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INTRODUCTION

LEARNING OBJECTIVES 

This Synthesis is an update of “Pearson, R.G. 2008. Species’ Distribution Modeling for Conservation 
Educators and Practitioners. Synthesis. American Museum of Natural History. Available at https://ncep.
amnh.org.”

This update is a condensed version of the original, with updated references, and a streamlined 
introduction and framing to reflect recent developments in the field, and especially to provide further 
emphasis on machine learning approaches to species distribution modeling.

Author contributions: Aiello-Lammens led the update. Paz, Johnson, and Blair contributed to the 
update. Pearson wrote the original version.

Predicting species’ distributions has become an important component of conservation planning in recent 
years, and a wide variety of modeling techniques have been developed for this purpose (Guisan and 
Thuiller 2005; Elith and Leathwick 2009; Peterson et al. 2011). These models commonly utilize associations 
between environmental variables and known species’ occurrence records to identify environmental 
conditions within which populations can be maintained. The spatial distribution of environments that are 
suitable for the species can then be estimated across a study region. This approach has proven valuable 
for generating biogeographical information that can be applied across a broad range of fields, including 
conservation biology, ecology and evolutionary biology. This synthesis aims to provide an overview of the 
theory and key components of species distribution modeling. Through use of the synthesis, teachers will 
enable students to understand the theoretical basis of distribution models, understand the techniques 
and steps required to run models using a variety of approaches, test the predictive ability of models, and 
apply the models to address a range of questions.

Through use of this synthesis, teachers will enable students to:
1. Identify and describe important theoretical underpinnings of species distribution models.
2. Identify key components of distribution models, including appropriate data and methods / algorithms.
3. Be prepared to apply algorithms to train a species distribution model and test its predictive 

performance.
4. Identify applications of distribution models in addressing a range of conservation questions.

What is a species distribution model?
A common strategy for estimating the actual or potential geographic distribution of a species is to 
characterize the environmental conditions that are suitable for the species, and to then identify where 
suitable environments are distributed in space. For example, if we are interested in modeling the 
distribution of a plant that is known to thrive in wet clay soils, then simply identifying locations with clay 
soils and high precipitation can generate an estimate of the species’ distribution. There are a number 

https://ncep.amnh.org
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of reasons why the species may not actually occupy all suitable sites (e.g., geographic barriers that limit 
dispersal, competition from other species), which we will discuss later. However, this is the fundamental 
strategy common to most species distribution models (SDMs).

The environmental conditions that are suitable for a species may be characterized using either a 
mechanistic or a correlative approach. Mechanistic models aim to incorporate physiologically limiting 
mechanisms in a species’ tolerance to environmental conditions (Kearney and Porter 2009). For example, 
(Chuine and Beaubien 2001) modeled distributions of North American tree species by estimating 
responses to environmental variables (including mean daily temperature, daily precipitation, and night 
length) using mechanistic models of factors including frost injury, phenology, and reproductive success. 
Such mechanistic models require detailed understanding of the physiological response of species to 
environmental factors and are therefore difficult to develop for all but the most well understood species. 

Correlative models aim to estimate the environmental conditions that are suitable for a species by 
associating known species’ occurrence records with suites of environmental variables that can reasonably 
be expected to affect the species’ physiology and probability of persistence. The central premise of this 
approach is that the observed distribution of a species provides useful information as to the environmental 
requirements of that species. For example, we may assume that our plant species of interest favors 
wet clay soils because it has been observed growing in these soils. The limitations of this approach 
are discussed later in the synthesis, but it has been demonstrated that this method can yield valuable 
biogeographical information (e.g., Raxworthy et al. 2003; Bourg et al. 2005). Since spatially explicit 
occurrence records are available for a large number of species, the vast majority of species distribution 
models are correlative. The correlative approach to distribution modeling is the focus of this synthesis.

