
POY version 4: phylogenetic analysis using dynamic homologies

Andrés Varóna,b,*, Le Sy Vinha,c and Ward C. Wheelera

aDivision of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, USA; bComputer Science

Department, The Graduate School and University Center, The City University of New York, 365 Fifth Avenue, New York, NY, USA; cCollege of

Technology, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Accepted 11 July 2009

Abstract

We present POY version 4, an open source program for the phylogenetic analysis of morphological, prealigned sequence,
unaligned sequence, and genomic data. POY allows phylogenetic inference when not only substitutions, but insertions,
deletions, and rearrangement events are allowed (computed using the breakpoint or inversion distance). Compared with
previous versions, POY 4 provides greater flexibility, a larger number of supported parameter sets, numerous execution time
improvements, a vastly improved user interface, greater quality control, and extensive documentation. We introduce POY�s
basic features, and present a simple example illustrating the performance improvements over previous versions of the
application.

� The Willi Hennig Society 2009.

POY is an open source, phylogenetic analysis pro-
gram for molecular and morphological data. Version
3.0.11 was released in September 2004, and work on
version 4.0 began in 2005. After more than a year of
public beta testing which started early in 2007, versions
4.0 and 4.1 have now been released.

Version 4 supports maximum parsimony as its
optimality criterion1. Like most software of this class,
POY analyses the standard non-additive, additive, and
matrix characters commonly found in other phyloge-
netic analysis programs (Swofford, 1993; Goloboff,
1999a; Goloboff et al., 2008). Most importantly, POY
supports the analysis of dynamic homology (DH)
characters, which allow the use of unaligned sequences
as characters (Wheeler et al., 2006). With DH charac-
ters, POY can infer substitutions, insertions, deletions,
inversions, and translocations, at the locus, chromo-
somal, and genomic level, as the phylogenetic analysis

goes on. This makes POY a unique application,
providing the broadest range of characters for its users.

The main goals of version 4 were to increase the
application�s flexibility (e.g. POY 3.0 only supported one
set of parameters for all sequences), increase perfor-
mance, reduce the learning curve for new users, improve
quality control, and maximize the maintainability and
extensibility of the source code.

Here we describe the basic features of the program.
We begin with its most important phylogenetic analysis
features (see section on ‘‘Phylogenetic analysis fea-
tures’’), the basic characteristics of the new user interface
and command structure (‘‘User interface’’), followed by
the script execution in sequential and parallel environ-
ments (‘‘Script execution’’), and a number of other
relevant application features as well as limitations
(‘‘Other features’’). This basic description is followed
by performance comparisons (‘‘Performance example’’),
and a list of available resources for current and new
users (‘‘Program resources, availability, distribution,
and licence terms’’).

This application note is a general overview of POY 4,
and is not intended to be a replacement for the user
manual. Instead, it is a description of its main features,

*Corresponding author.
E-mail address: avaron@amnh.org

1Previous versions of POY supported Maximum Likelihood (ML).

See section on ‘‘What the program cannot do’’ for further information

on this topic.

� The Willi Hennig Society 2009

Cladistics 26 (2010) 72–85

Cladistics

10.1111/j.1096-0031.2009.00282.x

and some formalisms required to understand the pro-
gram�s use.

Phylogenetic analysis features

As with most phylogenetic analysis software, the
features in POY can be divided into three groups:
calculating the evolutionary distance between a pair of
vectors of states, computing the score of a tree given an
assignment of character states to its terminals, and
searching for a tree of minimal cost. More complex
functions are performed by composing elements of these
three groups (e.g. support calculation), while others
belong to basic input and output functionality (e.g.
printing a consensus tree).

For the most common types of static homology
analyses, the first two groups (i.e. distance between
vectors of states, and tree score) have well-known
algorithms, for which efficient polynomial time solutions
exist and have been implemented in POY 4. For
dynamic homology characters, however, computing
a distance and the cost of a tree can be major
computational tasks by themselves.

Following these main groups, we describe
the phylogenetic analysis features available in POY in
a bottom-up fashion: first the character types that are
supported, then the algorithms for the tree cost
calculation (informally), and finally the search
strategies. We briefly describe the input and output
functions in the section on ‘‘Other features’’.

Supported character types

A character is defined with two components: its valid
states and the function to compute the evolutionary
distance between states. Considering the properties of
valid states, two main groups of characters are
supported in POY 4: static homology and dynamic
homology. To define them, we must first clarify the
notion of state.

Character states. We are interested in characters that
encompass multiple sources of variation. The following
four examples are not exhaustive, but illustrate this
diversity.

1. Morphology. A typical character could be the fruit
colour of a plant. The character states could be red,
green, and yellow. Usually, such a set of valid states
corresponds exactly to those observed in the taxa of
interest. Consider now two possible encoding schemes:
non-additive and additive.

As a non-additive character, the transformation cost
between any pair of different states is equal. States that
could occur in nature, but were not observed (such as
orange), do not have any effect on the score of the

phylogenetic hypotheses: if included in the list of
acceptable states, it would be ignored throughout the
tree cost evaluation.

