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Abstract

Several commonly used support measures are discussed and described as either optimal or expected support. This distinction is
based on whether the indices are based on a function of optimal and non-optimal hypotheses, or on the statistical expectation of
clades.
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Background

There is a plethora of supportmeasures used to indicate
the strength of cladistic (i.e. sister-group) statements in
systematics today. These include: (i) those based on
statistical resampling and probabilistic reasoning, such as
jackknifing (Quenouille, 1949, 1956; Tukey, 1958; Farris
et al., 1996), bootstrapping (Efron, 1979; Felsenstein,
1985; Efron and Tibshirana, 1993), and Bayesian clade
posterior probability (Mau et al., 1999), and (ii) those
linked to relative optimality values of hypotheses such as
Bremer support (Goodman et al., 1982; Bremer, 1988),
likelihood ratio (Fisher, 1912), and Bayes odd ratios
(Jeffreys, 1935, 1961). While resampling techniques are
broadly applicable–and their numerical values compara-
ble as percentages—those linked to specific optimality
criteria are not (e.g. marginal likelihoods cannot be
calculated for parsimony scores).

Statistical significance tests have also been developed
either explicitly (likelihood ratio tests summarized in
Felsenstein, 2004; Yang, 2006) or implicitly (bootstrap
values as confidence intervals–Felsenstein, 1985; Hillis
and Bull, 1993). The discussion here is not concerned
with whether or not a particular level of support is
‘‘significant,’’ but with the relationship among the types
of measures.

Given this diversity of measures and an absence of a
general definition of ‘‘support’’ separate from the
specifics of a particular index–how do these values
relate to one another? This discussion argues that there
are two classes of support measures: those that relate to
optimality criteria directly, and those that are derived
from statistical expectation of clades.

Optimality and optimal support

If we restrict ourselves to discussion of the three most
prevalent optimality criteria (parsimony, likelihood, and
Bayesian posterior probability), phylogenetic trees
(hypotheses) are adjudicated by reference to minimum
cost (weighted or unweighted), likelihood (probability of
the data given a stochastic evolutionary model and time
vector–lt branch lengths), or posterior probability
(probability of the tree given data, a set of stochastic
models, time vector, and prior probabilities of trees,
models, and time vectors1 ).

We can then define optimal support (So) of a group (g)
as a function f of the optimality values of the optimal
tree, A, with a particular clade or group g and that of B,
the best tree without that clade (Fig. 1):
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1This is based on use of the maximum a posteriori tree (MAP)

Rannala and Yang (1996) as opposed to clade posteriors (Mau et al.,

1999; Wheeler and Pickett, 2008)
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SoðgÞ ¼ f ðA;BÞ:

In parsimony, f is usually the Bremer support, the
difference in cost between the two hypotheses A and B:

So
parsimonyðgÞ ¼ Bcost � Acost:

For likelihood, f is their likelihood ratio:

So
likelihoodðgÞ ¼

prðDjAÞ
prðDjBÞ :

The Bayes odds ratio contains terms for the prior
probabilities of alternate trees, pr(T), as well as their
likelihood, resulting in an analogous ratio to that of
the likelihood ratio, but between marginal integrated
likelihoods.

So
BayesðgÞ ¼

prðAÞ � prðDjAÞ
prðBÞ � prðDjBÞ

Furthermore, we can show close links between these
functions via the use of the No-Common-Mechanism
model (Tuffley and Steel, 1997). If we consider a set of n
characters, each with r states, and li the number of
changes for the ith character on tree T. The non-additive
Fitch (1970) parsimony cost of that tree is Tcost ¼

Pn
i li.

The likelihood of T is (Tuffley and Steel, 1997):

Tlikelihood ¼
Yn

i

r�ðliþ1Þ:

If we take the logarithm of the likelihood value we
get:

log Tlikelihood ¼ log
Yn

i

r�ðliþ1Þ

¼
Xn

i

�ðli þ 1Þ log r

¼ �Tcost � log r � n � log r:

The logarithm of the likelihood ratio for group g
given A and B above will then be:

log So
likelihoodðgÞ ¼ log Alikelihood � log Blikelihood

¼ ðBcost � log r � n log rÞ
� ðAcost � log r � n log rÞ
¼ ðBcost � AcostÞ � log r

¼ Soparsimony � log r

(Wheeler, 2006). Given flat priors for trees, the Bayesian
posterior odds ratio reduces to the same value.

