of the manikin’s
scalp (Figure 5.4).

In the case of zero heat gain, we see that the benefit of increased evaporative potential
is strongly reduced by the increased need for evaporative cooling. While the evaporative
potential of a nude scalp is higher, this condition also requires more evaporative cooling
to counteract the solar influx. Along the same lines, increasingly curled hair reduces
the amount of evaporative cooling (i.e. sweating) required to cancel out heat gain in a
scenario with considerable solar influx.
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The linear models of sweat volume for both maximum sweating potential and sweating
requirement (for zero heat gain) show that the effects of wig type and wind speed are
significant (see Figure 5.5). In the case of maximum sweating potential, this means that
a greater amount of sweat can be evaporated. In the case of sweat requirement for zero
heat gain, this means that less sweat is required to bring the scalp down to its baseline
temperature.

Figure 5.4. Plot showing evaporative potential/requirement under different condi-
tions. The quantity of sweat that can be maximally evaporated (left) and that is required for
zero heat gain (right) with various head coverings under three wind speeds.
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Figure 5.5. Linear regression results for evaporative potential and requirements
for heat loss. Dot-and-whisker plots for linear regression of (a) maximum sweat potential and
(b) sweat required for zero heat gain.

5.2.4 Thermocouple data interpretation issues on thermal manikins

Thermocouples were placed along the midline of the thermal manikin (underneath wigs
when one was worn). These are named by numbered channels from 1 to 5 (front to
back; see diagram in Methods section). Channel 1 experienced some malfunctioning and
is removed from the analyses. These measured the temperature at that point on the
manikin’s scalp across experimental conditions. We then calculated solar influx as the
temperature difference for that particular condition with and without solar radiation.

The baseline expectation would be that there is a net increase in temperature with
the addition of solar radiation (as is apparent from the manikin data). However, our
results show that there is considerable variation within individual conditions depending
on the location of the thermocouple. Moreover, there is a consistent pattern showing a
negative solar influx (i.e. lower temperature with radiation on) at the back of the head
(see Figure 5.7). On a real (living) human scalp, such localized effects would be highly
unlikely due to blood perfusion distributing the effect of the heat.

A linear model confirms that the strongest effect on solar influx is the interaction
between the straight (low curvature) wig and thermocouple 5 which is placed at the back
of the head (see Figures 5.6 and 5.12).
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These results indicate an artifact in the data due to the thermal manikin’s construction.
The head region of the manikin is controlled as one whole. The thermal manikin
reduces/increases its energy output to maintain the set skin temperature based on the
average of each zone. Hence, if some regions within a zone are overheating, the entire
zone will experience reduced heating from the manikin. Due to this, we find that the
area least affected by solar exposure (as it is completely covered by hair) would have
experienced a net decrease in temperature when other parts of the manikin head were
overheating under solar exposure.

Despite these limitations, some interesting findings can be gleaned from these raw
results. For example, we find that at Tambient = 10◦ C, a wind speed of 1m/s (equivalent
to convection from walking), and no radiation, none of the trials reach the temperature
threshold for thermal damage to the skin. However, with the added effect of radiation,
many of the thermocouples picked up temperatures above various time-related exposure
thermal thresholds that would lead to damage to the skin (see Figure 5.8).
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Figure 5.6. Dot-and-whisker plot for linear regression on solar influx. Regression
coefficient on x-axis with terms on the y-axis. Only significant terms are shown.
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Figure 5.7. Scatter plot of solar influx for different experimental conditions. Line
represents zero influx. Negative numbers represent negative solar influx (i.e. a higher tem-
perature was found with no radiation than with radiation). Wigs are indicated by color and
thermocouple ID is indicated by shape.
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Figure 5.8. Thermocouple readings for across experiments for wind speed of 1m/s.
The green line represents the cut off for burns sustained at that temperature after 100 minutes.
The dashed and dotted orange lines represent that same limit but for burns sustained after
only 10 and 1 minute respectively.

5.3 Discussion
The most striking observation from our results is the extent to which solar radiation
increases heat load on a dry hairless scalp and the extent to which the level of hair
curvature affects solar heating of the head (see Figure 5.1). In terms of direct heat
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loss for the various experimental conditions, it is noteworthy that the only condition
in which heat loss was negative (i.e., there was overall heat gain) was in a dry setting
with solar radiation (see Figure 2), but, again, the extent of this was governed by hair
curvature.This was also the condition in which differences between different levels of
hair curvature were most pronounced, unlike other settings where the difference between
hairlessness and hair (of any morphology) dwarfed the differences between wigs. It is
also the one condition where a hairless scalp shows the lowest heat loss (or highest heat
gain). When the scalp is saturated with water, it is clear that a hairless scalp is superior
in terms of heat loss potential.

Using the dry and evaporative data, we were able to translate these results to the
amount of sweat that could potentially be evaporated and the amount of sweat that
would be required to attain heat balance (i.e., cancel out the heat gain from the solar
radiation). From our data, it appears that the absence of hair is by far the best condition
for maximum sweat evaporation, and hair curvature appears to be inversely correlated
with sweat evaporation potential. However, when we consider how much additional
evaporative cooling is required in each of these conditions, it emerges that a hairless
scalp also necessitates more evaporative cooling due to the considerable amount of solar
influx (Figure 5.4). As such, the relative disadvantage of tightly curled hair in maximum
sweat potential becomes an advantage when we consider that less evaporative cooling is
needed with such hair.

The literature on human scalp hair and sweating has generally regarded scalp hair
as a hindrance to evaporative cooling (Cabanac & Brinnel, 1988; Falk, 1990; Shin et
al., 2015; Coelho et al., 2010). Our study supports the view that the presence of hair
reduces the efficiency of evaporative cooling. However, our study adds context to these
findings, by taking into consideration the effect of solar radiation. Many of the studies
on human responses to heat focus on exercise-induced hyperthermia at various ambient
temperatures rather than hyperthermia from solar heat gain. As a result, many of the
studies interpreting the effect of hair on heat loss cannot account for any beneficial effects
in the presence of radiation. In our results, we see that, indeed, solar radiation influx
is the prime factor that disadvantages a hairless scalp. This consideration is critical
in understanding the evolution of scalp hair and of scalp hair form in humans. The
genus Homo and anatomically modern humans, H. sapiens, evolved in equatorial African
environments with high and relatively nonseasonal levels of solar radiation. Under these
circumstances, passive heating of the head by solar radiation would be mitigated, possibly
significantly, by tightly curled scalp hair.
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Coelho et. al. (2010) provide a rare example of the evaluation of sweat rate and
temperature in an outdoor setting under solar radiation exposure. While this approach
results in more variation that cannot be controlled, it is closer to the environmental
settings that we would wish to test from an evolutionary perspective. Coelho and
colleagues found that sweat rate was indeed reduced in those with scalp hair, but, as all
other temperature measurements were not significantly different between the hair and
hairless conditions, one might conclude that to achieve equivalent heat loss to a scalp
protected by hair, a hairless scalp requires more evaporative cooling. This would be in
line with our results. In the environments in which humans evolved, solar radiation was
uniformly high and free drinking water was limited to rivers and freshwater lakes. Under
these conditions, and in the absence of technology for water storage, evolution would
probably have favored adaptations for conservation of water. Scalp hair – particularly
tightly curled and absorptive hair – would have maximized cooling, while reducing water
loss, and prolonging the duration of strenuous, heat-producing physical activities between
drinks of fresh water.

Nevertheless, our manikin study has certain limitations. The results should be
interpreted with some caution as humans are subject to certain physiological constraints
that do not affect the manikin. For example, despite the low ambient temperature
(2 − 10◦C) a number of thermocouples registered temperatures above 45◦C and even
49◦C - temperatures at which skin is damaged after exposure for 100 and 10 minutes
respectively (Yarmolenko et al., 2011).Yet other thermocouples in the same experiment
registered temperatures below 30◦C, likely due to the fact that they were further from
the direct path of the radiation. Such temperature discrepancies would not be possible
on a living human’s scalp (see Figure 5.8). Furthermore, we only have a limited range
of human hair variability represented in our sample, due to the cost and availability
of different human hair. The next logical steps to our work would therefore include
expanding this range of hairs to account for variation beyond simply curvature (i.e.
cross-sectional shape, porosity, density etc.). Additionally, we used a single dose of solar
radiation. Our findings would be strengthened by ascertaining the relationship between
quantity of radiation and hair morphology. Ultimately, the goal would be to validate
these findings in trials involving human participants.

For researchers attempting to understand the evolution of early hominins and later
human populations, these results relay critical information on the specific contexts where
hair, and specifically tightly curled hair, may have been adaptive. Tightly curled hair
has long been misleadingly associated with "wool" and our results demonstrate that,
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counter to what this connotation might suggest, tightly curled hair does not form an
insulating barrier for optimal heat retention. Rather its advantage lies in its ability to
mitigate heat gain from solar radiation while maximizing heat loss. There remain many
questions regarding the extent and significance of scalp hair in human thermoregulation
when considered from a whole body heat loss perspective, but the results reported in this
chapter represent the first steps towards a series of scientific investigations that will shed
light on the effects of human scalp hair and its morphological variation on thermal load.

While we can (currently) only speculate at the timings of any hypothetical scalp and
hair-related adaptations, it is worthwhile articulating some of the scenarios future research
should consider. Mainly, the question is the sequence or combinations in which relevant
traits emerged. Did scalp hair also disappear when hominins first evolved miniaturized
hair follicles? Was the appearance of scalp hair a subsequent adaptation? Or was the
retention of scalp a better descriptor of the evolutionary scenario? Similarly, we might ask
whether tightly curled hair evolved simultaneously to the appearance/retention of scalp
hair. Or, perhaps, the evolution of tightly curled hair happened hundreds of thousands of
years later. Additionally, it would be crucial to investigate whether such hair morphology
appeared only once in humans or whether there are examples of convergent evolution.

Based on our current knowledge of the hominin evolutionary history, a crucial period
of time we may want to focus on is 2 million years ago, with the dispersal of Homo
erectus and 80 thousand years ago with the dispersal of Homo sapiens. Between these
two periods of time, we also suspect numerous dispersals leading to Neanderthal and
Denisovan populations in Eurasia. Thus, an interesting point of consideration is whether
the evolution of (tightly curled) scalp hair would have occurred prior to any hominin
dispersals, or prior only to Homo sapiens’ dispersal.

Some important factors framing the timing of scalp hair evolution are the evolution of
"hairless" skin and large brains. The former is important as it implies thermoregulatory
pressures and the latter as it presents an additional thermoregulatory constraint that
scalp hair may have offered a solution for.

Our manikin study provides strong evidence for the potential adaptive value of scalp
hair (especially if tightly curled) in the context of high solar heat load. However, any
questions of timing or relative value for different hominins would require modelling of
the various anatomies of these hominins. These would need to take into consideration
skeletal robusticity (as this may have offered some benefits against heat gain, especially
in the skull), but also brain size (which might point to increased risk of heat stroke).
Additionally, the behavior of Homo erectus, Neanderthals, and Homo sapiens would have
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played a critical role in their ability to culturally adapt to various climates. Consider the
relative importance of such behavioral adaptations would help us better estimate when
and where scalp hair (curled or otherwise) would have most likely provided a significant
enough advantage to be called an evolutionary adaptation.

5.4 Methods

5.4.1 Materials & equipment

5.4.1.1 Wigs

The global market of human hair limits feasible options for this project, so we decided
to perform the experiments on three wigs made of untreated human hair reported to
be of Chinese origin. A single wig is made of the hair of multiple individuals, however,
in the process of production, hairs of uniform appearance are combined, resulting in
less variation than would be observed across a natural scalp (Tarlo, 2017). To minimize
variation between wigs, we used three naturally black human hair wigs of Chinese origin
with 8” hair fibers (Figure 5.9). The principle difference between these wigs is that one
is straight, one has been moderately curled, and another tightly curled.

Figure 5.9. Wigs used in experiments. The wigs used in the experiment are made of
human hair and were purchased from a purveyor who fashions different hair styles out of
“Chinese virgin hair”. Reflectance measures were taken to ensure they were similar between the
wigs and cross-sectional measures were checked from various points in the wig as an indicator
of similarity across the wigs. The wigs are all made with hair fibers that are 8” long - the only
difference is the tightness of the curl that was set in the wigs.
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5.4.1.2 Equipment

The dry heat resistance experiments were carried out from October to November 2018, un-
der the supervision of Dr. George Havenith and Dr. James Smallcombe at Loughborough
University (Loughborough, UK).

The experiments used a thermal manikin (model “Newton”, Thermetrics, Seattle,
Washington, USA). The “Newton” manikin is made of copper filled carbon-epoxy and
features embedded wire elements that heat the surface of the manikin (with a maximum
output of 800 W/m2). Dry heat loss experiments were conducted in a climate-controlled
chamber in a custom-built wind tunnel. We carried out the experiments at wind speeds
of ∼0.3m/s, 1m/s, and 2.5m/s, roughly comparable to air movement when still, walking,
and running, respectively. Humidity in the chamber was set to 40% and air temperature
was set at 2◦C and 10◦C (for the 0.3m/s wind speed experiments).

The complete set of data were captured, but we only analyzed the data from the
head zone of the manikin (out of 34 independently controllable zones on the manikin). A
diagram and image of the set up are shown in Figures 5.10 and 5.11 respectively.

Figure 5.10. Diagram of experimental setup. The thermal manikin was sitting with its
back towards the source of radiation.
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Figure 5.11. Image of experimental setup. The set-up inside the climate-controlled
chamber at Loughborough University.

Thermal manikins measure energy required to keep the manikin’s surface temperature
at a user determined Tskin. As such, standards for manikin work dictate that (climate-
chamber) conditions be set to maintain a minimum heat flux of 20W/m2 hence low ambient
temperatures in these experiments (International Organization for Standardization, 2015).