As an additive character, however, the interpretation
is different. Suppose now that the systematist chooses to
treat the states as ordered conditions in a continuum, for
example by coding red as 1, yellow as 2, and green as 3.
If orange were later found occurring in the group of
interest, it might be preferable to encode the states of the
character with red as 1, orange as 2, yellow as 3, and
green as 4, producing an alternative cost regime. If not
observed, it would implicitly be included in the character
coding scheme.

2. Sequence of loci. Suppose now that we are
analysing sequences of loci from the mitochondrial
chromosome. For the sake of argument, we assume
that all species in the analysis have exactly the same
set of loci. The character is the chromosome itself,
and the states are represented by the order of loci; it
is not the elements included in each state, but their
particular order, which is phylogenetically informative.
We can also assume that the locus permutations in
our sample do not constitute all the potential states,
but a fraction of a much larger set, including all
possible permutations (super-exponentially many, i.e.
n! for n loci). Unlike the morphology example, the
mechanisms that could explain such permutations do
not include substitutions per se. Instead, the distance
between a pair of permutations could be computed
using very different mechanisms (e.g. inversions, tan-
dem duplication–random loss). For such a character,
the homologies between loci are not tested, but rather
the order in which they occur.

3. Nucleic acid sequence. In this example, a particular
locus is the character (e.g. 18S rRNA). The states
observed are RNA sequences, i.e. words in the {A, C, G,
U} alphabet. Although we observe only a small fraction
of the words, the states that could have occurred in
nature include, in principle, all the possible words of this
alphabet: an infinite number of states.

4. Complete chromosome. Suppose now that we are
interested in the analysis of a complete chromosome
from a group of plants. Assume that we have one
complete chromosome for each terminal that is believed
to be homologous across the group. Moreover, we have
annotated those chromosomes such that the limits of
functional units are well established. We will further
assume in the analysis that rearrangements, gain, and
loss of functional units are possible, but restricted to our
predefined limits (i.e. we consider the rearrangement of
the two halves of a functional unit to be impossible).
However, the correspondences between functional units
are uncertain, and we would like to generate them for
each phylogenetic analysis.

Unlike the previous two examples, a chromosome
state is not defined by a small but an infinitely large

73A. Varón et al. / Cladistics 26 (2010) 72–85

alphabet. Each functional unit could be, potentially, any
DNA sequence. This character is the composition of the
previous two examples, where DNA sequences are the
elements comprising each character state. We are
interested in the insertions, deletions, and substitutions
occurring between corresponding functional units, and
also in the higher level events that modify the order in
which these units occur. Clearly, a huge number of
possible states is not being observed, yet must be
considered in the character coding scheme if we want
to produce a meaningful analysis.

Two characteristics should be highlighted from the
previous examples.

1. Not all the states need to be observed to be relevant
on the analysis. Depending on conditions, states that
have not been observed may have no (e.g. as in non-
additive characters) or a fundamental effect (e.g. addi-
tive, DNA genes as described above).

2. A character could have infinitely many states,
describing complex entities, such as the order of the
elements composing it. Moreover, there could also be
infinitely many possible elements.

We say that a character C is a set of states, where
each state is an ordered set of elements from a predefined
alphabet R. In our morphological example, R = {red,
yellow, green}, and the valid states are ordered sets
with only one element, i.e. C = R1 (Æredæ, Æyellowæ,
Ægreenæ; a terminal could have multiple states). In the
locus sequence example, the alphabet is the set of
mitochondrial genes, i.e. R = {CO1, CO2, CO3,
ATP6,...}, while C includes all the permutations of
the elements in E. In this case, every valid state must
include all the genes (i.e. an exponential, but finite
number of states). In the sequence character example,
the alphabet is R = {A, C, G, U}, while the valid states
are all the sequences that could be created with it, i.e.
C = R* (i.e. infinitely many states). In the chromo-
somal character example, the alphabet itself is R = {A,
C, G, T}* (i.e. all the words that can be created with
{A, C, G, T}), and the valid states are C = R*. In this
case, the alphabet itself has an infinite number of
elements.

We are ready to define static homology and dynamic
homology characters.

Static homology characters. Let A and B be two states of
a character. A correspondence between the elements in
A and B is a relation between them. We define static
homology characters as those in which for every element
in A there is at most one corresponding element in B,
and the correspondence relations are transitive (i.e. let a
2 A, b 2 B, and c 2 C be elements of different states,
where a corresponds to b, and b corresponds to c; then a
and c must also correspond to each other). Correspond-
ing elements with the same value match the notion of
primary homology (de Pinna, 1991).

Dynamic homology characters. We define as dynamic
homology characters (Wheeler, 2001) the complement of
their static homology counterparts: for some pair of
states A and B, there exists an element a 2 A that has
more than one corresponding element in B, or the
correspondences are not transitive. Dynamic homology
characters typically have states that may have different
cardinalities, and no putative homology statements
among the state elements. These characters formalize
the multiple possibilities in the assignment of corre-
spondences (primary homologies) between the elements
in a pair of states, which can only be inferred from a
transformation series linking the states, and the distance
function of choice. A subset of correspondences from
dynamic homology sequence character that matches the
conditions of static homology characters (i.e. at most
one corresponding element, and transitivity) is what De
Laet (2004) has called comparable bases. (See the
definition of sequence characters below.)