What data are needed to build an SDM?
The principal steps required to build and validate a correlative species distribution model are outlined 
in Figure 1. Two types of model input data are needed: 1) known species’ occurrence records; and 2) 
a suite of environmental variables. “Raw” environmental variables, such as daily precipitation records 
collected from weather stations, are often processed to generate model inputs that are thought to have 
a direct physiological role in limiting the ability of the species to survive (see Nix 1986 for early examples 
of such processing). Another important advancement involved spatial interpolation of these bioclimate 
factors (a brief history of these processes can be found in Booth et al. 2014). Presently there are several 
environmental data sets focusing on bioclimatic variables that are readily available (e.g., CliMond - Kriticos 
et al. 2011; WorldClim 2.0 - Fick and Hijmans 2017; ENVIREM - Title and Bemmels 2018). Additionally, 
environmental variables derived from remote sensing products are increasingly becoming available 
and being applied at local (e.g., Pasetto et al. 2018), regional (e.g., Paz et al. 2022), and global spatial 
scales (e.g., Deblauwe et al. 2016). Importantly, these remote-sensed environmental data are allowing 
researchers to move beyond relationships between presence and climate conditions only, which has been 
the dominant approach for many years.

The species occurrence records and environmental variables are entered into an algorithm that aims 
to identify environmental conditions that are associated with species occurrence. If just one or two 
environmental variables were used, then this task would be relatively straightforward. For example, 
we may readily discover that our plant species has only been recorded at localities where mean 
monthly precipitation is above 60mm and soil clay content is above 40%. In practice, we usually 
seek algorithms that are able to integrate more than two environmental variables, since species are 
in reality likely to respond to multiple factors. Algorithms that can incorporate interactions among 
variables are also preferable (Elith et al. 2006; Franklin 2010; Valavi et al. 2022). For example, a more 
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Map the known species’ 
distribution (localities 
where the species has 
been observed, and 
sometimes also localities 
where the species is known 
to be absent) Apply modeling algorithm 

(e.g., Maxent, artificial 
neural network, general 
linear model, boosted 
regression tree)

Test predictive performance 
through additional fieldwork 
or data-splitting approach 
(statistical assessment using a 
test such as AUC or Kappa)

Predict species’ distribution 
in a different region (e.g., for 
an invasive species) or for a 
different time period (e.g., under 
future climate change)

If possible, test prediction 
against observed data, such 
as occurrence records in an 
invaded region, or distribution 
shifts over recent decades

Process environmental 
layers to generate 
predictor variables that 
are important in defining 
species’ distributions 
(e.g., maximum daily 
temperature, frost days, 
soil water balance)

Model calibration (select 
suitable parameters, test 
importance of alternative 
predictor variables)

Create map of current 
distribution

Collate GIS (Geographic 
Information System) 
database of 
environmental layers 
(e.g., temperature, 
precipitation, soil type)

Figure 1. Flow diagram detailing the main steps required for building and validating a correlative species distribution model. 

accurate description of our plant’s requirements may be that it can occur at localities with mean 
monthly precipitation between 60mm and 70mm if soil clay content is above 60%, and in wetter areas 
(>70mm) if clay content is as low as 40%.

Multiple modeling algorithms are available to determine relationships between species presence 
and environmental conditions (see Valavi et al. 2022 for one overview of multiple methods). Possible 
appropriate algorithms include those based on foundational frequentist statistics (e.g., logistic 
regression, generalized linear models, and generalized additive models), Bayesian statistics (e.g., 
hierarchical Bayesian models), or machine learning principles (e.g., Maxent, random forest, and 
artificial neural networks; see Box 1 for more information on machine learning). Depending on the 
method used, various decisions and tests will need to be made to ensure the algorithm gives optimal 
results. For example, a suitable “regularization” parameter will need to be selected if applying 
the Maxent method (see Phillips et al. 2006; Elith et al. 2010; Merow et al. 2013; and the Wallace - 
Module Guidance for the Maxent module in software described in Kass et al. 2023), or the degrees 
of freedom must be selected if running a generalized additive model (see Guisan et al. 2002). The 
relative importance and/or correlation of alternative environmental predictor variables may also be 
assessed at this stage so as to select which variables are used in the final model.