Using the raw manikin results, we were able to calculate the dry heat loss of the
different wigs (American Society for Testing and Materials, 2004; Wang, Gao, Kuklane,
& Holmér, 2011).

The evaporative heat loss experiments were carried out from May to August 2019
by Dr. James Smallcombe at Loughborough University. The experiments used the
same equipment, but were set to capture heat exchange, rather than dry heat loss. The
wet measurements involved completely saturating the manikin’s cotton “scalp” with
water from a spray bottle and taking measurements with the temperature settings
Tmanikin = 34◦C and Tambient = 34◦C or Tmanikin = Tambient. These settings allow for the
isolation of evaporative heat loss.

Additionally, we gathered temperature readings from the manikin’s scalp with ther-
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mocouples which were placed along the midline of the thermal manikin (underneath wigs
when one was worn). These measured the temperature at that point on the manikin’s
scalp across experimental conditions (see Figure 5.12).

Figure 5.12. Manikin with thermocouple placement. Thermocouples were spaced
evenly along the midline to capture temperature from multiple points on the head during the
experiments.

5.4.1.3 Analyses

For the analyses, we applied a correction to bring all the measurements to Tambient = 30◦C
with solar radiation. This process involved a number of steps.

Step 1: Processing manikin data.
First, the raw manikin data was processed by Dr. George Havenith to convert

the manikin readings to heat loss in W/m2 (watts per meter squared) and thermal
resistance in m2 ·K/W (square meter kelvins per watt) for each region of the manikin
and subsequently, the readings for each experiment were averaged for the head region.

Step 2: Calculating heat loss for 4◦C and 30◦C.
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As measurements were taken across two different ambient temperatures, we first
calculated the heat loss H for Tambient = 4◦C and Tambient = 30◦C using the mean thermal
resistance for each condition (without radiation).

Heat loss for Tambient = 4◦C was calculated as per equation 5.1 and heat loss for
Tambient = 30◦C was calculated as per equation 5.2:

H(4◦C) = 28/m2 ·K/W (5.1)

H(30◦C) = 5/m2 ·K/W (5.2)

Step 3: Calculating heat loss with solar radiation for 4◦C and 30◦C.
To calculate the heat loss for each ambient temperature with solar radiation we used

the net heat loss (solar influx), calculated as:

Hsolar influx = Hradiation on −Hradiation off (5.3)

and subtracted it from the heat loss for each temperature using equations 5.4 and 5.5
respectively.

Hsolar(4◦C) = H(4◦C) −Hsolar influx (5.4)

Hsolar(30◦C) = H(30◦C) −Hsolar influx (5.5)

These calculations take as a baseline the heat loss at their respective temperatures
(without radiation) and subtract the heat loss attributed to the additional factor of heat
gain from solar radiation. This solar influx is independent from temperature and thus
does not itself require an adjustment to the ambient temperature but can be added post
hoc. Therefore, the final calculations reflect the estimated heat loss at two different
ambient temperatures with the added effect of heat gain from solar radiation.

Step 4: Calculating evaporative potential and evaporative requirement.
Finally, we calculated the evaporative potential and requirements for different condi-

tions by estimating this evaporation as a reflection of sweat in g/m2/h. Both evaporative
potential and requirements are calculated for Tambient(30◦C).

88



Calculating sweat requirements at 30◦C. Sweat requirements are calculated
as the additional evaporative cooling required to cancel out heat gain, see equation 5.6

Szero gain = Hsolar(30◦C)

2430 · 3600 (5.6)

Calculating total evaporative heat loss at 30◦C. To calculate the maximum
evaporative cooling potential Smax, first we added the heat loss attributed to evaporative
cooling to the dry heat loss calculated, as per equation 5.7

Htotal(30◦C) = Hevaporative solar +Hdry solar(30◦C) (5.7)

Calculating sweat potential at at 30◦C. Finally, we calculated evaporative
maximum potential using equation 5.8.

Smax = Htotal(30◦C)−dry solar(30◦C)

2430 · 3600 (5.8)

Here Htotal(30◦C)−dry solar(30◦C) represents the maximum evaporative potential under
solar heat gain at 30◦C and 2430 · 3600 is the conversion to sweat in in g/m2/h.
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Chapter 6 |
Conclusion:
Lessons learned and
Future directions

6.1 Deconstructing and reconstructing knowledge across
disciplinary boundaries
A key theme that emerges from my work is the importance of transcending disciplinary
boundaries in search of methodologies and unfamiliar sources of knowledge that may
inform questions in biological anthropology. The collaborations that have made this doc-
toral research possible have highlighted the distinction between what is multidisciplinary,
interdisciplinary and transdisciplinary. There are many different perspectives on what
these terms encompass and how they are similar or different from each other (Brown &
Dueñas, 2020).

For the purposes of this discussion, I want to delineate these three terms to emphasize
various challenges and considerations in research that seeks to transcend disciplinary
boundaries. If we define a discipline as a paradigm of knowledge production with its own
community, ontological, epistemological and methodological practices, multidisciplinarity
is the parallel existence of disciplines that each engage in knowledge production regarding
a common topic of interest creating a mosaic of distinct (and potentially complementary)
perspectives. An interdisciplinary approach would, in my definition, be distinguished
by the active engagement with differences between disciplines to come to a common
resolution of a common question.

Finally, for something to be transdisciplinary or cross-disciplinary, it must be valid
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across disciplines. In my use of these terms, transdisciplinarity is not something one
can actively engage in, but rather, it can be a goal or end product of multi- and
interdisciplinary work. Depending on the disciplines involved, different knowledge will
fall into a common transdisciplinary category. The value of engaging in interdisciplinary
work would be to identify what participating disciplines do not have in common and
interrogate why these differences exist so we can synthesize new knowledge that can be
accepted widely.

Thus, the distinction between multidisciplinarity and interdisciplinarity lies in the
quality and extent of collaboration. Deep and meaningful collaboration requires mutual
respect, time, and self-reflexivity. Specifically, the ability to question one’s own assump-
tions. In order to synthesize new knowledge across disciplinary boundaries, the first step
is to deconstruct existing knowledge to its most basic units and identify assumptions
that we can then interrogate.

Numerous factors influence the current paradigms that various disciplines find them-
selves in, including funding structures and historical particularities leading to branching
and fusing of various disciplines. Collaborations across disciplinary boundaries can illu-
minate such unconscious influences and other assumptions that are not readily apparent
to those within a specific paradigm. Even within disciplines, different perspectives serve
as tools to expose lacunae in theory and practice. Once an oversight has been identified,
breaking down the knowledge and identifying its origin and history serves simultaneously
to help our collaborators understand our perspective and to expose issues that may
have been inherited without adequate examination. Once the basic building blocks of
our knowledge concerning a particular topic have been thoroughly interrogated across
disciplines, it is possible to synthesize new transdisciplinary knowledge.

During my doctoral dissertation, I have investigated hair as a topic of common interest
across anthropology, genetics, and environmental ergonomics. By breaking down the
assumptions about the morphology of hair and testing assumptions about its thermal
properties, I have been able to generate knowledge of transdisciplinary value, as well as
new insights into this aspect of human evolution. Below, I reflect on the lessons learned
and future directions for each of the projects.

6.2 Thermoregulation and the function of hair
The work I present in Chapter 5 centers around the crucial question of solar heat gain
and human thermoregulation. Thermoregulatory adaptations have been a primary focus
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for anthropologists working to piece together the story of early human evolution. The
loss of hair has received much attention in this context, but the role of scalp hair is
often considered insignificant due to the small surface area that it covers. This view of
human scalp hair as inconsequential expands beyond anthropology, as is illustrated by
the dearth of literature on human hair and thermoregulation in other disciplines.

With my collaborators at Loughborough University, I carried out a number of
experiments that attempted to remedy this gap by using well-established methodology
from the field of environmental ergonomics in a novel context, namely, to test the thermal
properties of human scalp hair. These trials demonstrated with surprising clarity that
there was a considerable, measurable effect of scalp hair on the amount of heat gained
by thermal manikin head. Even more surprising was the distinct directional effect of
increasingly curled hair. The key takeaway from our experiments is that tightly curled
hair, as a material, has a distinct set of thermal properties that, in fact, stand quite in
contrast to the wool with which it is often erroneously compared. Moreover, our results
suggest that any potential adaptive value to hair would be specific to a context where
humidity was minimal and the heat source of concern was specifically radiative heat,
rather than ambient heat or metabolic heat.

The experiments contributing to my doctoral research were a first venture into this
unexplored territory. The results presented here are preliminary insights into the larger
question of human scalp hair’s thermoregulatory potential, but this work will prove
instrumental in setting the foundation for future work by myself and others who wish to
explore this question. Some immediate next steps include expanding the range of hair
used in the experiments. Human hair wigs are a costly material and depending on the
construction of the wig and the provenance of the hair, a single wig can cost upwards of
1000 USD. Our current experiments rely on hair that is artificially curled to different
degrees, presumably, holding all (or much) other variation constant. Nevertheless, some of
this other variation, including cross-sectional shape and porosity may respond significantly
differently to the experimental settings we have used. An alternative avenue of research
to be explored is the simulation of a wide range of hair fiber morphologies and use models
from material science research to predict what the thermal properties would be.

Mathematical modelling has played an increasing role across disciplines and has been
used to test specific hypotheses on human thermoregulation in evolutionary anthropology
as well as other fields. These models will necessarily be part of a sophisticated approach
to testing adaptive hypotheses. Discussing the adaptive potential of any trait in isolation
is inherently limiting as selection acts on the entirety of an individual’s phenome. Results
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informing specific physical effects of traits, like those presented in my work, are most
effectively used in conjunction with models that take into consideration other aspects
influencing thermoregulation, such as expected metabolic heat and paleoclimatic recon-
structions (Hora et al., 2020; Ruxton & Wilkinson, 2011; Wheeler, 1985). An important
focus in future work on the adaptive potential of human scalp hair will be the effect
of solar heat gain and the brain, specifically. The large hominin brain is exceedingly
sensitive to overheating and further exploring the differential response of body parts
to heat will allow us to better understand what, if any, benefit there is to mitigating
heat gain to the head compared to the rest of the body (Piil et al., 2020). Ultimately,
the amalgamation of knowledge from all these various realms will serve to answer the
principal question of adaptation in human evolution: did this trait affect our evolutionary
fitness?

6.3 Genomic insights into human scalp hair morphology
Poorly defined phenotypes critically hinder our ability to make sense of the biological
factors that shape them on any fundamental level. The relationship between genome
and phenome is mediated by many levels, each associated with their own omics (i.e.,
epigenomics, transcriptomics, proteomics, metabolomics). Many studies attempt to
associate phenotype to genotype directly, but increasingly, researchers have sought to
understand the interrelationships between all combinations of these different biological
levels. However, the most “superficial” -omic level, the phenome, remains complex and
abstract. Unlike these other -omic levels, the phenome does not describe something
specific that can be studied with a finite set of methodologies. There is no universally
accepted phenomic unit, nor can we realistically expect there to ever be.

There is a general awareness that phenotypes, however we define them, are abstractions
of perceived properties emerging from underlying biological processes. There have been
attempts to tackle this shortcoming, especially in medical and behavioral genetics, where
deep phenotyping and endophenotyping have been proposed (Yehia & Eng, 2019; Insel
& Cuthbert, 2009; Hasler, Drevets, Manji, & Charney, 2004; Walters & Owen, 2007;
Weng, Shah, & Hripcsak, 2020; Tracy, 2008). Deep phenotyping could more accurately
be described as extensive phenotyping, where studies give up large sample sizes in favor
of a larger range of phenotypic information for each individual. The benefit of such an
approach is that it allows for the investigation of biological factors that might co-vary due
to intrinsic biological relationships between the phenotypes or due to some stratification
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of another kind. On the other hand, endophenotypes have been used in behavioral and
psychiatric genetics as an attempt to articulate more precise phenomic units that may be
obfuscated by broader behavioral descriptors and psychiatric diagnoses. There is clearly
an understanding that many traits are approximations of specific aspects of biological
systems. But the extent to which those approximations deviate from reality, or how they
might be affected by bias, is not always sufficiently appreciated.

In Chapter 4, I present work that illustrates how existing approaches to the genetic
architecture of human scalp hair exemplify the issues of poorly defined phenotypes. The
history of human scalp hair as a racialized trait plays a large part in the pervasiveness
of classification systems that aggregate multiple aspects of hair into one-dimensional
typological categories. For example, the persistent contrasting of “European”, “African”
and “Asian” hair has led to the deep-rooted belief that the various characteristics of
these stereotypes necessarily co-occur. Specifically, descriptions of their cross-sectional
geometries have been used to explain the levels of curvature associated with those groups
(i.e., that “Asian hair” is straight with a circular cross-section, “African hair” is tightly
curled with a flat cross-section, and “European hair” is wavy with an intermediate
cross-section).

The results I report in Chapter 4 show the extent to which phenotyping methods
matter, especially in an admixed African-European population. The use of typical
qualitative descriptors such as “straight”, “wavy”, “curly” and “frizzy” or “kinky” collapse
a huge range of variation on the tightly curled end of the spectrum. This overemphasis of
variation in the straighter range is similar to the disproportionate emphasis on variability
in lighter skin according to classification systems like the Fitzpatrick scale. However, with
our findings, I was able to demonstrate that homogenizing the variation that exists in
“frizzy” or “kinky” hair is not justified by the genetic architecture of the trait. Moreover,
the lack of correlation between curvature and cross-sectional shape (once ancestry was
corrected for) directly challenged the oft-cited intrinsic relationship between the two
factors.