In the first two examples, the correspondences are
hypothesized a priori, and tested in the phylogeny. To
illustrate this, in the morphology example, the element
red in the state Æredæ corresponds only to the element
yellow in the state Æyellowæ; in the sequence of loci
example, the occurrence of the subsequence
ÆCO1,ATP6,CO2æ in a state can only correspond to a
subsequence containing exactly those three elements in
another state (e.g. ÆCO2,CO1,ATP6æ).

In the later two examples, a hypothesis of correspon-
dence between the elements of a state is based on a
particular sequence of intermediate states spanning
them. In a phylogenetic context, such intermediate
conditions are only sound if defined as hypothetical
ancestral states of a tree. To illustrate this case, consider
the nucleic acid sequence example. Assume that the
following pair of sequences are homologous: AGAGA
GAG and GA. To simplify the example, suppose that
only insertions, and deletions, could have occurred in
the transformation from one sequence into the other. It
would be difficult then to define with certainty a set of
correspondences between these two sequences prior to a
phylogenetic analysis: there are 14 possible correspon-
dence relations between the elements of this pair of
states. In static homologies, only one set of correspon-
dences can be selected for the analysis, while under
dynamic homologies, multiple correspondences are
considered.

Static homology characters. POY 4 recognizes five types
of static homology characters: Sankoff, additive, non-
additive, breakpoint, and inversion.

Sankoff characters have n valid states, and an n · n
metric distance matrix m such that mi,j holds the
distance between state i and state j. The maximum
number of states accepted is limited only by the memory
constraints of the computer executing POY. Sankoff

74 A. Varón et al. / Cladistics 26 (2010) 72–85

characters can be loaded from dpread files (Wheeler
et al., 2006), prealigned molecular files, or generated
from an implied alignment (see section on ‘‘Transfor-
mations between character types’’). The distance com-
putation between a pair of vectors of states has time
complexity O(n2).

The following two static homology characters (addi-
tive and non-additive) are common special cases of
Sankoff characters, for which the distance between two
vectors of states can be computed in constant time
(O(1)).

Additive characters allow each state i 2 N,
0 £ i £ 255, with distance matrix mi,j = |j – i|. Additive
characters can be loaded from Nona ⁄TNT matrices, or
NEXUS files.

Non-additive characters are also known as unordered
characters (Fitch, 1971). POY supports up to 30 states in
32-bit architectures, and 62 states in 64-bit architectures.
The distance matrix is the Hamming distance (1950):

mi;j ¼ 1 if i6¼j
0 othewise:

n

Non-additive characters can be loaded from Nona ⁄
TNT, NEXUS files, prealigned molecular files, or
automatically generated from the implied alignment of
dynamic homology characters when the cost of all
substitutions is some constant a, and that of all indels is
some constant b (see section on ‘‘Supported character
types’’).

Breakpoint characters consist of sequences in any
user-defined alphabet (known in the POY 4 user
interface as custom alphabets). Typically, each element
in the alphabet corresponds to a homologous locus. The
evolutionary distance between these sequences is com-
puted as the breakpoint distance (Blanchette et al.,
1997). Formally, given two permutations A = Æal... anæ
and B = Æbl... bnæ of elements in some alphabet R, we
say that every ai and ai + 1 are adjacent elements in A (al
and an are also considered adjacent in circular chromo-
somes). A pair x, y 2 R is a breakpoint if x and y are
adjacent in A but not in B. Given a breakpoint cost c,
the breakpoint distance between two sequences A and B
is cb(A, B), where b(A, B) is the number of breakpoints
in A (and symmetrically in B). Breakpoint characters
can be loaded from custom alphabet files (Varón et al.,
2008). The time complexity to compute the distance
between a pair of states is O(n).

Inversion characters consist of sequences in any user-
defined alphabet extended with the tilde sign (�) to
represent ‘‘inverted’’ characters, i.e. their reverse com-
plement. Typically, each element is a locus, where loci
with the same name are homologous. In this notation,
�A is the inversion of A (i.e. the reverse complement of
A) and vice versa. The evolutionary distance between
these sequences is the inversion distance (Caprara,
1997). Formally, let A = Æal... anæ and B = Æb1... bnæ

be a pair of permutations of the same set of elements.
An inversion of a subsequence ai, ai + l,...,aj is �aj,...,
�ai + 1, �ai, such that ��x = x. Given an inversion
cost c, the inversion distance between the permutations
A and B is ci(A, B), where i(A, B) is the minimum
number of inversions required to transform A into B.
Inversion distances in POY are computed using the
high-performance functions of GRAPPA (Moret et al.,
2002). Inversion characters can be loaded from custom
alphabet files (Varón et al., 2008).

Dynamic homology characters. Dynamic homology
characters are generically referred to as ‘‘molecular’’ in
the POY 4 user interface. Such naming is due to their
more common usage with molecular sequences, but the
input data need not represent molecular characters. The
following dynamic homology character types are sup-
ported.