After running a modeling algorithm, the resulting estimated mathematical relationships between 
species occurrence and environmental conditions can be used to construct a map showing the 
predicted species’ distribution. The ability of the model to predict the known species’ distribution 
should be evaluated, or tested, at this stage. A YouTube video providing an overview of model 
evaluation is available here: ENM2020 - W22T1 - Evaluation Overview; https://youtu.be/jG5bcr3jzmA. 
A set of species occurrence records that have not previously been used in the modeling should 
be used as independent testing data. The ability of the model to predict the independent data 
is assessed using a suitable test statistic. Different approaches to generating test datasets and 

https://youtu.be/jG5bcr3jzmA
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Machine learning algorithms are increasingly being applied to species distribution modeling (Lucas 
2014). This is primarily due to the abilities of many machine learning algorithms to fit complex and 
non-linear relationships that are common in natural systems, and because computational advances 
have made these algorithms fast and efficient (Olden et al. 2008; Peters et al. 2014).

At a high level, machine learning algorithms can be divided into three categories: supervised 
learning, unsupervised learning, and reinforcement learning. Supervised learning involves training 
a model using input data associated with known outputs (e.g., climatic and/or environmental 
conditions at known locations of species presence or absence). Unsupervised learning, on the 
other hand, involves finding patterns in data without known outcomes (i.e., no response variable is 
identified). Reinforcement learning involves training a model to make decisions based on feedback 
from data collected from a dynamic system or environment. As of 2023, machine learning approaches 
using supervised learning were most commonly applied in SDMs (e.g., Maxent, random forests, 
support vector machine, artificial neural networks; Lucas 2014; Peters et al. 2014), though some 
unsupervised learning algorithms are also used (e.g., k-means clustering, Guassian mixture models; 
Christin et al. 2019). While reinforcement algorithms are beginning to be applied in conservation 
sciences (e.g., Lapeyrolerie et al. 2022), we know of no applications to SDMs at this time. 

The success of machine learning algorithms depends on the quality and quantity of the training 
data. To train a model, the data is split into a training set and a testing set, where the training set 
is used to train the model, and the testing set is used to evaluate its performance on unseen data. 
There are several approaches an analyst can take to splitting the data, which are discussed in the 
model evaluation section below.

Box 1. Machine learning algorithms

alternative statistical tests are discussed in detail in Pearson’s Species’ Distribution Modeling for 
Conservation Educators and Practitioners synthesis (2008, Section 5; available from the NCEP module 
collection at https://ncep.amnh.org). Since a number of modeling algorithms predict a continuous 
distribution of environmental suitability (i.e., a prediction between 0 and 1, as opposed to a binary 
prediction of “suitable” or “unsuitable”), it is sometimes useful to convert model output into a 
prediction of suitable (1) or unsuitable (0). This is a necessary step before applying many test statistics; 
thus, methods for setting a threshold probability, above which the species is predicted as present, are 
also outlined in Section 5, with additional information available in Liu et al. 2005 and Liu et al. 2016.

Once these steps have been completed, and if model validation is successful, the model can be used 
to predict species’ occurrence in areas where the distribution is unknown. Thus, a set of environmental 
variables for the area of interest is input into the model and the suitability of conditions at a given 
locality is predicted. In many cases the model is used to “fill the gaps” around known occurrences (e.g., 
Anderson et al. 2002; Ferrier et al. 2002). In other cases, the model may be used to predict species’ 
distributions in new regions (e.g., to study invasion potential, for review see Peterson 2003; Srivastava 
2019) or for a different time period (e.g., to estimate the potential impacts of future climate change, for 
review see Anderson 2013). Ideally, model predictions into different regions or different time periods 
should be tested against observed data; for example, Thuiller et al. 2005 tested predictions of invasion 
potential using occurrence records from the invaded distribution, whilst Araújo et al. 2005a tested 
predictions of distribution shifts under climate change using observed records from different decades.