Another interesting finding is that we replicated different previously reported loci with
the different phenotypes. It is only with our new method of measuring curvature that we
replicated a particular variant on Chromosome 20 (rs310644) that showed a promising
allele distribution. This SNP showed an allele distribution where the ancestral allele
(T) was most common across Eurasia, while the derived allele (C) was the predominant
variant across African populations (and fixed in a number of them), as well as two
Melanesian populations. This pattern is interesting for a number of reasons. First, tightly
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curled hair is found at very high frequencies in these populations, so if hair curl in African
populations and Melanesian populations has the same genetic architecture, we would
expect to see this pattern. Second, the fact that it is the derived allele that is found in
both of these populations may be important from an evolutionary perspective, because
it suggests that tightly curled hair (if affected by this allele) may either not have present
in the common ancestor of these contemporary human populations, or that there was
some selective pressure against tightly curled hair in these populations. The ancestral vs.
derived state of an allele is determined by comparing the variant to its homolog in Pan
troglodytes assuming that whichever variant is present in P. troglodytes must be the allele
present in the last common ancestor (LCA) between Homo and Pan. As we know that
chimpanzees have straight hair, it is perhaps not unexpected that humans with tightly
curled hair would have different alleles at the relevant sites. From a brief search on the
UCSC genome browser, it appears that the T allele is fixed across the great apes and
also in Denisovans (though it is not typed in available Neanderthal sequences). This
suggests that the allele may be highly derived and specialized to African and Melanesian
populations.

Together with the manikin work, there is good reason to pursue future work that
centers on thermoregulatory adaptations. Specifically, an understanding of thermoreg-
ulatory adaptation as a suite of adaptive traits. As mentioned above, evolutionary
genomics allows us to parse out in more detail the estimated times various traits have
arisen (by tracing the appearance of causal variants). In the case of scalp hair, it will be
particularly important to understand any correlations with various hominin dispersals.
Beginning from the most recent population branches, we should investigate whether
high-curvature variants are shared in distantly related populations (e.g. African and
Melanesian populations) due to convergent evolution. Scenarios may be more complex
than complete convergence or entirely attributable to a common ancestor, as scalp hair
morphology is a complex trait. Depending on this scenario and on evidence of selection
in the opposite direction in other populations (i.e. straighter hair in most Eurasian
populations), we may be able to piece together an understanding of the extent to which
hair has been shaped by selective pressures.

An important dimension between Pan-Homo genomic comparisons and genomic
variation across Homo sapiens, is information that can be gleaned from archaic sequences.
From the fossil record, we know that many archaic hominins dispersing into Eurasia were
similar to later Homo (including Homo sapiens in skeletal anatomy. However, their soft-
tissue morphology is unknown. With an understanding of loci that affect the epidermis,
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but especially scalp hair morphology, we may be able to get a better understanding
of when scalp hair (tightly curled or otherwise) evolved. If variants associated with
tightly curled hair are unique to Homo sapiens, this may indicate an additional adaptive
advantage in the species. Currently, it is hypothesized that the evolution of miniaturized
hair follicles across the body coincided with the evolution of increased sweat gland density
and darker pigmentation (Lu, Polak, Keyes, & Fuchs, 2016). These traits point to
thermoregulatory adaptation to high solar heat load. However, it is unclear whether the
retention or appearance of scalp hair occurred simultaneously. A better understanding
of loci affecting the density of scalp hair especially, would allow us to pinpoint whether
the minimization of solar heat gain demonstrated in our manikin study was part of this
adaptive suite or the result of separate later selective events.

There are many future directions for this research, but as an immediate next step
would be to reassess our sample using local ancestry estimations, rather than simple
high-allele frequency differences. Additionally, I have access to South African and Papuan
hair samples with associated genotypes that could prove useful in an attempt to replicate
the associations from this preliminary effort. An alternative source of information may
come from selection-based approaches. One of the key questions for hair morphology
(specifically tightly curled hair) is whether it would have been present in the LCA of all
humans. To elucidate the evolutionary history of hair morphology in humans, future work
could look for differences on locus-specific branch length (LSBL) across keratin-associated
genes and other candidate genes for hair morphology to compare LSBL across these
regions compared to average LSBL across the genome.

6.4 Measuring hair to understand its biology
Our findings on the genetic architecture of hair morphology would not have been possible
without the development of novel high-throughput phenotyping methods. This project
took by far the longest of all the projects presented in this dissertation, but it was a
necessary investment of time and effort. Before this work, existing methods for quantifying
hair fiber curvature and cross-sectional geometry were time and labor-intensive. The
main issues were: 1) the absence of sample preparation methods for the measurement
of hair curvature, 2) the unsuitability of embedding methods for tightly curled hair,
and 3) the absence of software to automate the image analysis of samples. The sample
preparation and image analysis issue caused a critical dilemma, because the validity and
success of one could not be evaluated without the other. By investing in developing both
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these branches of methodology, future work can now focus on improving a single aspect
of these methods at a time.

The need for the methods to be high-throughput is in large part to provide alternatives
to existing classification approaches used in hair-related research across disciplines.
Because existing methods were so time-intensive and of uncertain repeatability, it was
acceptable for many scientists to use what was (seemingly) a pragmatic simplification of
the phenotype by describing its morphology according to qualitative terms or ancestry
(or race) categories. The work presented in Chapter 3 illustrates why such terms are
misleading and provides an alternative by showing multiple quantitative variables that
have complex interrelationships. These methods are especially important to research
that seeks to understand the biological processes underlying such variation as straight
to curled hair. Without the ability to objectively quantify this variation, such research
has relied on contrasting West African(-descendant) populations with (primarily) North
European(-descendant) and East Asian(-descendant) concluding that the cross-sectional
and follicular features of West African hair are universal determinants of curvature
(Thibaut et al., 2005). By quantifying cross-sectional shape and curvature in an admixed
African-European population, we demonstrated that such conclusions do not take into
consideration the way in which certain traits are stratified by population (or ancestry)
without necessarily having an intrinsic correlation.

Future directions for this research will involve the development of a Graphical User
Interface to further expand the usability of our existing fibermorph software. Furthermore,
it would be informative to carry out experiments across a number of aspects of the
sample preparation protocol. For example, we could test the curvature of hair fibers
cut down to different lengths. From our current protocol, we have noticed that hairs
that have very eccentric (or flat) cross-sections may fall on their sides when cut below a
particular length. This length itself may be an informative marker for hair morphology
as a whole. Another line of inquiry is generating data on the variability of cross-sectional
size and shape along a hair fiber. Because the methods we have developed for embedding
and sectioning hair do not involve resin, we can easily slice off sections along a sample
to image it and determine whether it is variable along its longitudinal axis. Finally, an
important task would be to reach out to other researchers interested in quantifying hair
morphology to learn how applicable our new methods are to challenges that they face
and what could be done to foster a level of transdisciplinary uniformity for research on
hair morphology.
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6.5 Future directions in the study of hair and other racial-
ized traits
This doctoral research strongly illustrates the extent to which racialized ideas have a
pervasive effect on research in human biology, even when explicit measures are taken to
avoid this. Scientific knowledge is generated on the basis of inherited knowledge and my
research shows that an important path forward involves looking back and scrutinizing
the assumptions that have remained unchallenged. Multiple findings in this dissertation
exemplify our tendency to view traits as packages that travel with great fidelity through
time and space. The ability to scientifically deconstruct phenotypes, like hair, allows us
to explore and simulate possibilities that lie beyond our imagination.

Hair, along with other racialized traits, deserves further investigation that explicitly
examines what quantifiable and perceivable aspects of phenotype people use (even
unconsciously) as racial markers. In an attempt to distance itself from race, biological
anthropology has relied heavily on demonstrating the (genetic) similarity of all humans,
and the presence of certain kinds of phenotypic variation across purported racial groups.
However, in focusing on what race is not, it has insufficiently explored what race
is. As a result, the pivotal role that biological anthropologists played in constructing
current concepts of race was not matched by an equal role in deconstructing those
race concepts. In many cases, where explicitly racial terminology was used before, we
now have the replacement of “race” with “population”, but without any change in
the underlying conception of human biological variation. Or, equally problematic, a
“colorblind” approach which does not mention aspects of human variation that connote
race, but end up erasing non-European variation.

Understanding the grounds for racialization in the context of specific phenotypic
variation will be key to determining the grounds for the durability of racial templates. As
my doctoral work has shown, the biology of hair and our perception of it, necessarily call
for a conscientious transdisciplinary approach to shed light on this complex and unique
human phenotype.
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Appendix A|
Chapter 3 Supplementary:
Background information on
hair morphology quantification

A.1 Previous work on cross-sectional geometry
The cross-sectional geometry of human scalp hair has been described in studies dating
back to the 19th century (Pruner-Bey, 1864), but the methods for preparing samples for
cross-sectional imaging are neither universally applied, nor universally applicable. To
observe the cross-section of a hair, it must be cut perpendicularly to its longitudinal
axis and magnified with a microscope. Typically, hairs are embedded in an epoxy resin,
though examples of other embedding-media can be found (mainly paraffin, which is
commonly used in histology). Whereas the width of a scalp hair fiber is on the order
of micrometers ( 20um - 200um), its length can be orders of magnitude greater (up to
multiple meters, but generally upwards of a few centimeters). Embedding thus facilitates
the manipulation (sectioning) of this material. However, many individuals have scalp hair
that is not straight. To ensure a perpendicular cut, curled hair fibers have to be stretched
while the resin hardens; a process that takes upwards of 24 hours. Alternatively, great
care has to be taken to find the correct angle for a perpendicular cut after embedding.
Regardless, cutting epoxy resin is an additional challenge, as it requires expensive,
specialized equipment (such as a microtome). There are no widely used protocols that
make it possible for the full morphological range of human scalp hairs to be embedded
successfully.
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A.2 Methods for embedding & sectioning hairs are labo-
rious
For the cross-sectional study of hair, the main hindrance is the need to embed the hair
in resin. Especially for tightly coiled hairs, there is a major obstacle in having to find
a way to keep the hair taut for the 24 hours the resin requires to harden. Attempts at
embedding are not consistently successful (see Figure A.1). The main alternative has
been to place the hair between glass slides and record width along the length of the fiber.
(Hrdy, 1973; Trotter, 1930) But this is an inferior alternative because it does not allow
for the visualization of the cross-section, it only gives us the longitudinal diameter of the
hair.

Figure A.1. Example of hairs moving during resin drying process. This is an image
taken of a hair embedded using an older protocol that involved hooking the hairs along small
strips of transparencies. Even with this precaution, hairs could move while the resin dried.

Some examples of existing protocols and methods for cross-sectional analysis include:
Trotter (1930) uses the longitudinal diameter as a proxy for the cross-sectional shape

and size:
“From each sample measurements were made on ten hairs chosen at random-thus a

study of 3400 hairs from 340 individuals was made. Before measuring, the hairs were
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dipped into a solution of equal parts of ether and 95 per cent alcohol and then thoroughly
dried; this process removed all dust and extraneous matter. Measurements of the greatest
and least diameters of the hair shafts were obtained by means of an ocular micrometer
in the microscope (magnification X 120) used in conjunction with a hair rotator, similar
in construction to the one described by Danforth(2). From these measurements were
computed the hair index and the area of the cross-section of the shaft.”

Hrdy (1973) similarly described multiple measures of the cross-sectional diameter,
which was used as a proxy for the cross-sectional geometry:

“(1) Average diameter. The average diameter was measured by placing the hair
between glass slides and measuring with a micrometer-equipped microscope. The length
of the hair was rapidly scanned and measured at many different places along the shaft,
and the average value (in µ m) recorded.”

Reis et al. (2020) use a method that involves bundling the hair before embedding
and sectioning and show a step-by-step figure in their article:

“To overcome the flaws of other hair cross-section methods previously described,1, 3,
4 we used an epoxy embedding medium to maintain the hair strands intact and close
together through the whole processing.

First, we prepared the embedding media—Agar 100 epoxy resin (Agar Scientific,
Essex, UK)-using the fabricant recommended formulation to obtain hard blocks. We
used a small drop to slightly embed each bundle of hair, keeping the hairs united and
parallelly oriented. Each bundle was then left to rest for half an hour. This step is not
mandatory but makes it easier to perform the next step. After this, we cut a small
sample (about 0.5 cm in length) with the help of a scalpel and placed it in the molds,
covering it with the rest of the embedding media. Polymerization at 60◦C was then
carried out for 24hours (Figure A.2). To finish, ultrathin sections (1250 nm) were cut
using an ultramicrotome and stained with toluidine blue.”

Another example of more elaborate preparation of samples for study of the ultra-
structure is seen in Koch et al. (2019):

“Each hair sample, consisting of approximately 20 terminal hairs, was tied together
in a bundle to align the hairs longitudinally for embedding and cross-sectioning. The
dehydration and fixation process typically employed for samples prepared for electron
microscopy was not conducted prior to embedding as this process was found to dehydrate
and potentially alter the structure of the cuticle during preliminary analyses. The hairs
were air dried, embedded in Spurr’s resin, and placed in an oven at 60 degrees with
desiccant to polymerize. Ultrathin sections ( 70 nm thick) were cut perpendicular to the
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length of the hair shaft using a Leica ultramicrotome (Germany) and a Diatome Ultra
diamond knife with a 35 degree blade. Sections were exposed to chloroform vapor to
reduce section folding and potential deformation from impact with the cutting blade.
Sections were collected onto Formvar supported slot grids, stained with a double staining
procedure using lead citrate and uranyl acetate, and observed with a FEI (USA) Tecnai
1200 transmission electron microscope (TEM) with an accelerating voltage of 80 kV.
Images of hair cross-sections were collected at 4200 × magnification with a 20 percent
overlap = in area. Montaging of the images was attempted; however, not all images
aligned correctly.”

The methods we propose fall in between the efficient, but superficial measuring
of longitudinal diameter and the meticulous but intensive, hand-washing of hairs and
microtoming described in Reis et al. (2020) and Koch et al. (2019). Moreover, we provide
more extensive video and still image guidance than we have found in the cross-sectional
literature. This is to ensure that the protocol can be applied by any, regardless of previous
experience or skill.