Sequence characters support as valid states any word
in R*, from a predefined alphabet R (typically R = {A,
C, G, T}). Sequence characters allow the occurrence of
insertion, deletion, and substitution events to calculate
the evolutionary distance and correspondences of ele-
ments implied by each tree. A deletion of position i in
the sequence s = Æsl,..., si,..., snæ yields the sequence
Æsl,..., si–1, si + 1,..., snæ. An insertion is symmetric to the
deletion. A substitution with element e in position i
generates the sequence Æsi,..., si–1, e, si + 1,..., snæ. To
define the distance function we must first define the set
of edited sequences. Let Rin = R [{indel} be an
extended alphabet that includes the placeholder indel
which does not occur in R. The set of edited sequences
ed(A) � R*

in, A 2 R*, contains all the sequences that can
be produced by inserting indel elements in A. A
transformation cost matrix (tcm) is |Rin| · |Rin| matrix
holding the distance between every pair of elements in
Rin. An indel block is a subsequence containing only
indel elements. Given some constant c and a transfor-
mation cost matrix tcm such that tcm(x, y) 2 N, x,
y 2 Rin is the cost of transforming x into y, the
alignment (or edition) cost between two sequences A
and B, A, B 2 R* of length n containing kmaximal indel
blocks is algn(A, B) = ck + Ro£i<n tcm(Ai, Bi), where
Ai and Bi are ith elements in the sequence A and B,
respectively. The distance between two sequences C and
D is defined as d(C, D) = min|C¢|=|D¢| algn(C ¢, D¢),
where C ¢ 2 ed(C) and D¢ 2 ed(D) (Fig. 1a, b).

An important difference between POY version 3 and
version 4 is the way a non-metric tcm is handled. A non-
metric tcm was not supported in POY version 3, and
would produce incorrect results and tree lengths. POY 4
supports non-metricity, provided it is caused by a low
(but greater than zero) indel cost. The application issues
a warning when non-metric tcm�s are being used. This
feature, however, does not imply that POY 4 somehow
avoids trivial alignments when the indel cost is too low

75A. Varón et al. / Cladistics 26 (2010) 72–85

(e.g. AAA— and —TAA). Its main usage is to define a
very low indel cost in conjunction with a gap opening
parameter (i.e. affine gap costs).

POY 4 also accepts any alphabet: nucleotide (using
the complete IUPAC codes, see Liebecq, 1992), amino
acid (a subset of the IUPAC codes, see Liebecq, 1992),
and user-defined custom alphabets (Varón et al., 2008).
Sequence characters can be loaded from FASTA files,
NEXUS files with the unaligned block, custom alphabet
files, and most file formats produced by GenBank. The
time complexity to compute the distance between a pair
of states of cardinality m and n is O(mn).

Chromosomal characters have as valid states any
word in R*, where R = {A, C, G, T}. Each element
of a state represents a chromosomal fragment, and

each fragment a nucleotide sequence character itself.
Chromosomal characters can detect fragment inver-
sions, fragment rearrangements, and fragment indels,
along with the familiar sequence-level insertions,
deletions, and substitutions within the segment. The
distance computation is done in two steps: a pairwise
alignment at the fragment level, under the user-
provided parameters, followed by a rearrangement
distance computation using the functions provided by
GRAPPA (Moret et al., 2002). The selection of
homologous segments is heuristic and is described
elsewhere (Vinh et al., 2006).

Segment limits can be specified or inferred in three
different ways, yielding three different character types.

Automatic segment detection uses complete unaligned
nucleotide sequences. During the tree cost computation,
the sequences are divided into distinctly conserved
regions (blocks), according to the user-provided param-
eters. The blocks can then be subjected to rearrangement
events, which are heuristically detected (Fig. 1c) (Vinh
et al., 2006). The distance computation consists of the
following steps: detection of potentially homologous
regions, computation of their pairwise distance using
pairwise alignments, removal of inserted segments
(segments that have no homologues), and rearrange-
ment computation using breakpoint or inversion dis-
tance through GRAPPA (Moret et al., 2002). This type
of character can be loaded from the same file types
supported for sequence characters.

Partitioned chromosomes where the user divides
nucleotide sequences using the pipe symbol (|) in the
input sequences. The program does not automatically
detect blocks in this case, but employs those defined by
the pipes. Rearrangements, inversions, and segment
indels are detected (Fig. 1d) (Vinh et al., 2006). The
distance computation consists of a pairwise alignment of
the user-provided segments, detection of homologous
segments according to the user-provided parameters,
removal of inserted segments, and rearrangement dis-
tance calculation using breakpoint or inversion distance
through GRAPPA (Moret et al., 2002). Partitioned
chromosomes can be loaded from FASTA files, where
each fragment is delimited with a pipe sign (|).

Annotated chromosomes where the user assigns a name
to each individual locus. Loci with shared names are
considered homologues. Employing this user-defined
alphabet, locus indels and rearrangements can be
detected (Fig. 1e). The distance calculation continues
as in partitioned chromosomes, with the difference that
elements with the same name are assumed to be
homologous and no homology detection is required.
Annotated chromosomes can be loaded from custom
alphabet files.