This modeling approach has been variously termed “species distribution,” “ecological niche,” 

https://ncep.amnh.org
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“environmental niche,” “habitat suitability,” and “bioclimate envelope” modeling. Use of the term 
“species distribution modeling” is widespread but it should be noted that the term is somewhat 
misleading since it is actually the distribution of suitable environments that is being modeled, rather 
than the species’ distribution per se. Regardless of the name used, the basic modeling process 
is essentially the same and the theoretical underpinnings of the models are similar. It is essential 
that these theoretical underpinnings are properly understood in order to interpret model outputs 
accurately. The following section describes this theoretical framework.

THEORETICAL FRAMEWORK

This section outlines some of the fundamental concepts that are crucial for understanding how 
species distribution models work, what types of questions they are suitable for addressing, and how 
model output should be interpreted.

Geographical versus environmental space
We are used to thinking about the occurrence of species in geographical space; that is, the species’ 
distribution as plotted on a map. To understand species distribution models it is important to also 
think about species occurring in environmental space, which is a conceptual space defined by the 
environmental variables to which the species responds. The concept of environmental space has 
its foundations in ecological niche theory. The term “niche” has a long and varied history of use 
in ecology (Chase and Leibold 2003), but the definition proposed by (Hutchinson 1957) is most 
useful in the current context. Hutchinson defined the fundamental niche of a species as the set of 
environmental conditions within which a species can survive and persist. The fundamental niche may 
be thought of as an “n-dimensional hypervolume”, every point in which corresponds to a state of the 
environment that would permit the species to exist indefinitely (Hutchinson 1957, p. 416). It is the axes 
of this n-dimensional hypervolume that define environmental space.

Visualizing a species’ distribution in both geographical and environmental space helps us to define 
some basic concepts that are crucial for species distribution modeling (Figure 2). Notice that the 
observed localities constitute all that is known about the species’ actual distribution; the species is 
likely to occur in other areas in which it has not yet been detected (e.g., Figure 2, area A). If the actual 
distribution is plotted in environmental space then we identify that part of environmental space that is 
occupied by the species, which we can define as the occupied niche.

The distinction between the occupied niche and the fundamental niche is similar, but not identical, to 
Hutchinson’s (1957) distinction between the realized niche and the fundamental niche. With reference 
to the case of two species utilizing a common resource, Hutchinson described the realized niche 
as comprising that portion of the fundamental niche from which a species is not excluded due to 
biotic competition. The definition of the occupied niche used in this synthesis broadens this concept 
to include geographical and historical constraints resulting from a species’ limited ability to reach 
or re-occupy all suitable areas, along with biotic interactions of all forms (competition, predation, 
symbiosis, and parasitism). Thus, the occupied niche reflects all constraints imposed on the actual 
distribution, including spatial constraints due to limited dispersal ability, and multiple interactions 
with other organisms.

If the environmental conditions encapsulated within the fundamental niche are plotted in 
geographical space then we have the potential distribution. Notice that some regions of the potential 
distribution may not be inhabited by the species (Figure 2, areas B and C), either because the species 
is excluded from the area by biotic interactions (e.g., presence of a competitor or absence of a food 
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source), because the species has not dispersed into the area (e.g., there is a geographic barrier to 
dispersal, such as a mountain range, or there has been insufficient time for dispersal), or because the 
species has been extirpated from the area (e.g., due to human modification of the landscape).