A.3 Previous work on curvature
In contrast to cross-sections, the quantitative study of hairs longitudinal geometry has
lagged behind. Longitudinal hair morphology ranges from a straight fiber, to a tightly
coiled helix. A helix is a curve in 3-dimensional space that can be mathematically
described by three parameters: arc length, curvature and torsion. The first attempt
to operationalize the quantification of human scalp hair curvature appears relatively
recently in the literature Hrdy’s (1973) curvature quantification method requires a hair
to be pressed between two glass slides to collapse three-dimensional variation into two
dimensions. Once between the slides, a transparent template with circles of known
radius are placed over the sample and matched to the curves of the hair. Despite the
introduction of these methods, it has only been rarely applied to research on human
scalp hair. (Bailey & Schliebe, 1986; Lasisi et al., 2016; Loussouarn et al., 2007)
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A.4 Methods to quantify curvature have issues with repli-
cability
Measuring curvature objective requires that the helical structure of non-straight hair
fibers be reduced to two-dimensional curves. Previous curvature methods rely, with-
out exception, on the subjective evaluation of the observer to one degree or another.
(Mkentane et al., 2017; Loussouarn et al., 2007; Lasisi et al., 2016) Comparing hairs of
different lengths is also a significant challenge. Depending on the method, a potential
confounding factor is the greater number of points of measurement for hairs with high
curvature as compared with low curvature (see Fig. A.2), involving potentially greater
inter-observer variability in the number of and value of circles fitted to curves along a hair.
Most importantly, of these existing methods, neither those for quantifying cross-section
nor curvature could feasibly scale to the hundreds of samples many disciplines would
need to phenotype.

Figure A.2. Example of discrepancy in number of measurements taken in high vs.
low curvature hair with previous methods. This image is from a previous publication
(Lasisi et al., 2016) where circles were fitted to a hair’s curvature using ImageJ. This image
shows the discrepancy in the number of data points gathered for tightly curled vs. straighter
hair.

Hrdy (Hrdy, 1973) is the earliest published article describing a method of directly
quantifying hair fiber curvature:

“(5) Average curvature. Each hair was placed between two glass slides,
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allowing measurement of the curvature of hairs that vary in three dimensions.
The radius of curvature of each curve of the hair was determined by placing
a transparent template with circles of known radius over the sample and
matching an arc of the appropriate circle with the curve. Average curvature
itself is the inverse of the average radius of curvature; a high average curvature
is represented by a high number.”

Bailey and Schliebe (1986) is a test of precision for Hrdy’s original 1973 method:

“Since that time, this measurement has been found to be useful in the forensic
comparison of curly, human head hairs with certain modifications made to
the original method. The method currently used by this laboratory consists
of the following steps:

1. Placing the hair in boiling water to remove grooming agents and relax
the hair;

2. Removing excess water and allowing the hair to dry at room temperature;

3. Placing the hair between two glass plates to reduce the curvature to two
dimensions; and

4. Measuring the resultant curves with a circle template of known radius.

The average curvature is calculated as the inverse of the average radius in
millimeters times 100. This measurement then ranges from 0 to 100 mm with
the curlier hairs having the higher value. Straight hairs have an average radius
of 100 mm or more and an average curvature of 0 mm. To help establish the
precision of this method, a single, curly, Caucasian head hair was measured
30 times by one examiner, and independently, 30 times by a second examiner.
The data comparing the results of these measurements are shown in Table 1.

The major sources of variation in the measurement are as follows:

1. Amount of drying the hair received after boiling;

2. Determination of which dimension was reduced when placed between
the glass plates;

3. Judgment of the number of curves to be measured; and

4. Judgment of which circle radius gives the best fit.”
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Loussouarn et al. (2007) describe a method that is derived from Hrdy’s curvature
method, but differing mainly in its decision to take only one measurement (the smallest)
as representative of a sample’s curvature. Additionally, they describe a number of
steps that measure various aspects of curl, but are likely redundant and covarying with
curvature. Moreover the final partition into the eight curl types appears to be somewhat
arbitrary:

“The method requires very simple materials: two glass plates, tape, a sim-
plified CD meter, a curl meter, and a ruler. The CD meter includes the
four cut-off values derived from the segmentation tree for the classification
of types I–IV. The curl meter is made of a 0.98-cm-diameter circle, allows
the segmentation of types V and VI vs. VII and VIII. The ruler helps to
constrain the hair to 80% of its length in order to separate type V from VI
and VII from VIII. More precisely, this simplified method can be described
in three steps. Initially, the hair is carefully laid on a glass plate, without
applying any mechanical stress, in order to allow it to maintain its natural
shape. A second glass plate is gently placed onto the hair, carefully avoiding
any side shifting or sliding. The first step is the evaluation of the curvature
using the CD meter. The area of the CD meter where the smallest curvature
is located indicates whether the hair is type I, II, III, or IV (Fig. 3). If the
smallest curvature is included in the filled circle, the hair is type V, VI, VII,
or VIII. Two other steps are needed to classify the hair. The second step is
the test of curliness using the curl meter. The curl meter is placed on the
glass plate in order to determine whether or not the hair fits entirely inside
the circle (Fig. 4). The third and last step consists of counting the number
of wave crests. The cover plate is removed. One end of the hair is taped
in front of 0 cm on the ruler and the other end is taped at 4 cm. The two
ends of the hair are taped on the bottom glass plate. Each self-stick strip
covers 0.5 cm of hair fiber, and the distance between the two tapes is fixed to
4 cm thanks to the ruler. After replacing the cover plate, the hair takes a
sigmoid form from which the highest number of wave crests is counted (Fig.
5). Based on the curl meter result, and on the number of wave crests, the
hair type (V, VI, VII, or VIII) can be defined with the following rules. If the
entire hair is included in the curl meter and the number of crests is from one
to five, the hair type is VII. If the entire hair is included in the curl meter
and the number of crests is six or more, the hair type is VIII. If the entire
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hair is not included in the curl meter and the number of crests is from one to
three, the hair type is V. If the entire hair is not included in the curl meter
and the number of crests is four or more, the hair type is VI.”

Lastly, Lasisi et al. (2016) propose something that can best be described as a direct
digital application of Hrdy’s original curvature method:

“Single strands of hair were placed on a sheet of blank white paper, the
application of mechanical stress was avoided to ensure unaltered curvature,
and the paper was covered with a transparent sheet of acetate to facilitate
a two-dimensional measurement. Three hairs were analyzed per person in
order to provide a representative average for each individual. Samples were
scanned using a flatbed scanner (CanoScan LiDE 600F) at a resolution of 1200
DPI. Curvature measurements were collected in ImageJ version 1.48. Each
curve in a hair fiber was traced digitally, creating a separate data point from
each curve. Curvature varied greatly among individuals, thus the number of
measurements per hair varied from as few as two to as many as 60 (Fig. A.1).
The mean, maximum, and minimum curve diameters from a single hair are
then computed. Curvature is the inverse of the radius (curve diameter ÷ 2),
so the previously computed values yield a mean, maximum, and minimum
curvature. The variable average curvature is the mean curvature averaged
from the three hairs analyzed for a single individual. The variable irregularity
is similarly calculated as an individual’s averaged maximum to minimum
curvature ratio. Both average curvature and irregularity variables are derived
from Hrdy (1973). Precise instructions for the method of curvature analysis
described in this study have been made available (Supporting Information
Document 2) and a depiction of the application of this digital method can be
seen in Figure A.1.”

While Lasisi et al. 2016 presented an extensively documented methodology, this
protocol was very laborious and did not include a washing step that was scalable.
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Appendix B|
Chapter 3 Supplementary:
Image analysis validation

B.1 Curvature
Here, we will evaluate the accuracy of fibermorph in estimating the length and curvature
of hair using simulated data. See simulation script on GitHub at: https://github.com/
tinalasisi/2020_HairPheno_manuscript/blob/main/code/simhair.R.
The simulated data can be found at: https://github.com/tinalasisi/2020_HairPheno
_manuscript/blob/main/data/concat_simcurvature_Nov152020.csv.

We simulated arcs of various curvatures at a length of 1.57mm. There were 25 arcs per
image.

B.1.1 Simulated vs. estimated curvature & length

To calculate the accuracy of our measurements, we compared the known parameters with
the parameters estimated from our fibermorph package.

In Fig. B.1 a we see that there is a near perfect correlation between the simulated
and estimated curvatures. Figure b shows the distribution of estimated hair lengths
around the simulated length (red line).

We plot simulated curvature against estimated length to show the distribution of
estimated length as a function of curvature.
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Figure B.1. Error in estimated curvature and length a, Scatter plot of correlation
between simulated and estimated hair curvature (using fibermorph) and b, Histogram of
distribution of estimated lengths with the red line showing the true simulated length.

Figure B.2 shows a broader range of error in the estimation of length in straighter
hairs. This is likely a result of the majority of pixels being oriented in a manner that
causes a divergence between the pixel length (number of pixels) and the real length that
is being measured. We apply a correction for this known issue in image analysis, however,
it is expected that there will still be some error. Note that each point in this figure
represents an individual hair fragment within an image. This supports the notion that it
is not the low curvature per se, but rather the combination of low curvature and specific
orientations that increases the error in length estimation.
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Figure B.2. Simulated curvature vs estimated length Simulated curvature on the x-axis
and estimated length on the y-axis with a scatter plot showing a small negative correlation
between the two, but a larger error in estimating length given a lower curvature.

B.1.2 Measurement error in curvature and length

In addition to the correlations between simulated and estimated parameters, we calculate
root mean square error (RMSE) and percent error as alternatives to investigate the
measurement error of our package.

NB: we present the data summarized for each image (i.e. all 25 fragments) as we
cannot provide a hair fragment to hair fragment comparison.
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B.1.2.1 Error statistics

Below, we calculate the mean error values for both RMSE and percent error (See Table
B.1). We see less than 1% error across the variables and RMSE of less than 0.0005.

Table B.1: RMSE and Percent Error per variable

var mean.rmse perent.error

curvature 0.0002210 0.4720430
length 0.0004312 0.6863358
radius 0.0004624 0.4626120

B.1.2.2 Root mean square error

First, we plot the root mean square error for curvature and length (see Figure B.3). We
then examine the relationship between curvature and RMSE of length (see Figure B.4)
and we observe an increase in RMSE with curvature.
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Figure B.3. Root mean square error for curvature and length a, Error in curvature
estimation with simulated curvature on the x-axis and root mean square error (RMSE) on the
y-axis and b, Histogram plot of distribution of RMSE for length estimation.
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Figure B.4. Correlation between curvature and RMSE for length Simulated curvature
on the x-axis and root mean square error (RMSE) on the y-axis. The scatter plot shows a
positive correlation between the two suggesting that the tighter the curl, the more error there
is in accurate estimation of the hair fiber length.

B.1.2.3 Percent error

Below we plot the percent error for curvature and length (see Figure B.5). In comparing
simulated curvature with length, we see that error appears to increase slightly with
curvature if considering the data in terms of percent error (see Figure B.6).
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Figure B.5. Percent error for curvature and length a, Scatter plot of simulated curvature
(x-axis) and percent error in curvature estimation (y-axis), and b, Histogram plot of distribution
of percent error for length estimation
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Figure B.6. Correlation between curvature and percent error for estimated length
Simulated curvature on the x-axis is compared with the percent error in estimated length on
the y-axis.

B.2 Cross-section
The fibermorph section function estimates area, minimum diameter, maximum diameter
and eccentricity for a given cross-sectional image. We tested the measurement error using
randomly generated circles and non-circular ellipses. We see strong correlations between
the estimated and simulated values for each cross-sectional parameter (see Figure B.7).
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B.2.1 Correlation between simulated and estimated section param-
eters

5000

10000

5000 10000
Area (simulated)

A
re

a 
(e

st
im

at
ed

)

Estimated vs simulated areaa

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Eccentricity (simulated)

E
cc

en
tr

ic
ity

 (
es

tim
at

ed
)

Estimated vs simulated eccentricityb

25

50

75

100

125

25 50 75 100 125
Minimum diameter (simulated)

M
in

im
um

 d
ia

m
et

er
 (

es
tim

at
ed

)

Estimated vs simulated minimum diameterc

60

80

100

120

60 80 100 120
Maximum diameter (simulated)

M
ax

im
um

 (
es

tim
at

ed
)

Estimated vs simulated maximum diameterd

Figure B.7. Correlation between simulated and estimated cross-sectional parame-
ters a, Correlation between simulated area (x-axis) and estimated area (y-axis), b, Correlation
between simulated eccentricity (x-axis) and estimated eccentricity (y-axis), c, Correlation
between simulated minimum diameter (x-axis) and estimated minimum diameter (y-axis), c,
Correlation between simulated maximum diameter (x-axis) and estimated maximum diameter
(y-axis)
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B.2.2 Measurement error for cross-sectional parameters

We calculate the percent error and RMSE for the cross-sectional parameters.First, we
calculate mean error values for all parameters (see Table B.2). Percent error is considerably
under 0.02% for each of the parameters with RMSE under 0.01 for all but area. As
one of the simulated ellipses was a circle with an eccentricity of 0, any deviation from
this produces an infinite percent error. So below we present the values removing this
observation (see Table B.3).