Rearrangement distances can be computed using the
breakpoint distance (Blanchette et al., 1997), or the
inversion distance (Caprara, 1997), computed by

(a)

(b)

(c)

(d)

(e)

Fig. 1. Homologies potentially inferred by the different classes of
dynamic homology characters (excepting genomes), compared with a
reference set of transformations. (a) Input sequences on the left and
expected homology statements on the right. The sequences present
four (upper sequence) and three loci (lower sequence), with indels
occurring in the green loci, as well as a locus rearrangement. The
orange locus shows an indel event between the two sequences. (b) As
sequence characters. Insertions, deletions, and substitutions are
inferred. For sufficiently complex sequences, the alignment will
expand, trespassing the locus ‘‘limits’’. (c) As raw chromosome
characters. With no user-provided limits, POY 4 attempts to infer
rearrangements, and locus indels, in addition to sequence insertions,
deletions, and substitutions. The program attempts to establish locus
limits based on conserved segments. (d) As chromosome characters.
With user-provided limits between loci, POY 4 attempts to infer
rearrangements and locus indels, as well as sequence insertions,
deletions, and substitutions. The program will not attempt to modify
the user-provided locus limits. (e) As annotated chromosome charac-
ters, employing the user-provided alphabet to represent homologous
loci. Only rearrangements, locus indels, and locus substitutions can be
inferred directly by the application.

76 A. Varón et al. / Cladistics 26 (2010) 72–85

GRAPPA (Moret et al., 2002). POY 4 supports both
linear and circular chromosomes, but not mixtures.

Genome characters are defined as sets of chromo-
somes. For this type of character, there is no implied
order for the chromosomes, and therefore the user input
order is irrelevant. POY automatically detects homolo-
gous chromosomes, and considers chromosomal inser-
tions and deletions, along with those events occurring
within a chromosomal character as described in the
previous section. Genome characters can be loaded from
FASTA files, where each chromosome is delimited with
the @ sign.

Tree cost calculation

Well-known algorithms are used for the three most
commonly used static homology characters: the cost of
trees with non-additive (Fitch, 1971) and additive
(Farris et al., 1970) characters is computed in O(nm)
time complexity, where n is the number of nodes in the
tree and m is the number of characters. The cost
calculation for trees with Sankoff characters (Sankoff
and Rousseau, 1975) has time complexity O(nms2),
where s is the maximum number of character states.
These algorithms yield exact tree costs and an optimal
assignment to the interior nodes. For breakpoint, and
inversion characters, the tree cost calculation is heuris-
tically approximated, with an overall time complexity of
O(nm), where n is the number of nodes in the tree and m
is the cardinality of the breakpoint or inversion states.

The tree cost calculation for dynamic homology
characters, i.e. sequence, chromosome, and genome
characters, is at least NP-Hard (e.g. Wang and Jiang,
1994). POY 4 implements a number of heuristic algo-
rithms to bound the tree cost. These algorithms can be
divided into two classes: initial assignment to the
interior nodes of the tree, and iterative improvement
to refine the total cost calculated for that tree.

Initial assignment. The initial assignment is similar in
spirit to the down-pass in static homology algorithms
(e.g. Fitch, 1971). During the diagnosis of an input tree
with n terminals, POY 4 computes 2n—3 implied
alignments, one for each possible root (i.e. the align-
ments inferred for each possible rooted tree from the
initial unrooted tree). From these, the best alignment
(i.e. the one yielding the lowest tree cost) is assigned to
the tree. Each tree can only have one alignment
assigned.

Sequence characters. There are three basic algorithms
for an initial tree cost calculation in POY 4: fixed states
(Wheeler, 1999) (similar but stronger than the Lifted
Assignment of Wang et al., 1996), direct optimization
(Wheeler, 1996), and affine direct optimization (Varón
et al., 2009). The first is a two-approximation method of
time complexity O(n3). As currently implemented, fixed

states yields tighter results (i.e. better tree costs) for
molecular characters with amino-acid or large user-
defined alphabets (more than six elements), and there-
fore is the recommended heuristic for those character
types.

Direct optimization and affine direct optimization
have time complexity O(nms2), where s is the maximum
state cardinality. These algorithms yield tighter results
for nucleotide alphabets or small user-defined alphabets
(fewer than seven elements). Direct optimization is used
when the gap opening parameter is 0, otherwise affine
direct optimization is employed.

Chromosomal and genome characters. Within the
chromosomal types, a set of k medians is heuristically
selected and maintained at each node, where k is a user-
provided parameter. With larger k, more medians are
maintained. Each median is created using a randomized
greedy algorithm, and improved using a local search,
rearranging each median to produce a new one of lower
cost, until no better can be found (Vinh et al., 2006).

Iterative improvement. Once an initial character assign-
ment is performed, POY can iteratively improve the
overall tree cost by adjusting the characters of each
interior node, based on the corresponding characters
assigned to its three neighbours. The adjustment of the
characters on each node can occur with two possible
methods: using the same techniques of the initial
assignment, or an exact three-dimensional alignment.

Approximate uses the initial assignment algorithm of
each character to pick a better median for each interior
node. On every iteration, POY produces three potential
medians, corresponding to the three possible directions
to compute the initial assignment algorithm (Varón
et al., 2009) (Fig. 2). This method is supported in all the
dynamic homology characters.

Exact performs a complete three-dimensional align-
ment of the three neighbour sequences of an interior
node, and creates an optimal median which is the new
sequence of the node (Sankoff et al., 1976; Wheeler,
2003). This method is supported only in nucleic acid
sequence characters.