Before we go on to discuss how these concepts are used in distribution modeling, it is important 
to appreciate that the environmental variables used in a distribution model are unlikely to define all 
possible dimensions of environmental space. Hutchinson originally proposed that all variables, “both 
physical and biological” (1957, p. 416), are required to define the fundamental niche. However, the 
variables available for modeling are likely to represent only a subset of possible environmental factors 
that influence the distribution of the species. Variables used in modeling most commonly describe 
the physical environment (e.g., temperature, precipitation, soil type), though aspects of the biological 

Geographical space Environmental space

Observed species occurrence record

Actual distribution (left panel)/Occupied niche (right panel)

Potential distribution (left panel)/Fundamental niche (right panel)

A

B

E

C

y

x

e2

e1

D

Figure 2. Illustration of the relationship between a hypothetical species’ distribution in geographical space and 
environmental space. Geographical space refers to spatial location as commonly referenced using x and y coordinates. 
Environmental space refers to Hutchinson’s n-dimensional niche, illustrated here for simplicity in only two dimensions 
(defined by two environmental factors, e1 and e2). Crosses represent observed species occurrence records. Grey shading 
in geographical space represents the species’ actual distribution (i.e., those areas that are truly occupied by the species). 
Notice that some areas of actual distribution may be unknown (e.g., area A is occupied but the species has not been 
detected there). The grey area in environmental space represents that part of the niche that is occupied by the species: 
the occupied niche. Again, notice that the observed occurrence records may not identify the full extent of the occupied 
niche (e.g., the shaded area immediately around label D does not include any known localities). The solid line in 
environmental space depicts the species’ fundamental niche, which represents the full range of abiotic conditions within 
which the species is viable. In geographical space, the solid lines depict areas with abiotic conditions that fall within 
the fundamental niche; this is the species’ potential distribution. Some regions of the potential distribution may not be 
inhabited by the species due to biotic interactions or dispersal limitations. For example, area B is environmentally suitable 
for the species, but is not part of the actual distribution, perhaps because the species has been unable to disperse across 
unsuitable environments to reach this area. Similarly, the non-shaded area around label C is within the species’ potential 
distribution, but is not inhabited, perhaps due to competition from another species. Thus, the non-shaded area around 
label E identifies those parts of the fundamental niche that are unoccupied, for example due to biotic interactions or 
geographical constraints on species dispersal.
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environment are sometimes incorporated (e.g., Araújo and Luoto 2007; Heikkinen et al. 2007). 
However, the distinction between biotic and abiotic variables is often problematic; for example, land 
cover type is likely to incorporate both abiotic (e.g., urban) and biotic (e.g., deciduous forest) classes.

Another important factor that we must be aware of is source-sink dynamics, which may cause a 
species to be observed in unsuitable environments. “Source-sink” refers to the situation whereby 
an area (the “sink”) may not provide the necessary environmental conditions to support a viable 
population, yet may be frequently visited by individuals that have dispersed from a nearby area 
that does support a viable population (the “source”). In this situation, species occurrence may be 
recorded in sink areas that do not represent suitable habitat, meaning that the species is present 
outside its fundamental niche (Pulliam 2000). We can logically expect this situation to occur most 
frequently in species with high dispersal ability, such as birds. In such cases it is useful to only utilize 
records for modeling that are known to be from breeding distributions, rather than migrating 
individuals. Because correlative species distribution models utilize observed species occurrence 
records to identify suitable habitat, inclusion of occurrence localities from sink populations is 
problematic. However, it is often assumed that observations from source areas will be much more 
frequent than observations from sink areas, so this source of potential error is commonly overlooked.

One more thing to be aware of before we move on is that some studies explicitly aim to only 
investigate one part of the fundamental niche, by using a limited set of predictor variables. For 
example, it is common when investigating the potential impacts of future climate change to focus 
only on how climate variables impact species’ distributions. A species’ niche defined only in terms of 
climate variables may be termed the climatic niche (Pearson and Dawson 2003), which represents the 
climatic conditions that are suitable for species existence. An approximation of the climatic niche may 
then be mapped in geographical space, giving what is commonly termed the bioclimate envelope 
(Huntley et al. 1995; Pearson and Dawson 2003).

Estimating niches and distributions
Let us now consider the extent to which species distribution models can be used to estimate the 
niche and distribution of a species. We will assume in this section that the chosen model algorithm 
is excellent at defining the relationship between observed occurrence localities and environmental 
variables; this will enable us to focus on understanding the ecological assumptions underlying 
distribution models. 