Table B.2: RMSE and Percent Error per variable

var mean_rmse perent_error

area 0.5136320 0.0137703
eccentricity 0.0007514 Inf
max 0.0097800 0.0120605
min 0.0080884 0.0136924

Table B.3: RMSE and Percent Error per variable

var mean_rmse perent_error

area 0.5136320 0.0137703
eccentricity 0.0006492 1.0066337
max 0.0097800 0.0120605
min 0.0080884 0.0136924

B.2.2.1 Root mean square error

Below, we plot RMSE as a function of each parameter (see Figure B.8). There does not
appear to be any overarching pattern in RMSE across the variables.
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Figure B.8. Correlation between simulated and RMSE for cross-sectional parame-
ters, a, Correlation between simulated area (x-axis) and RMSE of area (y-axis), b, Correlation
between simulated eccentricity (x-axis) and RMSE of eccentricity (y-axis), c, Correlation
between simulated minimum diameter (x-axis) and RMSE of minimum diameter (y-axis), c,
Correlation between RMSE of maximum diameter (x-axis) and estimated maximum diameter
(y-axis)

116



B.2.2.2 Percent error

Below we plot the correlation between simulated values and percent error for each
parameter (see Figure B.9). We observe a general decrease in percent error for each
parameter.
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Figure B.9. Correlation between simulated and percent error cross-sectional pa-
rameters, a, Correlation between simulated area (x-axis) and percent error for area (y-axis), b,
Correlation between simulated eccentricity (x-axis) and percent error for eccentricity (y-axis),
c, Correlation between simulated minimum diameter (x-axis) and percent error for minimum
diameter (y-axis), c, Correlation between percent error for maximum diameter (x-axis) and
estimated maximum diameter (y-axis)
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Appendix C|
Chapter 3 Supplementary:
Biological significance of
new methods

To explore the significance of quantifying hair fiber morphology, we explore the relationship
between various quantitative hair traits, categorical data and genotype data on the same
sample.

Our data consists of 193 individuals for whom we have quantitative hair phenotype
data. In our first data quality control step, we filter to keep individuals who have more
than 4 hair fragments in their curvature image and over 10% African ancestry. We
calculate mean and median values for the cross-sectional data we have collected for
individuals (~ 6 sectioned hair fibers). In our analyses, we use median values as they are
less affected by intra-individual outliers.

C.1 Self-reported hair texture vs. quantitative hair cur-
vature
We compare the self-reported hair texture with mean and median curvature for our
sample (see Figure C.1). The single individual with a high mean curvature in the straight
group is the result of an artefact in the image (see Figure C.2). The red arrow points to
a stray fiber that likely contaminated the sample and was missed during imaging. Such
potential outliers are the reason we chose to use the median curvature for a sample in
our analyses.
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Figure C.1. Self-reported hair texture vs. quantitative hair curvature a, Mean hair
fiber curvature (x-axis) and self-reported hair texture on (y-axis), b, Median hair fiber curvature
(x-axis) and self-reported hair texture on (y-axis)
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Figure C.2. Image of hair sample with artefact biasing the measurement Image of
hair fibers used for curvature quantification with a red arrow pointing towards a stray fiber
that appears to be contaminating the sample and biasing the curvature measurement.

C.2 Objective hair texture classification vs. quantitative
curvature
To explore how much data is lost when binning continuous variation, we compared mean
and median curvature to classified hair texture. This classification is based on Loussouarn
et al.’s (2007) paper.

While the authors propose a number of parameters to distinguish curlier hair types
(based on number of twists and waves among other factors), their primary classification
is based on curvature. We demonstrate that, regardless of additional parameters, a
considerable range of curvature is obscured when collapsing hair variation according to
their curvature thresholds.
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Figure C.3. Objective hair classification vs. quantitative curvature a, Mean hair
fiber curvature (x-axis) and objectively categorized hair texture on (y-axis), b, Median hair
fiber curvature (x-axis) and objectively categorized hair texture on (y-axis)

C.3 Ancestry vs. hair morphology
We carried out a number of analyses using the genotype data collected for this diverse
sample. In an admixed sample where a continuous trait has divergent distributions in
the parental ancestry groups, the resulting admixed population can show a correlation
between ancestry and that trait. Finding such a correlation suggests may imply a
polygenic trait with high heritability.

C.3.1 Admixture components

Our sample consists of admixed individuals with primarily African and European ancestry
(see Figure C.4).
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Figure C.4. Admixture components for sample Plot for K=5 ADMIXTURE of sample
(n=192) with predominantly AFR and EUR ancestry. The colors represent ancestries that
correspond to the following 1000 Genomes populations: - SAS = South Asian - AMR =
American - AFR = African - EUR = European - EAS = East Asian. Each of these are
meta-populations based on the grouping of multiple (sub)continental population groups in the
1000 Genomes repository.

C.3.2 Ancestry vs. curvature

Here we plot the correlation between proportion of African ancestry and m-index, median
curvature, and eccentricity (see Figure C.5).
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Figure C.5. Percentage of African ancestry vs. M-index, curvature and eccentricity
a, African ancestry (x-axis) vs. Melanin Index (y-axis), b, African ancestry (x-axis) vs. median
hair fiber curvature (y-axis), c, African ancestry (x-axis) vs. cross-sectional eccentricity (y-axis)
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C.3.3 Curvature vs. eccentricity

The relationship between cross-sectional shape (eccentricity) and curvature has long
been debated. Due to the coincidence of cross-sectional shape and curvature in various
populations that are often contrasted (i.e. East Asian vs. North European vs. West
African), it has been unclear whether these traits have a causal relationship (specifically
that higher eccentricity predicts higher curvature). In our admixed sample, we have the
opportunity to test this question and fit a model between these traits with and without
ancestry.

C.3.3.1 Uncorrected

First we examine the data without correcting for ancestry. If we consider the relationship
between curvature and eccentricity without taking into account ancestry, we find that
eccentricity is a significant predictor of curvature (see Figure C.6).

##
## Call:
## lm(formula = curv_median ~ eccentricity_median, data = df_curv_ecc)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2843 -0.1245 -0.0264 0.1125 0.4770
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5682 0.1270 -4.474 1.94e-05 ***
## eccentricity_median 1.0284 0.1692 6.076 1.96e-08 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.1576 on 106 degrees of freedom
## Multiple R-squared: 0.2583, Adjusted R-squared: 0.2513
## F-statistic: 36.92 on 1 and 106 DF, p-value: 1.959e-08
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Figure C.6. Curvature vs. eccentricity (without correction for ancestry) Median
eccentricity on the x-axis vs. median curvature on the y-axis show a positive correlation when
they are plotted without correction for ancestry.

C.3.3.2 Corrected

We then re-analyze the data with ancestry as a covariate and see that when we correct
for ancestry, this correlation is no longer significant. This supports the idea that these
traits may be independent (see Figure C.7).

##
## Call:
## lm(formula = curv_median ~ eccentricity_median + AFR, data = df_curv_ecc)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.37902 -0.04122 -0.00657 0.03606 0.29971
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.07237 0.08661 -0.836 0.405
## eccentricity_median 0.10891 0.12511 0.871 0.386
## AFR 0.48101 0.03632 13.243 <2e-16 ***
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## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.09693 on 105 degrees of freedom
## Multiple R-squared: 0.7222, Adjusted R-squared: 0.7169
## F-statistic: 136.5 on 2 and 105 DF, p-value: < 2.2e-16

p−value = 0.386
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Figure C.7. Curvature vs. eccentricity (with correction for ancestry) Median eccen-
tricity on the x-axis vs. median curvature on the y-axis show no correlation when they are
plotted with correction for ancestry.

C.3.4 Curvature vs. skin pigmentation

To demonstrate the potential effect of population stratification on traits, we compare
hair curvature with skin pigmentation (m-index). These two traits are not biologically
related, yet, in an admixed population, we may see a correlation that is due to population
stratification of these polygenic traits.

C.3.4.1 Uncorrected

First we examine the relationship between curvature and skin pigmentation without
correcting for ancestry (see Figure C.8). As expected, we see a significant correlation
between the two traits.
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##
## Call:
## lm(formula = curv_median ~ m_index, data = df_curv_mindex)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.20715 -0.06804 -0.03471 0.04818 0.51483
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.280232 0.041533 -6.747 4.91e-10 ***
## m_index 0.012887 0.001031 12.501 < 2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.1261 on 126 degrees of freedom
## Multiple R-squared: 0.5536, Adjusted R-squared: 0.5501
## F-statistic: 156.3 on 1 and 126 DF, p-value: < 2.2e-16
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Figure C.8. Curvature vs. M-index (without correction for ancestry) Melanin Index
on the x-axis vs. median curvature on the y-axis show a positive correlation when they are
plotted without correction for ancestry.
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C.3.4.2 Corrected

We then apply a correction for ancestry and re-analyze the data (see Figure C.9. Like
with curvature and eccentricity, the relationship between curvature and skin pigmentation
is no longer significant when ancestry is taken into account.

##
## Call:
## lm(formula = curv_median ~ m_index + AFR, data = df_curv_mindex)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.34321 -0.04877 -0.01348 0.03562 0.34806
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.061501 0.042384 -1.451 0.149
## m_index 0.002734 0.001469 1.862 0.065 .
## AFR 0.406609 0.048561 8.373 9.63e-14 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.1014 on 125 degrees of freedom
## Multiple R-squared: 0.714, Adjusted R-squared: 0.7094
## F-statistic: 156 on 2 and 125 DF, p-value: < 2.2e-16
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p−value = 0.065
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Figure C.9. Curvature vs. M-index (with correction for ancestry) Melanin Index on
the x-axis vs. median curvature on the y-axis show no correlation when they are plotted with
correction for ancestry.
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Appendix D|
Chapter 4 Supplementary:
Admixture & phenotype correla-
tions

D.1 Admixture components
Our sample consists of admixed individuals with primarily African and European ancestry.
We first calculated the ancestry for the entire ADAPT sample and then selected a subset
based on whether they had >10% AFR ancestry and <10% non-EUR and non-AFR
ancestry.Below we plot the ancestries for the admixed African-European sample that
was phenotyped using the new hair quantification methods (see Figure. D.1). We
subsequently use the African ancestry component from K=2 which correlates strongly
with the AFR ancestry estimate from K=5 (see Figure D.2).
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Figure D.1. Admixture components for sample Plot for K=5 ADMIXTURE of sample
(n=192) with predominantly AFR and EUR ancestry. The colors represent ancestries that
correspond to the following 1000 Genomes populations: - SAS = South Asian - AMR =
American - AFR = African - EUR = European - EAS = East Asian. Each of these are
meta-populations based on the grouping of multiple (sub)continental population groups in the
1000 Genomes repository.
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Figure D.2. Correlation between different AFR calculations for the sample. On the
x-axis we have the proportion of AFR ancestry calculated with K=5 and on the y-axis we have
the proportion of AFR ancestry calculated with K=2. The two estimates are highly correlated
with most of the variance being in the individuals with low AFR ancestry.

D.2 Phenotypic distributions
Below we plot the distributions of various phenotypes (see Figure D.3). First we import
data from previous work (Lasisi et al., 2016), with data on M-index, curvature and cross-
sectional properties from individuals sampled in the UK from different ancestries. These
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ancestries were inferred by questionnaires where participants reported the ethnicities and
places of birth of their parents and grandparents. Here we group individuals with all
four grandparents from African (and African ethnic identities) as African, individuals
with all four grandparents from Europe (and European ethnic identities) as European,
and individuals with at least three grandparents identifying as having Afro-Caribbean or
African American ancestries as African Diaspora populations.

We plot the distributions as density plots (Figure D.4) and violin plots (Figure D.5)
and scatter plots with regional ancestry details (Figure D.6). As expected, M-index
and hair curvature are both divergent in their distributions when European and African
participants are compared. Participants from the African Diaspora have distributions
overlapping with both these populations, with higher densities overlapping with the
African participants. Interestingly, no other phenotype shows such a pattern.
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Figure D.3. Grouped scatter plots showing phenotypic distributions for each phe-
notype with regional details for the reference samples. a, Melanin Index b, median
hair fiber curvature c, cross-sectional area d, cross-sectional eccentricity e, minimum diameter
of cross-section f, maximum diameter of cross-section.
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Figure D.4. Density plots showing phenotypic distributions for each phenotype for
the reference samples and the current sample marked as Admixed (US). a, Melanin
Index b, median hair fiber curvature c, cross-sectional area d, cross-sectional eccentricity e,
minimum diameter of cross-section f, maximum diameter of cross-section.
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Figure D.5. Violin plots showing phenotypic distributions for each phenotype for
the reference samples and the current sample marked as Admixed (US). a, Melanin
Index b, median hair fiber curvature c, cross-sectional area d, cross-sectional eccentricity e,
minimum diameter of cross-section f, maximum diameter of cross-section.
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Figure D.6. Grouped scatter plots showing phenotypic distributions for each phe-
notype for the reference samples with regional details and the current sample
marked as Admixed (US). a, Melanin Index b, median hair fiber curvature c, cross-sectional
area d, cross-sectional eccentricity e, minimum diameter of cross-section f, maximum diameter
of cross-section.
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D.3 Sex differences
The distribution of female/male-identified individuals is skewed, with a higher proportion
of the sample being female (n=132 vs n=39 male). However, there appear to be no
considerable differences in distribution between these sexes in our sample (see Figures
D.7 and D.8).
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Figure D.7. Density plots showing phenotypic distributions for each phenotype
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Figure D.8. Violin plots showing phenotypic distributions for each phenotype per
self-reported sex. a, Melanin Index b, median hair fiber curvature c, cross-sectional area
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D.4 Ancestry vs. hair morphology
We carried out a number of analyses using the genotype data collected for this diverse
sample. In an admixed sample where a continuous trait has divergent distributions in
the parental ancestry groups, the resulting admixed population can show a correlation
between ancestry and that trait. Finding such a correlation suggests may imply a
polygenic trait with high heritability.

Here we plot the correlation between proportion of African ancestry and m-index,
curvature, area, minimum diameter, maximum diameter, and area (using the median for
each).