The two methods can be applied until one of the
following two conditions occurs: no further tree cost

Fig. 2. An iteration of the approximated iterative improvement. To
improve x, DO or affine-DO is used to produce x1, x2, and x3, in the
three possible rooted trees with terminals u, v, and w. If the best
assignment x1 yields a better score than the original x, then it is
replaced, otherwise no change is made.

77A. Varón et al. / Cladistics 26 (2010) 72–85

improvement can be made, or a user-specified maximum
number of iterations is reached. The selected method is
applied to all the dynamic homology nucleotide
sequences.

Phylogenetic tree search

POY 4 provides numerous algorithms for heuristic
searches of the most parsimonious tree. To simplify the
exposition, in the time complexity description of the
following algorithms we will assume that the computa-
tion of the character distances and interior nodes of the
trees takes constant time. Due to implementation
details, most of the algorithms mentioned below have
a O(log n) overhead factor, where n is the number of
terminals. In a modern analysis, this factor is typically
small compared with the number of characters and
sequence lengths. Nevertheless, it will be eliminated in a
future version of POY.

Initial tree building. Every heuristic search algorithm
requires a method to generate the initial set of trees.
POY 4 includes three main methods: branch and bound
(Hendy and Penny, 1982), Wagner tree building (Farris
et al., 1970), and minimum spanning tree guided.

Branch and bound. This method of tree building
provides, in principle, an exact solution to the phylogeny
problem (Hendy and Penny, 1982). Unfortunately, this
is only true if the calculation of the tree cost is exact,
something that cannot be guaranteed for some character
types. Therefore, if a user builds a tree using branch and
bound, the solution is exact up to the goodness of the
tree cost algorithm. The overall time complexity of
branch and bound remains exponential in the number of
terminals, and therefore it is only recommended for data
sets with a very small number of terminals.

Wagner tree. The Wagner algorithm (Farris et al.,
1970) uses a greedy strategy to create an initial tree, by
iteratively connecting a terminal to the tree in the best
position. Due to its greedy nature, the algorithm is
sensitive to the order in which the terminals are added.
This order-dependency is used as a heuristic to visit a
larger portion of the tree space, limited to ‘‘sound’’ trees.
By default, when using this algorithm, POY randomizes
the terminal addition sequence. The overall time com-
plexity of the implementation of this algorithm is O(n2).

Minimum spanning tree guided. A third strategy
available in the application is the use of a minimum
spanning tree (MST) (Cormen et al., 2001). An MST
generates a sequence of terminals that can produce
better results compared with a single, randomized,
Wagner tree algorithm. Unfortunately, this method
has limited use in real data sets, where the distance
between terminals is usually not metric due to polymor-
phisms and sample errors, and randomization is used
with a larger number of repetitions to improve the

overall search results. The overall time complexity of the
algorithm is O(n2).

Additionally, POY 4 provides methods to build trees
with positive constraints, i.e. build trees where certain
clades are required to exist. These methods can be
applied together with any of the Wagner tree or the
minimum spanning tree building strategies previously
described. Negative constraints will be supported in a
future version.

Local search strategies. The local search consists of the
iterative modification of a current tree, in an attempt to
find a similar tree of better score. POY supports a
number of algorithms, classified in the various compo-
nents that they involve for a local search: neighborhood,
trajectory, branch break order, and join method. Addi-
tionally, the trees visited during the search can be
sampled (e.g. to collect trees for Bremer, 1994, support).

Neighborhood. The neighborhood describes those
trees that can be evaluated, given the current best tree.
These are known as the neighbours of the current best,
hence the name. POY supports nearest neighbour
interchange (NNI), sub-tree pruning and regrafting
(SPR), and tree bisection and reconnection (TBR) (see
Felsenstein, 2004, for a survey of these algorithms).
These sets can be limited further using a positive
constraint (an unresolved tree that shows clades that
must be present in a neighbour). Every neighbourhood
in POY 4 consists of successive branch breaks, joins,
reroots (in TBR), and the trajectory of the search (i.e.
the tree that is selected for the next iteration). Each can
be fine tuned, as follows.

1. Branch break order. POY includes algorithms
to break the branches in decreasing length order
(distance), fully randomized breaking order (ran-
domized), to break only once, and never again, even if
the local optimum has changed (once). By default, the
distance method is employed.

2. Join specifies those branches that can be joined
and in what order. The options available include
constraint to specify either a sectorial search or a
tree that constrains possible solutions to the problem,
all to turn off all the heuristics used by the program to
reduce the number of trees evaluated during a local
search, and sectorial to specify sectorial searches
constrained by the subtree size.

3. Rerooting specifies the roots that can be used during
TBR. By default, the order in which roots are visited
follows a breadth-first search algorithm on the branches
(Cormen et al., 2001), starting at the nodes incident in
the broken branch. The number of trees evaluated at
this step can be limited with the bfs argument,
specifying the maximum distance allowed for each new
root from the initial root. The distance is defined as the
number of branches in the path connecting the new with
the original root.