Let us first ask what the aim of the modeling is: what element of a species’ distribution are we trying 
to estimate? There are many potential uses of the approach (Table 1) and these require modeling 
either the actual distribution or the potential distribution. For example, if a model is being used 
with the purpose of selecting sites that should be given high conservation priority, then modeling 
the actual distribution will be the aim (since there would be less priority given to conserving sites 
where the environment is suitable for the species, but the species is not present). In contrast, if the 
purpose is to identify sites that may be suitable for the reintroduction of an endangered species, then 
modeling the potential distribution is an appropriate aim. We will now consider the degree to which 
alternative aims are achievable using the species distribution modeling approach.

Correlative species distribution models rely on observed occurrence records for providing information 
on the niche and distribution of a species. Two key factors are important when considering the 
degree to which observed species occurrence records can be used to estimate the niche and 
distribution of a species:
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Type of use Example reference(s)

Guiding field surveys to find populations of known species
Bourg et al. 2005; Guisan et al. 
2006

Guiding field surveys to accelerate the discovery of unknown species Raxworthy et al. 2003

Projecting potential impacts of climate change
For review see Stanton et al. 
2015; Blair et al. 2022

Predicting species’ invasion
Higgins et al. 1999; Thuiller et 
al. 2005; Barbosa et al. 2012

Exploring speciation mechanisms
Graham et al. 2004; Kozak and 
Wiens 2006; Musher et al. 2020

Supporting conservation prioritization and reserve selection Villero et al. 2017

Species delimitation
Raxworthy et al. 2007; Bett et 
al. 2012

Assessing the impacts of land cover change on species’ distributions Gavrutenko et al. 2021

Testing ecological theory
Anderson et al. 2002; Graham 
et al. 2006

Comparing paleodistributions and phylogeography
Hugall et al. 2002; Musher et al. 
2020

Guiding reintroduction or re-establishment of endangered species
Pearce and Lindenmayer 1998; 
Trinh-Dinh et al. 2022

Assessing disease risk Peterson et al. 2006, 2007

Assessing ecosystem services Manhães et al. 2018

Table 1. Some published uses of species distribution models in conservation biology (Based in part on Guisan and Thuiller 
2005).

1. The degree to which the species is at “equilibrium” with current environmental conditions. A 
species is said to be at equilibrium with the physical environment if it occurs in all suitable areas, 
while being absent from all unsuitable areas. The degree of equilibrium depends both on biotic 
interactions (for example, competitive exclusion from an area) and dispersal ability (organisms 
with higher dispersal ability are expected to be closer to equilibrium than organisms with lower 
dispersal ability; Araújo et al. 2005b). When using the concept of “equilibrium” we should 
remember that species distributions change over time, so the term should not be used to imply 
stasis. However, the concept is useful for us here to help understand that some species are more 
likely than others to occupy areas that are abiotically suitable.
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2. The extent to which observed occurrence records provide a sample of the environmental space 
occupied by the species. In cases where very few occurrence records are available, perhaps due 
to limited survey effort (Anderson and Martínez-Meyer 2004) or low probability of detection 
(Pearson et al. 2007), the available records are unlikely to provide a sufficient sample to enable 
the full range of environmental conditions occupied by the species to be identified. In other 
cases, surveys may provide extensive occurrence records that provide an accurate picture as 
to the environments inhabited by a species in a particular region (for example, breeding bird 
distributions in the United Kingdom and Ireland are well known; Gibbons et al. 1993). It should be 
noted that there is not necessarily a direct relationship between sampling in geographical space 
and in environmental space. It is quite possible that poor sampling in geographical space could 
still result in good sampling in environmental space.