Resampling, clade posteriors, and expected support

Resampling support measures are not calculated
from optimal tree values, hence are not measures of
optimal support. Even though the determination of
tree quality in resampled data occurs (as it must) via a
specific optimality criterion, the actual tree optimality
values are not used further, only the frequency of
reconstructed groups. Likewise, clade posteriors (Mau
et al., 1999; Huelsenbeck and Ronquist, 2003) are not
functions of the posterior probability of the MAP tree
(and may conflict; Wheeler and Pickett, 2008). If these
values are not measuring optimal support, what are
they measuring?

Consider a probability distribution h on trees in tree
sample space (set of all potential trees) X. Let

mðgjT Þ ¼ 0 if g 62 T
1 otherwise

n

be the occurrence (m()) of group g in tree T. Then the
expectation (mean) of the occurrence of group g over all
trees is the product of m and h integrated over tree
space, X:

E½mðgjT Þ� ¼
X
T2X

mðgjT Þ � hðT Þ

This expression yields the average support of a group
over the tree space, and can be referred to as expected
support, Se(g) = E [m(g|T)].

Bayesian posterior probabilities of trees offer h(T )
explicitly (based on observations and prior distri-
butions of character change, trees, and edge lengths).
Hence, the clade posteriors as in Mau et al. (1999)
can be considered expected support. Resampling
methods generate pseudo-replicate data sets of the
same (bootstrap) or reduced (jackknife) size. Typi-
cally, a single tree (however collapsed) is determined
as best for that data set. This process will also
generate the h(T ) distribution of equation 3. Jackknife
and bootstrap methods therefore, also measure
expected support.

Fig. 1. Trees A (left) and B (right) with group g = {I, II, III} present
in A but not B.

658 W.C. Wheeler / Cladistics 26 (2010) 657–663



An example

As an illustration of the behaviour of optimal and
expected supports, consider the arthropod anatomical
data of Giribet et al. (2001). These data consist of 303
characters for 54 taxa. Here, all characters are treated as
non-additive (seven were additive in the original anal-
ysis). For the likelihood and Bayesian analyses,
No-Common-Mechanism (NCM; Tuffley and Steel,
1997) was employed with a flat prior distribution (for
trees T,p(Ti) = p(Tj); "i, j ˛ XT)) on tree topologies.
Flat clade priors are impossible (Steel and Pickett,
2006), hence clade posteriors (in the form of Bayesian
expected support) will have the well known clade size
effect (Pickett and Randle, 2005).

With the exception of the determination of the clade
posteriors, all analyses were performed using POY
version 4.1.1 Varón et al. (2008, 2010)). Bremer support
values were determined by examining a pool of 100
TBR neighborhoods after random addition Wagner
builds with command line: build(100) swap(all,

visited: ‘‘tmp’’) report(‘‘bremer.pdf’’,
graphsupports:bremer:‘‘tmp’’). Resampling
supports were determined from 250 replicates in each
case with command line: calculate support(jack-
knife: (resample:250), build(), swap(tbr,
trees:5)) report(‘‘jack.pdf’’, graphsup-
ports:jackknife:consensus) for jackknife (e)1

deletion) and: calculate_support(bootstrap:
250, build(), swap(tbr, trees:5)) report
(‘‘boot.pdf’’, graphsupports:bootstrap:con-
sensus) for bootstrap runs. Clade posterior probabil-
ities were calculated as in Wheeler and Pickett (2008)
using MrBayes (Huelsenbeck and Ronquist, 2003)
with options: lset parsmodel=yes mcmc
ngen=10 000 000 samplefreq=500 nchains=4
resulting in two runs of four chains each with 10 million
generations sampling every 500th visited topology.

Results are summarized in Figs 2–4. Parsimony runs
are shown in Fig. 2 (98 most parsimonious trees at
length 596), with broad but not complete agreement
among the Bremer, jackknife, and bootstrap supported

Fig. 2. Parsimony support analyses with: Bremer (support > 0) left, Jackknife (> 0.50) centre, and Bootstrap (> 0.50) right. Myriapod taxa are
outlined in red, crustacean in blue, and euchelicerate in green.
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clades. In general, a greater number of nodes show
Bremer support (e.g. Myriapoda) and the jackknife (e.g.
Euchelicerata and Crustacea) the least.

Likelihood results are shown in Fig. 3 (53 most likely
trees at log lik )773.817). As with parsimony, likelihood
ratios support more groups than resampling, with the
jackknife most conservative. Again, Myriapoda is an
example, in this case a supported paraphyletic arrange-
ment with respect to Hexapoda (as opposed to the
monophyly in the parsimony analysis).