78 A. Varón et al. / Cladistics 26 (2010) 72–85

4. Trajectory specifies how the program selects the
next neighbouring tree to be evaluated. The default
algorithm is a greedy first best, which selects the first tree
found that has better score than the current best,
around to evaluate completely the neighbourhood
before selecting the next local optimum, simulated
annealing (annealing) (Kirkpatrick et al., 1983),
which uses a probabilistic function to choose a tree,
and tree drifting (drift) [a modified version from that
described by Goloboff (1999b; Varón et al., 2008)].

Samplers. As the local search is executed, POY 4
provides various sampler methods, to allow users to
collect information, either for error recovery, support
calculations, or analytical purposes. For instance, all
trees that have been visited during a search can be
printed out with the visited argument.

Escaping local optima. Local searches are often not
sufficient to generate satisfactory solutions. A number of
algorithms exist to escape locally optimum solutions;
POY 4 supports two main classes: tree fusing and search
space perturbation.

Tree fusing is described by Goloboff (1999b) to find
better trees in complex data sets. The basic algorithm
consists of selecting pairs of trees uniformly at random;
the first is considered the source and the second the
target. These trees are compared, and for all pairs of
compatible subtrees, the subtree in the source replaces
the corresponding subtree in the target. (A pair of
subtrees is compatible if both contain the same set of
terminals, but their topologies differ.) If the best tree
resulting from this exchange has a lower score than the
target, then this new tree replaces the target. This
procedure is repeated for a user-determined number of
iterations. The algorithm can be tuned, by selecting a
local search strategy to follow the new subtree selection,
as well as the number, and algorithm to select trees that
are maintained between iterations.

Perturbation is a basic strategy that allows the user
to perform a local search (or a series of local searches)
on a modified set of characters. The tree space (i.e. the
space representing the cost of each tree) is therefore
‘‘perturbed’’, and depending on the perturbation
method, could help the search by escaping locally
optimum trees and finding better solutions. The most
notable form of perturbation is the parsimony ratchet
(Nixon, 1999). The basic ratchet algorithm consists of
perturbing the tree space by reweighting a random set
of characters, according to user-provided parameters,
followed by a local search, and the resulting tree is
used in a new iteration. When the user-selected number
of iterations is completed, the search space is restored,
and a new local search proceeds. The original tree is
replaced with the final only if better. Along with the
parsimony ratchet, all the transformations (including
those described in the section on ‘‘Transformation

between character types’’) are supported as perturba-
tion methods.

Search command. POY 4 introduces a new command:
search. It is intended as a default search strategy for
most users. This strategy includes tree building using the
Wagner algorithm (Farris et al., 1970), swapping using
TBR, swapping using exhaustive direct optimization
(Varón et al., 2008), Nixon�s parsimony ratchet (1999),
and tree fusing (Goloboff, 1999b). The command sup-
ports arguments to specify the maximum or minimum
execution time, minimum number of hits before stop-
ping, and the maximum number of trees to be held
(measured in memory). The function takes care of
removing duplicated trees and reducing repeated effort.
Upon completion, it reports the number of trees built, the
number of rounds of tree fuse, the best tree cost found,
and the number of times that cost was found (hits).

Search is a recommended way to execute an analysis. It
does not eliminate the user responsibility to ensure that
a reasonable tree search is performed for the input data
set. It is important to verify that several searches
converge to the minimum cost (i.e. maximize the ‘‘hits’’),
and a reasonable number (of the order of hundreds) of
replications are performed (each tree fuse can be
considered a separate replicate).

User interface

Previous versions of POY consisted solely of a
command line application, with very limited flexibility
in the kinds of analysis and parameters that could be
chosen by the user. Version 4 has several user interfaces
that can be selected according to the user preferences
(e.g. the requirements are different when executing a
complete analysis on a computer cluster, or learning
how to use the application on a personal computer).

POY 4 is an interactive application. Users can issue
commands and obtain an immediate response. This
behaviour eases the learning curve for new users,
provides a friendly environment to test input data and
analysis conditions before executing a major analysis,
and reduces the likelihood of errors in the input data, by
allowing users to ‘‘explore’’ before executing a complete
analysis.

Along this line, a simpler set of commands has been
defined, allowing users to perform complex analyses and
heuristic searches, with fewer commands. The complete
grammar is described in the user manual (Varón et al.,
2008). For example, Fig. 3(a) shows a script to read an
input file, build ten trees, perform a local search, fuse
them, and report the results. If the fuse step should use
SPR instead of TBR (the default) for a local search, then
the script can be modified easily to achieve this effect
(Fig. 3b).

79A. Varón et al. / Cladistics 26 (2010) 72–85

Notice that the new structure increases readability,
using a simple pattern of a verb (the command) followed
by arguments for the command in parentheses.

A complete description of the various user interfaces
as well as practical examples are available in the
program manual (Varón et al., 2008).

Script execution

POY 4 accepts files containing scripts for non-
interactive execution. A script is a sequence of valid
POY 4 commands. The execution of scripts in POY 4
does not necessarily follow exactly the input order
specified by the user. Instead, a script is analysed and
modified to achieve the same analytical effort (mea-
sured in number of trees evaluated, randomized
procedures executed, etc.), while reducing memory
consumption, and limiting the amount of information
exchanged between processes when executing in par-
allel.

To understand the script execution better, we must
first describe the parallelization strategy used in POY
4, followed by the description of the script analysis
and optimization methods employed in the applica-
tion.