Each of these factors should be carefully considered to ensure appropriate use of a species 
distribution model (see Box 2). In reality, species are unlikely to be at equilibrium (as illustrated by 
area B in Figure 2, which is environmentally suitable but is not part of the actual distribution) and 
occurrence records will not completely reflect the range of environments occupied by the species 
(illustrated by that part of the occupied niche that has not been sampled around label D in Figure 
2). Figure 3 illustrates how a species distribution model may be fit under these circumstances. 
Notice that the model is calibrated (i.e., trained) in environmental space and then projected into 
geographical space. In environmental space, the model identifies neither the occupied niche nor 
the fundamental niche; instead, the model fits only to that portion of the niche that is represented 
by the observed records. Similarly, the model identifies only some parts of the actual and potential 
distributions when projected back into geographical space. Therefore, it should not be expected that 
species distribution models are able to predict the full extent of either the actual distribution or the 
potential distribution.

This observation may be regarded as a failure of the modeling approach (Lawton 2000; Woodward 
and Beerling 1997; Hampe 2004). However, we can identify three types of model prediction that 
yield important biogeographical information: species distribution models may identify 1) the area 
around the observed occurrence records that is expected to be occupied (Figure 3, area 1); 2) a part 
of the actual distribution that is currently unknown (Figure 3, area 2); and/or 3) part of the potential 
distribution that is not occupied (Figure 3, area 3). Prediction types 2 and 3 can prove very useful in a 
range of applications, as we will see in the following section.

Uses of species distribution models

Consider modeled area 2 in Figure 3, which identifies part of the actual distribution for which no 
occurrence records have been collected. Although the model does not predict the full extent of the 
actual distribution, additional sampling in the area identified may yield new occurrence records. A 
number of studies have demonstrated the utility of species distribution modeling for guiding field 
surveys toward regions where there is an increased probability of finding new populations of a known 
species (Fleishman et al. 2003; Bourg et al. 2005; Guisan et al. 2006). Accelerating the discovery of 
new populations in this way may prove extremely useful for conservation planning, especially in 
poorly known and highly threatened landscapes.

Consider now predicted area 3 in Figure 3. Here, the model identifies an area of potential distribution 
that is environmentally similar to where the species is known to occur, but which is not inhabited. The 
full extent of the potential distribution is not predicted, but the model can be useful for identifying 
sites that may be suitable for reintroduction of a species (Pearce and Lindenmayer 1998) or sites 
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Figure 3. Diagram illustrating how a hypothetical species distribution model may be fitted to observed species 
occurrence records (using the same hypothetical case as in Figure 2). A modelling technique (e.g., GARP, Maxent) is 
used to characterize the species’ niche in environmental space by relating observed occurrence localities to a suite of 
environmental variables. Notice that, in environmental space, the model may not identify either the species’ occupied 
niche or fundamental niche; rather, the model identifies only that part of the niche defined by the observed records. When 
projected back into geographical space, the model will identify parts of the actual distribution and potential distribution. 
For example, the model projection labeled 1 identifies the known distributional area. Projected area 2 identifies part of 
the actual distribution that is currently unknown; however, a portion of the actual distribution is not predicted because 
the observed occurrence records do not identify the full extent of the occupied niche (i.e., there is incomplete sampling; 
see area D in Figure 2). Similarly, modeled area 3 identifies an area of potential distribution that is not inhabited (the full 
extent of the potential distribution is not identified because the observed occurrence records do not identify the full 
extent of the fundamental niche due to, for example, incomplete sampling, biotic interactions, or constraints on species 
dispersal; see areas D and E in Figure 2).
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where a species is most likely to become invasive (if it overcomes dispersal barriers and if biotic 
competition does not prevent establishment; Peterson 2003). Model predictions of this type also have 
the potential to accelerate the discovery of previously unknown species that are closely related to 
the modeled species and that occupy similar environmental space but different geographical space 
(Raxworthy et al. 2003).