D.4.1 Uncorrected
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Figure D.9. PCA results for quantitative hair phenotypes (without ancestry correc-
tion). a, Scree plot showing the percentage of variance explained for each PC b, Contributing
variables for first two PC dimensions.
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Figure D.11. Scatter plots of all phenotypes against AFR ancestry a, Melanin Index
b, median hair curvature c, objectively classified hair texture d, cross-sectional area e, cross-
sectional eccentricity f, minimum cross-sectional diameter g, maximum cross-sectional diameter
h, PC1 for quantitative hair variables i, PC2 for quantitative hair variables.
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Figure D.12. Correlation matrix of quantitative hair variables and Melanin Index.
This correlation matrix shows the correlation between each of the phenotypes without correction
for ancestry.

D.4.2 Corrected

We repeat all of the analyses with a correction for ancestry. For the phenotypes, this
means that we residualized the values against the proportion of AFR ancestry. We show
the PCA results in Figures D.13, D.14 and the scatter plots of the phenotypic values
against ancestry to demonstrate the correction (Fig. D.15), as well as the correlation
matrix between the traits (Figure D.16). As we have taken ancestry out of the equation,
we would not expect to see a correlation with AFR anymore, however, it is interesting
that the first two PCs on residualized hair traits do not pick up a signal relating to
curvature (Figure D.14). Similarly, the scatter plots comparing phenotypic value to AFR
ancestry serve mostly to demonstrate the adequacy of the correction. However, it is
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interesting to note that there is a surprisingly high range of variability in the individuals
with low AFR ancestry for a number of phenotypes, including eccentricity (Figure D.15).
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Figure D.13. PCA results for quantitative hair phenotypes (with correction, using
residualized phenotypic values). a, Scree plot showing the percentage of variance explained
for each PC b, Contributing variables for first two PC dimensions.
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Figure D.14. Scatter plot of individual PC scores along first two dimensions a,
Individual points colored according to proportion of AFR ancestry b, Individual points colored
according to median hair fiber curvature
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Figure D.15. Scatter plots of all phenotypes (residualized) against AFR ancestry
a, Melanin Index b, median hair curvature c, objectively classified hair texture d, cross-
sectional area e, cross-sectional eccentricity f, minimum cross-sectional diameter g, maximum
cross-sectional diameter h, PC1 for quantitative hair variables i, PC2 for quantitative hair
variables.
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Figure D.16. Correlation matrix of quantitative hair variables and Melanin Index.
This correlation matrix shows the correlation between each of the phenotypes with correction
for ancestry.

As a number of the cross-sectional traits appear to be correlated even after correcting
for ancestry, we wanted to explore these relationships further and plot them below (Figure
D.17).
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Figure D.17. Scatter plots of raw phenotypes of interest (left) against their resid-
ualized comparison (right) a, Cross-sectional area vs. minimum cross-sectional diameter b,
Cross-sectional area vs. minimum cross-sectional diameter (residualized) c, Cross-sectional area
vs. maximum cross-sectional diameter d, Cross-sectional area vs. maximum cross-sectional
diameter (residualized) e, Maximum cross-sectional diameter vs. minimum cross-sectional
diameter f, Maximum cross-sectional diameter vs. minimum cross-sectional diameter (resid-
ualized) g, Maximum cross-sectional diameter vs. cross-sectional eccentricity h Maximum
cross-sectional diameter vs. cross-sectional eccentricity (residualized)
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D.5 Comparison with categorical
Finally, we compare the categorical data we have available for our sample with ancestry
and quantitative curvature. We present the same scatter plot with AFR ancestry on the
x-axis and median hair fiber curvature on the y-axis, but with objective classification
overlaid and with self-reported hair texture (Figure D.18). We only had self-reported
hair texture for a subset of the individuals and more information on the details of the
objective classification can be found in Appendix C.
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Figure D.18. Categorical hair texture compared to quantitative hair curvature
and proportion of AFR ancestry a, Hair texture here is classified objectively according
to cut offs suggested by Loussouarn et al. (2007) and b, shows hair texture according to
participant self-report.
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Appendix E|
Chapter 4 Supplementary:
Admixture & phenotype correla-
tions
for > 15% AFR ancestry

E.1 Phenotypic distributions
We repeat the analyses shown in Appendix D with a subset of individuals with >15%
AFR ancestry to demonstrate that the results stand despite the individuals included
with low AFR ancestry.
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Figure E.1. Violin plots showing phenotypic distributions for each phenotype for
the reference samples. a, Melanin Index b, median hair fiber curvature c, cross-sectional
area d, cross-sectional eccentricity e, minimum diameter of cross-section f, maximum diameter
of cross-section.
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Figure E.2. Density plots showing phenotypic distributions for each phenotype for
the reference samples and the current sample marked as Admixed (US). a, Melanin
Index b, median hair fiber curvature c, cross-sectional area d, cross-sectional eccentricity e,
minimum diameter of cross-section f, maximum diameter of cross-section.
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Figure E.3. Violin plots showing phenotypic distributions for each phenotype for
the reference samples and the current sample marked as Admixed (US). a, Melanin
Index b, median hair fiber curvature c, cross-sectional area d, cross-sectional eccentricity e,
minimum diameter of cross-section f, maximum diameter of cross-section.
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E.2 Sex differences
The distribution of female/male-identified individuals is skewed, with a higher proportion
of the sample being female (n=89 and males being n=22). There appear to be no
considerable differences in distribution between these sexes in our sample (see Figures
E.5 and E.6).
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Figure E.5. Density plots showing phenotypic distributions for each phenotype
per self-reported sex. a, Melanin Index b, median hair fiber curvature c, cross-sectional
area d, cross-sectional eccentricity e, minimum diameter of cross-section f, maximum diameter
of cross-section.
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Figure E.6. Violin plots showing phenotypic distributions for each phenotype per
self-reported sex. a, Melanin Index b, median hair fiber curvature c, cross-sectional area
d, cross-sectional eccentricity e, minimum diameter of cross-section f, maximum diameter of
cross-section.
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E.3 Ancestry vs. hair morphology
We carried out a number of analyses using the genotype data collected for this diverse
sample. In an admixed sample where a continuous trait has divergent distributions in
the parental ancestry groups, the resulting admixed population can show a correlation
between ancestry and that trait. Finding such a correlation suggests may imply a
polygenic trait with high heritability.

Here we plot the correlation between proportion of African ancestry and m-index,
curvature, area, minimum diameter, maximum diameter, and area (using the median for
each).
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Figure E.7. PCA results for quantitative hair phenotypes (without ancestry correc-
tion). a, Scree plot showing the percentage of variance explained for each PC b, Contributing
variables for first two PC dimensions.
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Figure E.8. Scatter plot of individual PC scores along first two dimensions a,
Individual points colored according to proportion of AFR ancestry b, Individual points colored
according to median hair fiber curvature
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Figure E.9. Scatter plots of all phenotypes against AFR ancestry a, Melanin Index
b, median hair curvature c, objectively classified hair texture d, cross-sectional area e, cross-
sectional eccentricity f, minimum cross-sectional diameter g, maximum cross-sectional diameter
h, PC1 for quantitative hair variables i, PC2 for quantitative hair variables.
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Figure E.10. Correlation matrix of quantitative hair variables and Melanin Index.
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for ancestry.
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E.3.2 Corrected
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Figure E.11. PCA results for quantitative hair phenotypes (with correction, using
residualized phenotypic values). a, Scree plot showing the percentage of variance explained
for each PC b, Contributing variables for first two PC dimensions.
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Figure E.12. Scatter plot of individual PC scores along first two dimensions a,
Individual points colored according to proportion of AFR ancestry b, Individual points colored
according to median hair fiber curvature
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Figure E.13. Scatter plots of all phenotypes (residualized) against AFR ancestry
a, Melanin Index b, median hair curvature c, objectively classified hair texture d, cross-
sectional area e, cross-sectional eccentricity f, minimum cross-sectional diameter g, maximum
cross-sectional diameter h, PC1 for quantitative hair variables i, PC2 for quantitative hair
variables.
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Figure E.15. Scatter plots of raw phenotypes of interest (left) against their resid-
ualized comparison (right) a, Cross-sectional area vs. minimum cross-sectional diameter b,
Cross-sectional area vs. minimum cross-sectional diameter (residualized) c, Cross-sectional area
vs. maximum cross-sectional diameter d, Cross-sectional area vs. maximum cross-sectional
diameter (residualized) e, Maximum cross-sectional diameter vs. minimum cross-sectional
diameter f, Maximum cross-sectional diameter vs. minimum cross-sectional diameter (resid-
ualized) g, Maximum cross-sectional diameter vs. cross-sectional eccentricity h Maximum
cross-sectional diameter vs. cross-sectional eccentricity (residualized)
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E.4 Comparison with categorical
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Figure E.16. Categorical hair texture compared to quantitative hair curvature and
proportion of AFR ancestry a, Hair texture here is classified objectively according to cut
offs suggested by Loussouarn et al. (2007) and b, shows hair texture according to participant
self-report.
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Appendix F|
Chapter 4 Supplementary:
Genome-wide association
results
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F.1 QQ plots
Here we show the QQ plots for each phenotype.

Figure F.1. QQ plots for various ancestry corrections and phenotypes. Columns
represent different ancestry corrections and rows are different phenotypes.
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Figure F.2. QQ plots for various ancestry corrections and phenotypes. Columns
represent different ancestry corrections and rows are different phenotypes.

170



Table F.1. Hair replicated SNPs

F.2 Overlap with previously reported SNPs
Here we read in the GWAS results from Plink for each trait and cross-reference with a
list of variants that were used in a meta-analysis on hair morphology (Liu et al, 2018
and the NHGRI-EBI GWAS Catalog). We check for overlap in significant SNPs between
the meta-analysis, the catalog, and our sample for each of the phenotypes we used in the
GWAS.

F.2.1 Hair replicated SNPs

We replicated the following SNPs for hair morphology:

F.2.2 Skin replicated SNPs

We replicated the following SNPs for skin pigmentation:
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Table F.2. Skin replicated SNPs

Figure F.3. Manhattan plot for Melanin Index. First row with correction for ancestry
using AFR (K=2), second row using first 2 PCs to correct for ancestry, and last row shows
plot without correction for ancestry. Highlighted are previously associated loci. Here we see
SLC24A5 on Chromosome 15.
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Figure F.4. Manhattan plot for median hair curvature. First row with correction for
ancestry using AFR (K=2), second row using first 2 PCs to correct for ancestry, and last row
shows plot without correction for ancestry. Highlighted are previously associated loci.
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Figure F.5. Manhattan plot for cross-sectional area. First row with correction for
ancestry using AFR (K=2), second row using first 2 PCs to correct for ancestry, and last row
shows plot without correction for ancestry. Highlighted are previously associated loci.
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Figure F.6. Manhattan plot for cross-sectional eccentricity. First row with correction
for ancestry using AFR (K=2), second row using first 2 PCs to correct for ancestry, and last
row shows plot without correction for ancestry. Highlighted are previously associated loci.
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Figure F.7. Manhattan plot for minimum cross-sectional diameter. First row with
correction for ancestry using AFR (K=2), second row using first 2 PCs to correct for ancestry,
and last row shows plot without correction for ancestry. Highlighted are previously associated
loci.
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Figure F.8. Manhattan plot for maximum cross-sectional diameter. First row with
correction for ancestry using AFR (K=2), second row using first 2 PCs to correct for ancestry,
and last row shows plot without correction for ancestry. Highlighted are previously associated
loci.
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Figure F.9. Manhattan plot for PC1 on quantitative hair traits. First row with
correction for ancestry using AFR (K=2), second row using first 2 PCs to correct for ancestry,
and last row shows plot without correction for ancestry. Highlighted are previously associated
loci.
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Figure F.10. Manhattan plot for PC2 on quantitative hair traits. First row with
correction for ancestry using AFR (K=2), second row using first 2 PCs to correct for ancestry,
and last row shows plot without correction for ancestry. Highlighted are previously associated
loci.
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Figure F.11. Manhattan plot for PC1 on residualized quantitative hair traits. First
row with correction for ancestry using AFR (K=2), second row using first 2 PCs to correct for
ancestry, and last row shows plot without correction for ancestry. Highlighted are previously
associated loci.
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Figure F.12. Manhattan plot for PC2 on residualized quantitative hair traits. First
row with correction for ancestry using AFR (K=2), second row using first 2 PCs to correct for
ancestry, and last row shows plot without correction for ancestry. Highlighted are previously
associated loci.
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Figure F.13. Manhattan plot for objectively classified hair texture. First row with
correction for ancestry using AFR (K=2), second row using first 2 PCs to correct for ancestry,
and last row shows plot without correction for ancestry. Highlighted are previously associated
loci.
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F.3 Admixture mapping
Here, we read in frequency information for the SNPs in our association. Specifically, we
select SNPs with high frequency differences between West Africans (YRI) and Europeans
(CEU) as ancestry informative markers or AIMs.
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Figure F.14. Manhattan plot for Melanin Index on subset of alleles with high
frequency difference between YRI-CEU. First row with correction for ancestry using
AFR (K=2), second row using first 2 PCs to correct for ancestry, and last row shows plot
without correction for ancestry. Highlighted are previously associated loci. The strongest
highlighted signal is SLC24A5
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Figure F.15. Manhattan plot for median hair curvature on subset of alleles with
high frequency difference between YRI-CEU. First row with correction for ancestry
using AFR (K=2), second row using first 2 PCs to correct for ancestry, and last row shows plot
without correction for ancestry. Highlighted are previously associated loci.
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Figure F.16. Manhattan plot for cross-sectional area on subset of alleles with high
frequency difference between YRI-CEU. First row with correction for ancestry using
AFR (K=2), second row using first 2 PCs to correct for ancestry, and last row shows plot
without correction for ancestry. Highlighted are previously associated loci.
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Figure F.17. Manhattan plot for cross-sectional eccentricity on subset of alleles
with high frequency difference between YRI-CEU. First row with correction for ancestry
using AFR (K=2), second row using first 2 PCs to correct for ancestry, and last row shows plot
without correction for ancestry. Highlighted are previously associated loci.
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Figure F.18. Manhattan plot for minimum cross-sectional diameter on subset of
alleles with high frequency difference between YRI-CEU. First row with correction
for ancestry using AFR (K=2), second row using first 2 PCs to correct for ancestry, and last
row shows plot without correction for ancestry. Highlighted are previously associated loci.
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Figure F.19. Manhattan plot for maximum cross-sectional diameter on subset of
alleles with high frequency difference between YRI-CEU. First row with correction
for ancestry using AFR (K=2), second row using first 2 PCs to correct for ancestry, and last
row shows plot without correction for ancestry. Highlighted are previously associated loci.
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Figure F.20. Manhattan plot for PC1 for quantitative hair traits on subset of
alleles with high frequency difference between YRI-CEU. First row with correction
for ancestry using AFR (K=2), second row using first 2 PCs to correct for ancestry, and last
row shows plot without correction for ancestry. Highlighted are previously associated loci.
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Figure F.21. Manhattan plot for PC2 for quantitative hair traits on subset of
alleles with high frequency difference between YRI-CEU. First row with correction
for ancestry using AFR (K=2), second row using first 2 PCs to correct for ancestry, and last
row shows plot without correction for ancestry. Highlighted are previously associated loci.
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Figure F.22. Manhattan plot for PC1 for residualized quantitative hair traits on
subset of alleles with high frequency difference between YRI-CEU. First row with
correction for ancestry using AFR (K=2), second row using first 2 PCs to correct for ancestry,
and last row shows plot without correction for ancestry. Highlighted are previously associated
loci.
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Figure F.23. Manhattan plot for PC2 for residualized quantitative hair traits on
subset of alleles with high frequency difference between YRI-CEU. First row with
correction for ancestry using AFR (K=2), second row using first 2 PCs to correct for ancestry,
and last row shows plot without correction for ancestry. Highlighted are previously associated
loci.
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Figure F.24. Manhattan plot for objectively classified hair texture on subset of
alleles with high frequency difference between YRI-CEU. First row with correction
for ancestry using AFR (K=2), second row using first 2 PCs to correct for ancestry, and last
row shows plot without correction for ancestry. Highlighted are previously associated loci.
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Table F.3. Hair novel SNPs