Bayesian support results are shown in Fig. 4. Since
the priors of trees are equal, Bayes factors reduce to
likelihood ratios (although integrated) and are repeated
from Fig. 3 on the MAP tree. One of the interesting
differences among these support measures, and between
the clade-based expected Bayesian support (Fig. 4,
right) and all the others is the upholding of chelicerate
monophyly. Optimal support under all three opti-
mality criteria upheld chelicerate paraphyly (with
pycnogonids–Endeis, Collosendeis, and Ammotheidae
basal) as did expected parsimony support. Both
instances of expected likelihood support (jackknife and

bootstrap) were agnostic with support slightly lower
than 0.5. The expected Bayesian (via MrBayes) stood
alone with 0.6 posterior probability of monophyly.

The purpose of this demonstration was not to
determine general aspects of support behavior, but to
illustrate the applicability of optimal and expected
support in these three analytical frameworks. A second
motivation was to demonstrate that these measures can
support alternate phylogenetic scenarios. This is not a
defect in any particular measure, but a result of the fact
that optimal and expected support measure different
aspects of the data.

Support and hypothesis testing

Given the extensive discussion of the ideas of Popper
with respect to support (e.g. Grant and Kluge, 2007,
2008; Farris, 2008), it is fitting and proper to integrate
these ideas with Popper�s formalisms of explanatory
power (Popper, 1959), corroboration (Popper, 1959),
severity of test (Popper, 1963).

Fig. 3. Likelihood (NCM) support analyses with: )log likelihood ratios (support > 0) left, Jackknife (> 0.50) centre, and Bootstrap (> 0.50)
right. Myriapod taxa are outlined in red and hexapod in blue.
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Severity of test (S and S¢) and explanatory power (E
and E¢) are both described by the same alternate
formalisms2

Sðejh; bÞ ¼ Eðhje; bÞ ¼ prðejh; bÞ � prðejbÞ
prðejh; bÞ þ prðejbÞ

S0ðejh; bÞ ¼ E0ðhje; bÞ ¼ prðejh; bÞ
prðejbÞ

based on probabilities pr of evidence e (= data),
hypothesis h (in this case, a tree), and background
knowledge b including all untested assumptions. These
are interpreted either as the discriminating ability of the

evidence in light of a hypothesis and background
knowledge, for the former, or the ability of the
hypothesis to account for the data in the latter.

Corroboration shares the numerator of S and E with
an alternate normalizing factor in the denominator,

Cðh; e; bÞ ¼ prðejh; bÞ � prðejbÞ
prðejh; bÞ � prðehjbÞ þ prðejbÞ

hence is directly proportional to these other measures.
Clearly, these formulations fall into the category of

optimal support measures, with severity of test and
explanatory power as functions of likelihoods with A
and B from above: pr(e|hb) = pr(D|A) and pr(e,b) =
pr(D|B) (as Popper, 1959; himself points out) condi-
tioned upon background knowledge, including model
assumptions. Optimal support does not correspond
exactly to the notion of objective support (Grant and
Kluge, 2007, 2008), since the latter relies on an

Fig. 4. Bayesian support analyses with MAP: )log odds ratios (support > 0) left and clade posterior probabilities as reported by MrBayes (> 0.50)
right. Chelicerate taxa are outlined in green.

2The S and E used here for severity of test and explanatory power

are not to be confused with the S and E used earlier to signify support

and expectation. Changing either, I fear, would be more confusing

than overusing standard, if non-unique, terms.

661W.C. Wheeler / Cladistics 26 (2010) 657–663



additional requirement based on an alternate formula-
tion of E, namely the minimum number of character
transformations required by a tree (= equally weighted
parsimony score) (Kluge and Grant, 2006; Grant and
Kluge, 2008).

Conclusions

The purpose of this discussion is to make more
precise the inter-relationships among several commonly
used indices of support. In short, if we consider the
distribution of tree cost over the universe of possible
trees, optimal support values measure differences
among trees at the extreme tail of the distribution,
ideally, the absolute extreme values. Expected support,
on the other hand, looks to the central tendencies of the
distribution, its centre of mass, its mean. These
measures describe group support only for the data set
at hand, and any conclusions drawn are specific to those
observations.

The example presented here demonstrates that opti-
mal and expected support flow naturally from optimal-
ity criteria and can be applied across different analytical
paradigms. These two classes of support measures target
alternate aspects of the data, hence may disagree on
those clades that are ‘‘supported’’ and those that are
not.

If one envisions characters as samples from a universe
of potential observations, expected support offers pre-
dictive statements about the occurrence of groups in
future, unobserved data. If one views characters as
historically unique entities, such distributional state-
ments are without much meaning. Optimal support
measures are concerned only with the relative optimality
values of alternate hypotheses, hence are linked directly
to the criteria that governed hypothesis choice initially,
placing them at the centre of optimality-based hypoth-
esis testing.
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