Model predictions as illustrated in Figure 3 therefore have the potential to yield useful information, 
even though species are not expected to inhabit all suitable locations and sampling may be poor. 
Additional uses of species distribution modeling include identifying potential areas for disease 
outbreaks (Peterson et al. 2006), examining niche evolution (Peterson et al. 1999; Kozak and Wiens 
2006) and informing taxonomy (Raxworthy et al. 2007). However, some potential applications require 
an estimation of the actual distribution of a species. For example, if a model is being used with the 
purpose of selecting priority sites for conservation, then an estimate of the actual species’ distribution 
is desired since it would be inefficient to conserve sites where the species is not present (Loiselle et al. 
2003). In such cases, it should be remembered that modeled distributions represent environmentally 
suitable regions but do not necessarily correspond closely with the actual distribution. Additional 
processing of model output may be required to improve predictions of the actual distribution (Merow 
et al. 2022). For example, predicted areas that are isolated from observed occurrence records by a 
dispersal barrier may be removed (Peterson et al. 2002) and the influence of competing species may 
be incorporated (Anderson 2002; Kass et al. 2021; Merow et al. 2022).

It is useful to note that mechanistic distribution models (e.g., Chuine and Beaubien 2001; Kearney 
and Porter 2009) are subject to the same basic caveat as correlative approaches: the models aim to 
identify areas with suitable environmental conditions, but do not inform us which areas are actually 
occupied. Mechanistic models are ideally suited to identifying a species’ fundamental niche, and 
hence its potential distribution. This is because mechanistic approaches model physiological 
limitations in a species’ environmental tolerance, without relying on known occurrence records to 
define suitable environments. However, the detailed understanding of species’ physiology that is 
required to build mechanistic models prohibits their use in many instances.

The discussion in this section should help clarify the theoretical basis of the species distribution 
modeling approach. It is crucial that any application of these models has a sound theoretical basis 
and that model outputs are interpreted in the context of this framework (see Box 2). It should 
now be apparent why the terminology used to describe these models is so varied throughout the 
literature. The terms “ecological niche model,” “environmental niche model,” “bioclimate envelope 
model,” and “environmental suitability model” usually refer to attempts to estimate the potential 
distribution of a species. Use of the term “species distribution model” implies that the aim is to 
simulate the actual distribution of the species. Nevertheless, each of these terms refers to the same 
basic approach, which can be summarized as follows: 1) the study area is modeled as a raster map 
composed of grid cells at a specified resolution, 2) the dependent variable is the known species’ 
distribution, 3) a suite of environmental variables are collated to characterize each cell, 4) a function of 
the environmental variables is generated so as to classify the degree to which each cell is suitable for 
the species (Hirzel et al. 2002).
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Garbage in, garbage out: This old adage is as relevant to distribution modeling as it is to other 
fields. Put simply, a model is only as good as the data it contains. Thus, if the occurrence records 
used to build a correlative species distribution model do not provide useful information as to the 
environmental requirements of the species, then the model cannot provide useful output. If you 
put garbage into the model, you will get garbage out.

Model extrapolation: “Extrapolation” refers to the use of a model to make predictions for areas 
with environmental values that are beyond the range of the data used to calibrate (i.e., develop) the 
model. For example, suppose a distribution model was calibrated using occurrence records that 
spanned a temperature range of 10–20oC. If the model is used to predict the species’ distribution in 
a different region (or perhaps under a future climate scenario) where the temperature reaches 25oC, 
then the model is extrapolating. In this case, because the model has no prior information regarding 
the probability of the species’ occurrence at 25oC, the prediction may be extremely uncertain (see 
Pearson et al. 2006). Model extrapolation should be treated with a great deal of caution.

The lure of complicated technology: Many approaches to modeling species’ distributions utilize 
complex computational technology (e.g., machine learning tools such as artificial neural networks 
and genetic algorithms) along with huge GIS (Geographic Information Systems) databases 
of digital environmental layers. In some cases, these approaches can yield highly successful 
predictions. However, there is a risk that model users will be swayed by the apparent complexity of 
the technology: “it is so complicated, it must be correct”! Always remember that a model can only 
be useful if the theoretical underpinnings on which it is based are sound. For additional discussion 
of the limitations of ecological models, see the NCEP module “Applications of Remote Sensing to 
Ecological Modeling” available in NCEP module collection at https://ncep.amnh.org.

Box 2. Caution! On the use and misuse of models  
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