F.3.1 Hair novel SNPs

Below we show a list of SNPs that were significantly associated with various hair
phenotypes in our sample. Here we arrange the list of significant SNPs from high to low
frequency difference (YRI-CEU) and low to high P-values and present the top 10 SNPs
(see Table F.3). Below we report all significant associations (see Table F.4).
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Table F.4. Complete table of significant SNPs
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Appendix G|
Chapter 5 Supplementary:
Thermal manikin experiment
results

G.1 Heat loss (4◦C)
The dry measurements were taken at two different temperatures - one with Tmanikin =
34◦C and Tambient = 8◦C, and another with Tmanikin = 38◦C and Tambient = 4◦C.

The second set of temperature options was found to be necessary with the straight
(low curvature) wig in the 0.3 m/s wind speed setting with the radiation on because the
manikin would overheat to the point where no heat loss could be measured. We then
made sure to conduct all the 0.3 m/s wind speed experiments with this second option.

In the preparation of the data, we applied a correction to bring all the measurements
to the same temperature, i.e. Tambient = 4◦C.

The wet measurements are based on heat exchange rather than dry heat loss. These
measurements were taken with the temperature settings Tmanikin = 34◦C and Tambient =
34◦C or Tmanikin = Tambient. The measurements have been converted to heat loss for
comparative purposes (see Figure G.1).
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Figure G.1. Comparison of dry heat loss and wet heat loss (dry + evaporative)
for various head coverings at three wind speeds with radiation on and off at 4C.
Heat loss with radiation off (x-axis) vs. heat loss with radiation on (y-axis) for dry (left) and
wet (right) experiments. Wigs are indicated by color and wind speed is indicated by shape.

G.1.1 Linear model

We created a linear model for heat loss using wet/dry, radiation, wind speed and
head covering (wig type) as independent variables. Additionally, we include possible
interactions between wet/dry, radiation and wig type.

Below, our results show that the most significant variables are wig and radiation,
with marginal significance in radiation and the interaction between radiation and wig
type (see also Figure G.2).

##
## Call:
## lm(formula = heatloss4c ~ wet_dry + radiation + wind + wig +
## wet_dry * wind + wet_dry * wig + wet_dry * radiation + radiation *
## wig, data = df_4c_influx_long)
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##
## Residuals:
## Min 1Q Median 3Q Max
## -85.683 -26.449 4.191 16.538 113.977
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 231.985 26.064 8.901 2.75e-10 ***
## wet_drywet 222.015 33.410 6.645 1.46e-07 ***
## radiationon -122.100 28.430 -4.295 0.000145 ***
## wind 66.402 9.796 6.778 9.95e-08 ***
## wigLowCurv -200.820 31.143 -6.448 2.59e-07 ***
## wigMidCurv -199.010 31.143 -6.390 3.07e-07 ***
## wigHighCurv -179.780 31.143 -5.773 1.88e-06 ***
## wet_drywet:wind 43.734 13.854 3.157 0.003399 **
## wet_drywet:wigLowCurv -174.364 35.961 -4.849 2.88e-05 ***
## wet_drywet:wigMidCurv -195.597 35.961 -5.439 5.05e-06 ***
## wet_drywet:wigHighCurv -217.417 35.961 -6.046 8.43e-07 ***
## wet_drywet:radiationon 41.506 25.428 1.632 0.112133
## radiationon:wigLowCurv 58.664 35.961 1.631 0.112332
## radiationon:wigMidCurv 72.647 35.961 2.020 0.051545 .
## radiationon:wigHighCurv 80.733 35.961 2.245 0.031588 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 44.04 on 33 degrees of freedom
## Multiple R-squared: 0.9542, Adjusted R-squared: 0.9347
## F-statistic: 49.09 on 14 and 33 DF, p-value: < 2.2e-16
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 β = 231.99,  t(33) = 8.9,  p = 2.75e−10

 β = 222.01,  t(33) = 6.65,  p = 1.46e−07

 β = − 122.1,  t(33) = − 4.29,  p = 1.45e−04

 β = 66.4,  t(33) = 6.78,  p = 9.95e−08
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Figure G.2. Dot-and-whisker plot for regression analysis of heat loss Regression
coefficient on the x-axis with different terms on the y-axis. Only significant results shown.

Viewed as an ANOVA, we confirm that the main significant variables in our model
are radiation, wind speed and wig type, while there is a marginal significance (<0.05) for
the interaction for radiation * wig type and wet/dry* wig type.

## Df Sum Sq Mean Sq F value Pr(>F)
## wet_dry 1 274771 274771 141.649 1.74e-13 ***
## radiation 1 28037 28037 14.453 0.000588 ***
## wind 1 314980 314980 162.378 2.71e-14 ***
## wig 3 589784 196595 101.348 < 2e-16 ***
## wet_dry:wind 1 19330 19330 9.965 0.003399 **
## wet_dry:wig 3 89034 29678 15.299 2.07e-06 ***
## wet_dry:radiation 1 5168 5168 2.664 0.112133
## radiation:wig 3 11989 3996 2.060 0.124503
## Residuals 33 64013 1940
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## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

G.2 Solar influx (4◦C)
We can also look specifically at the effect of the radiation by subtracting the measurements
with radiation off from those with radiation on.

From the plots below, it is apparent that the experiments with a “Nude” manikin
scalp show a considerably different pattern than any of the wigs.

Interestingly, in the dry experiments, the effect of solar radiation appears to cluster
more by wig, while the wet experiments show a solar influx that is more patterned by
wind speed (see Figure G.3).
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Figure G.3. Scatter plot of solar flux across experiments. This plot shows the solar
influx as a function of heat loss in the radiation off state. The horizontal line is at zero showing
that all values are positive.
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Below, we plot the same net heat loss as a function of wind speed. Similarly, we see
that, in the dry experiments, there is a very clear effect of wig type and no hair, while the
wet experiments show a much more pronounced effect of wind speed (see Figure G.4).
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Figure G.4. Solar influx as a function of wind speed Wind speed is shown on the x-axis
with solar influx on the y-axis. Wigs are indicated by different colors.

G.2.1 Linear model

We test the effect of the predictor variables with a linear model (see Figure G.5) and
find that wig type and wet vs. dry have a significant effect on solar influx, but that wind
speed does not.

##
## Call:
## lm(formula = net_w_m2_4C ~ wind + wig + wet_dry, data = df_4c_influx_wide)
##
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## Residuals:
## Min 1Q Median 3Q Max
## -55.958 -18.162 0.361 17.313 49.925
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 134.278 17.290 7.766 3.73e-07 ***
## wind -9.615 7.170 -1.341 0.196600
## wigLowCurv -58.664 18.611 -3.152 0.005512 **
## wigMidCurv -72.647 18.611 -3.904 0.001041 **
## wigHighCurv -80.733 18.611 -4.338 0.000396 ***
## wet_drywet -41.506 13.160 -3.154 0.005490 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 32.23 on 18 degrees of freedom
## Multiple R-squared: 0.6592, Adjusted R-squared: 0.5646
## F-statistic: 6.964 on 5 and 18 DF, p-value: 0.000883
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Figure G.5. Dot-and-whisker plot of linear regression on solar influx. Regression
coefficient shown on the x-axis with terms on the y-axis. Only significant terms are shown

This is seen more clearly in the ANOVA.

## Df Sum Sq Mean Sq F value Pr(>F)
## wind 1 1868 1868 1.798 0.19660
## wig 3 23977 7992 7.692 0.00163 **
## wet_dry 1 10336 10336 9.948 0.00549 **
## Residuals 18 18703 1039
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

G.3 Heat loss (30◦C)
Below we plot the heat loss for 30◦C (see Figure G.6).
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Figure G.6. Comparison of dry heat loss and wet heat loss (dry + evaporative)
for various head coverings. Shown for three wind speeds with radiation on and off at 30◦C.
Solid line represents x=y and dashed lines represent 0 intercept for each axis.

G.3.1 Linear model

We created a linear model for heat loss using wet/dry, radiation, wind speed and
head covering (wig type) as independent variables. Additionally, we include possible
interactions between wet/dry, radiation and wig type.

Below, our results show that the most significant variables are wig and radiation,
with marginal significance in radiation and the interaction between radiation and wig
type (see also Figure G.7).

##
## Call:
## lm(formula = heatloss30C ~ wet_dry + radiation + wind + wig +
## wet_dry * wind + wet_dry * wig + wet_dry * radiation + radiation *
## wig, data = df_30C_influx_long)
##
## Residuals:
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## Min 1Q Median 3Q Max
## -62.340 -10.624 -1.509 11.063 58.101
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.502 15.092 1.292 0.205265
## wet_drywet 222.015 19.346 11.476 4.62e-13 ***
## radiationon -122.100 16.462 -7.417 1.60e-08 ***
## wind 14.376 5.672 2.534 0.016190 *
## wigLowCurv -14.703 18.033 -0.815 0.420724
## wigMidCurv -11.046 18.033 -0.613 0.544368
## wigHighCurv -2.820 18.033 -0.156 0.876707
## wet_drywet:wind 43.734 8.022 5.452 4.86e-06 ***
## wet_drywet:wigLowCurv -174.364 20.823 -8.374 1.13e-09 ***
## wet_drywet:wigMidCurv -195.597 20.823 -9.393 7.58e-11 ***
## wet_drywet:wigHighCurv -217.417 20.823 -10.441 5.43e-12 ***
## wet_drywet:radiationon 41.506 14.724 2.819 0.008085 **
## radiationon:wigLowCurv 58.664 20.823 2.817 0.008118 **
## radiationon:wigMidCurv 72.647 20.823 3.489 0.001398 **
## radiationon:wigHighCurv 80.733 20.823 3.877 0.000476 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 25.5 on 33 degrees of freedom
## Multiple R-squared: 0.961, Adjusted R-squared: 0.9444
## F-statistic: 58.01 on 14 and 33 DF, p-value: < 2.2e-16
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 β = 222.01,  t(33) = 11.48,  p = 4.62e−13

 β = − 122.1,  t(33) = − 7.42,  p = 1.6e−08

 β = 14.38,  t(33) = 2.53,  p = 0.016

 β = 43.73,  t(33) = 5.45,  p = 4.86e−06

 β = − 174.36,  t(33) = − 8.37,  p = 1.13e−09

 β = − 195.6,  t(33) = − 9.39,  p = 7.58e−11

 β = − 217.42,  t(33) = − 10.44,  p = 5.43e−12

 β = 41.51,  t(33) = 2.82,  p = 0.008

 β = 58.66,  t(33) = 2.82,  p = 0.008

 β = 72.65,  t(33) = 3.49,  p = 0.001

 β = 80.73,  t(33) = 3.88,  p = 4.76e−04
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Figure G.7. Dot-and-whisker plot for regression analysis of heat loss Regression
coefficient on the x-axis and terms on the y-axis. Only significant results shown.

Viewed as an ANOVA, we confirm that the main significant variables in our model
are radiation, wind speed and wig type, while there is a marginal significance (<0.05) for
the interaction for radiation * wig type and wet/dry* wig type.

## Df Sum Sq Mean Sq F value Pr(>F)
## wet_dry 1 274771 274771 422.464 < 2e-16 ***
## radiation 1 28037 28037 43.107 1.84e-07 ***
## wind 1 53104 53104 81.647 1.92e-10 ***
## wig 3 46773 15591 23.971 2.02e-08 ***
## wet_dry:wind 1 19330 19330 29.721 4.86e-06 ***
## wet_dry:wig 3 89034 29678 45.630 7.67e-12 ***
## wet_dry:radiation 1 5168 5168 7.946 0.00808 **
## radiation:wig 3 11989 3996 6.144 0.00194 **
## Residuals 33 21463 650

212



## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

G.4 Solar influx (30◦C)
We can also look specifically at the effect of the radiation by subtracting the measurements
with radiation off from those with radiation on.

From the plots below, it is apparent that the experiments with a “Nude” manikin
scalp show a considerably different pattern than any of the wigs.

Interestingly, in the dry experiments, the effect of solar radiation appears to cluster
more by wig, while the wet experiments show a solar influx that is more patterned by
wind speed (see Figure G.8).
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Figure G.8. Scatter plot of heat loss and solar influx across experiments. This plot
shows the solar influx as a function of heat loss in the radiation off state. The horizontal line is
at zero showing that all values are positive.

213



Below, we plot the same net heat loss as a function of wind speed. Similarly, we see
that, in the dry experiments, there is a very clear effect of wig type and no hair, while
the wet experiments show a much more pronounced effect of windspeed (see Figure G.9).
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Figure G.9. Solar influx as a function of wind speed. Wind speed is shown on the
x-axis with solar influx on the y-axis. Wigs are indicated by color.

G.4.1 Linear model

We test the effect of the predictor variables with a linear model (see Figure G.10) and
find that wig type and wet vs. dry have a significant effect on solar influx, but that wind
speed does not.

##
## Call:
## lm(formula = net_w_m2_30C ~ wind + wig + wet_dry, data = df_30C_influx_wide)
##
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## Residuals:
## Min 1Q Median 3Q Max
## -55.958 -18.162 0.361 17.313 49.925
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 134.278 17.290 7.766 3.73e-07 ***
## wind -9.615 7.170 -1.341 0.196600
## wigLowCurv -58.664 18.611 -3.152 0.005512 **
## wigMidCurv -72.647 18.611 -3.904 0.001041 **
## wigHighCurv -80.733 18.611 -4.338 0.000396 ***
## wet_drywet -41.506 13.160 -3.154 0.005490 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 32.23 on 18 degrees of freedom
## Multiple R-squared: 0.6592, Adjusted R-squared: 0.5646
## F-statistic: 6.964 on 5 and 18 DF, p-value: 0.000883
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 β = 134.28,  t(18) = 7.77,  p = 3.73e−07

 β = − 58.66,  t(18) = − 3.15,  p = 0.006

 β = − 72.65,  t(18) = − 3.9,  p = 0.001

 β = − 80.73,  t(18) = − 4.34,  p = 3.96e−04

 β = − 41.51,  t(18) = − 3.15,  p = 0.005
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Figure G.10. Dot-and-whisker plot of linear regression on solar influx. Regression
coefficient is shown on the x-axis with terms on the y-axis. Only significant results are shown.

This is seen more clearly in the ANOVA.

## Df Sum Sq Mean Sq F value Pr(>F)
## wind 1 1868 1868 1.798 0.19660
## wig 3 23977 7992 7.692 0.00163 **
## wet_dry 1 10336 10336 9.948 0.00549 **
## Residuals 18 18703 1039
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

G.5 Effect of radiation and evaporation (30◦C)
Here are plots for the total heat losses recalculated for an ambient temperature of 30◦C.
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What becomes apparent now is that there is a substantial heat gain in the dry
condition once solar radiation is added (bottom left). In both wet conditions and without
the effect of radiation, the absence of hair clearly associates with higher heat loss see
Figure G.11).
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Figure G.11. Plot of wind speed and heat loss in different experimental conditions.
Heat loss with radiation off/on (top to bottom) and in dry and wet conditions (left to right)
calculated for ambient temperature of 30◦C. Dashed line represents y=0.
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G.5.1 Linear model

G.5.1.1 Separate wet and dry lm

We repeated the linear model for wet and dry conditions separately (see Figure G.12).
We found a striking difference between the effects seen in the dry and wet conditions.

The dry condition showed that radiation had the single strongest negative effect on heat
loss, while the interaction between solar radiation and high curvature wig showed the
highest positive effect on heat loss. All terms were found to be significant.

Conversely, for the wet conditions, none of the interactions between wig and solar
radiation were significant with wind providing the single positive significant effect on
heat loss and the wigs reducing heat loss with increased curvature.

##
## Call:
## lm(formula = heatloss30C ~ wind + wig + radiation + radiation *
## wig, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.9391 -5.6930 0.1225 3.7185 16.5050
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.308 4.964 8.523 3.92e-07 ***
## wind 14.376 1.719 8.365 4.95e-07 ***
## wigLowCurv -40.460 6.309 -6.413 1.17e-05 ***
## wigMidCurv -40.862 6.309 -6.476 1.05e-05 ***
## wigHighCurv -38.470 6.309 -6.097 2.04e-05 ***
## radiationon -167.711 6.309 -26.582 4.95e-14 ***
## wigLowCurv:radiationon 110.178 8.923 12.348 2.92e-09 ***
## wigMidCurv:radiationon 132.278 8.923 14.825 2.29e-10 ***
## wigHighCurv:radiationon 152.033 8.923 17.039 3.17e-11 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 7.727 on 15 degrees of freedom
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## Multiple R-squared: 0.9848, Adjusted R-squared: 0.9767
## F-statistic: 121.8 on 8 and 15 DF, p-value: 3.084e-12

While the wet condition was most affected by wind speed and saw a negative correlation
between heat loss and increasingly curled hair.

##
## Call:
## lm(formula = heatloss30C ~ wind + wig + radiation + radiation *
## wig, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -67.851 -7.214 5.306 9.583 35.295
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 218.712 17.905 12.215 3.39e-09 ***
## wind 58.110 6.199 9.374 1.16e-07 ***
## wigLowCurv -163.310 22.757 -7.176 3.20e-06 ***
## wigMidCurv -176.828 22.757 -7.770 1.23e-06 ***
## wigHighCurv -184.586 22.757 -8.111 7.26e-07 ***
## radiationon -34.983 22.757 -1.537 0.145
## wigLowCurv:radiationon 7.150 32.184 0.222 0.827
## wigMidCurv:radiationon 13.017 32.184 0.404 0.692
## wigHighCurv:radiationon 9.433 32.184 0.293 0.773
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 27.87 on 15 degrees of freedom
## Multiple R-squared: 0.946, Adjusted R-squared: 0.9172
## F-statistic: 32.86 on 8 and 15 DF, p-value: 3.792e-08
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 β = 42.31,  t(15) = 8.52,  p = 3.92e−07

 β = 14.38,  t(15) = 8.36,  p = 4.95e−07

 β = − 40.46,  t(15) = − 6.41,  p = 1.17e−05

 β = − 40.86,  t(15) = − 6.48,  p = 1.05e−05

 β = − 38.47,  t(15) = − 6.1,  p = 2.04e−05

 β = − 167.71,  t(15) = − 26.58,  p = 4.95e−14

 β = 110.18,  t(15) = 12.35,  p = 2.92e−09

 β = 132.28,  t(15) = 14.82,  p = 2.29e−10

 β = 152.03,  t(15) = 17.04,  p = 3.17e−11
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Figure G.12. Dot-and-whisker plot of linear models for heat loss at 30◦C. Regression
coefficients shown on the x-axis with terms on the y-axis and separate plots for for (a) dry and
(b) wet conditions

We present the linear models in an ANOVA table below. The ANOVA for the dry
linear model is as follows:

## Df Sum Sq Mean Sq F value Pr(>F)
## wind 1 4178 4178 69.97 4.95e-07 ***
## wig 3 4578 1526 25.56 3.81e-06 ***
## radiation 1 28640 28640 479.64 8.44e-13 ***
## wig:radiation 3 20768 6923 115.94 1.34e-10 ***
## Residuals 15 896 60
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

For wet, we see:
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## Df Sum Sq Mean Sq F value Pr(>F)
## wind 1 68256 68256 87.865 1.16e-07 ***
## wig 3 131229 43743 56.309 2.14e-08 ***
## radiation 1 4565 4565 5.876 0.0284 *
## wig:radiation 3 136 45 0.058 0.9808
## Residuals 15 11653 777
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

G.6 Inferred effect of heat loss through sweating at 30◦C
Here, we plot the sweat rate potential (left) and the sweat rate required to cancel out
heat gain at Tambient = 30◦C.

What emerges is that while heat loss potential is higher without hair as a barrier
(i.e. the “nude” condition), the potential sweat far exceeds the physiologically possible
sweat rate for humans. The plot for zero heat gain shoes that a nude scalp requires the
most sweat and this requirement is inversely correlated with hair curvature (see Figure
G.13).
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Figure G.13. Plot of maximum sweat potential and required sweat in various
experimental conditionsThe quantity of sweat that can be maximally evaporated (left) and
that is required for zero heat gain (right) with various head coverings under three wind speeds
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G.6.1 Linear model

G.6.1.1 Combined wet and dry lm

In a linear model we see that all variables and interactions significantly affect quantity of
sweat (see Figure G.14).

##
## Call:
## lm(formula = sweat ~ sweat_type + wind + wig + sweat_type * wind +
## sweat_type * wig, data = sweat_merge_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -84.325 -8.444 0.644 11.302 66.908
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 451.44 23.52 19.192 1.88e-11 ***
## sweat_typezero_gain -265.16 33.27 -7.971 1.43e-06 ***
## wind 69.95 10.55 6.632 1.13e-05 ***
## wigLowCurv -334.63 27.38 -12.222 7.39e-09 ***
## wigMidCurv -378.12 27.38 -13.811 1.51e-09 ***
## wigHighCurv -427.73 27.38 -15.623 2.97e-10 ***
## sweat_typezero_gain:wind -91.64 14.92 -6.143 2.55e-05 ***
## sweat_typezero_gain:wigLowCurv 231.35 38.72 5.975 3.40e-05 ***
## sweat_typezero_gain:wigMidCurv 243.14 38.72 6.279 2.02e-05 ***
## sweat_typezero_gain:wigHighCurv 271.03 38.72 7.000 6.25e-06 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 33.53 on 14 degrees of freedom
## Multiple R-squared: 0.9768, Adjusted R-squared: 0.9619
## F-statistic: 65.57 on 9 and 14 DF, p-value: 6.781e-10
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 β = 451.44,  t(14) = 19.19,  p = 1.88e−11

 β = − 265.16,  t(14) = − 7.97,  p = 1.43e−06

 β = 69.95,  t(14) = 6.63,  p = 1.13e−05

 β = − 334.63,  t(14) = − 12.22,  p = 7.39e−09

 β = − 378.12,  t(14) = − 13.81,  p = 1.51e−09

 β = − 427.73,  t(14) = − 15.62,  p = 2.97e−10

 β = − 91.64,  t(14) = − 6.14,  p = 2.55e−05

 β = 231.35,  t(14) = 5.98,  p = 3.4e−05

 β = 243.14,  t(14) = 6.28,  p = 2.02e−05

 β = 271.03,  t(14) = 7,  p = 6.25e−06
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Figure G.14. Dot-and-whisker plot of linear model for quantity of sweat with wind,
wig and sweat type as independent predictors. Regression coefficient on the x-axis and
terms on the y-axis. Only significant values shown

## Df Sum Sq Mean Sq F value Pr(>F)
## sweat_type 1 227816 227816 202.61 1.02e-09 ***
## wind 1 11770 11770 10.47 0.00598 **
## wig 3 310798 103599 92.14 1.86e-09 ***
## sweat_type:wind 1 42434 42434 37.74 2.55e-05 ***
## sweat_type:wig 3 70720 23573 20.97 1.91e-05 ***
## Residuals 14 15741 1124
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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G.6.1.2 Separate max and zero gain

We repeat the tests with maximum sweat potential and zero heat gain separately (see
Figure G.15).

Maximum sweat potential shows a strongly significant effect from wig type and wind
speed.

##
## Call:
## lm(formula = sweat ~ wind + wig, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -84.325 -12.663 4.806 13.887 66.908
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 451.44 31.15 14.493 1.78e-06 ***
## wind 69.95 13.97 5.008 0.00155 **
## wigLowCurv -334.63 36.26 -9.230 3.62e-05 ***
## wigMidCurv -378.12 36.26 -10.429 1.62e-05 ***
## wigHighCurv -427.73 36.26 -11.797 7.13e-06 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 44.4 on 7 degrees of freedom
## Multiple R-squared: 0.9656, Adjusted R-squared: 0.946
## F-statistic: 49.15 on 4 and 7 DF, p-value: 3.301e-05

This is confirmed with an ANOVA.

## Df Sum Sq Mean Sq F value Pr(>F)
## wind 1 49450 49450 25.08 0.00155 **
## wig 3 338191 112730 57.17 2.74e-05 ***
## Residuals 7 13803 1972
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Sweat quantity for zero heat gain also shows highly significant effects for wind and
wig type. However, the main difference appears to be in the directionality of the effect of
wind.

##
## Call:
## lm(formula = sweat ~ wind + wig, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.9713 -7.2857 -0.7838 8.5270 24.6396
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 186.276 11.674 15.956 9.22e-07 ***
## wind -21.688 5.235 -4.143 0.004333 **
## wigLowCurv -103.285 13.588 -7.601 0.000126 ***
## wigMidCurv -134.980 13.588 -9.933 2.24e-05 ***
## wigHighCurv -156.696 13.588 -11.532 8.30e-06 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 16.64 on 7 degrees of freedom
## Multiple R-squared: 0.9612, Adjusted R-squared: 0.9391
## F-statistic: 43.4 on 4 and 7 DF, p-value: 5.003e-05

This is also confirmed with an ANOVA.

## Df Sum Sq Mean Sq F value Pr(>F)
## wind 1 4754 4754 17.16 0.00433 **
## wig 3 43327 14442 52.15 3.72e-05 ***
## Residuals 7 1939 277
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Figure G.15. Dot-and-whisker plots for linear regression of sweat evaporation
potential and requirement. Only significant terms are plotted and separate plots show
regression for (a) maximum sweat potential and (b) sweat required for zero heat gain
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