Parallel model

POY 4 supports parallel execution using any imple-
mentation of the Message Passing Interface (MPI)
version 1.0. MPI has become the most important
standard for parallel execution using Message Passing.
By using MPI, POY 4 can be executed in parallel under
virtually any architecture, from laptops with multiple
cores, to computer clusters running Linux, Windows, or
Mac OS X.

The parallelization model used in POY 3 consisted of
a master–slave model of computation, where one
process (the master) directed other processes (the slaves)
to perform certain calculations upon request. For
instance, if ten trees were to be built using the Wagner
algorithm, and 11 processes were available, then the
master would order each of the ten slaves to perform
one of the builds. During most of the computation,

however, the master would remain idle, waiting for
requests from the slave processes.

The parallel model of POY 3 posed significant
scalability difficulties. Even for fast networks, if suffi-
cient processes attempted to communicate concurrently,
the master process was a bottleneck, producing sub-
linear scalability and even reduced performance under a
number of circumstances (Janies and Wheeler, 2001;
Wheeler et al., 2003). To solve this problem, POY 3
included ‘‘controller’’ processes, which could serve as
intermediate relays, responsible for managing a smaller
number of slaves (Janies and Wheeler, 2001). Although
the scalability limitations could be reduced in this
way, the problem remained at a larger scale, while
increasing the number of idle processes overall.

POY 4 is fundamentally different in that there is no
process directing the computation of any other process.
Instead, upon receiving the input script, each process
independently decides what tasks it should perform.
There exists a master process, which performs the same
operations that other processes would, but also central-
izes access to input files when other processes cannot
directly (as in some computer clusters), and generates the
desired program output (e.g. printing the trees in a file).

The fundamental advantage of this parallelization
model is the increased scalability and the reduced
volume of communications. Moreover, resources are
better exploited, by eliminating an idle process (the mas-
ter), which can instead spend resources on the analysis
itself. It follows that POY 4 can scale even in computers
with two cores, as both processes are responsible for
part of the complete analysis.

There are two fundamental limitations in POY 4�s
model: fault tolerance has been eliminated, as have the
parallelization of the operations within a tree (e.g.
parallel building of a single tree). The former has a lower
priority, but the latter will be included in future releases
of the application.

Script analysis

A script analysis consists of three steps: dependency
analysis, memory optimization, and parallel execution
division.

Dependency analysis. In the first step, POY 4 analyses
the data dependencies between different components of
a script. For example, the calculation of the jackknife
support value information is independent of the search
for the most parsimonious tree (but not assigning the
support values to the shortest tree found). POY 4
evaluates mutual dependencies in input files, output
files, trees, jackknife frequencies, bootstrap frequencies,
and BREMER supports, to produce a dependency
graph that describes how commands relate to each
other.

(a) (b)

Fig. 3. Two scripts that read an input file, build ten trees, swap to find
the optimum, fuse, and report the results in parenthetical notation.
(a) Using the default parameters. (b) Using SPR to improve fuse.

80 A. Varón et al. / Cladistics 26 (2010) 72–85

Memory optimization. Once the dependency analysis is
completed, POY 4 classifies each command in the script
into one of four classes that allow the application to
optimize their execution:

Parallelizable is a command that can be executed in
parallel. Examples of commands of this class are build
and swap.

Composable is a command that can be applied
composed over intermediate results, yielding exactly
the same output as if it was applied once over all the
results directly. For example, selecting the shortest tree
among ten trees has the same effect as selecting the best
tree among the first two, then selecting the best between
the result of the previous selection and the third tree,
and so on until all the trees are evaluated. An example
from this class is select (best).

Linearizable is a command that can be applied
independently with subsets of results, yielding the same
effect as applying it to all the results (Fig. 4).

Non-composable are commands that cannot be par-
allelized, and set hard limits in the way a script is
executed. An example of this class of commands is
report (treestats).

Script execution is modified in the following manner:
parallelizable, composable, and linearizable commands
can be modified to improve performance, conforming to
pipelines, while non-composable commands break the
pipelines. To understand how these pipelines are
formed, we will illustrate them using an example.

Figure 5 shows a script that can be described as
follows: read an input file, build 1000 trees, swap each
until its local optimum is found, redraw the screen,
select the best trees and filter out duplications, report the
remaining trees to the screen in graphical format, and
quit the application. If executed in this way, at peak

memory consumption, POY 4 would require enough
memory to hold 1000 trees.

If we look at the same script considering the class each
command belongs to, a different picture emerges. The
core of the script is parallelizable, linearizable, and
composable. It follows that this script could be executed
more efficiently in the following way: read the input file,
and repeat 1000 times the following three steps: build
one tree, swap, redraw the screen, and select the best
trees in memory. Upon concluding the 1000 repetitions,
report the remaining trees in memory on screen in
graphical format, and quit the application. Overall,
POY 4 will only use as much memory as the maximum
number of shortest trees found at the same time. For
most real data sets, this will tend to be a small number.

Note that the 1000 iterations involve a sequence of four
commands. Each sequence is the ‘‘pipeline’’ mentioned
above. The user interface updates the overall script
execution progress, and estimates termination time for
the set of pipelines instead of individual commands.

Parallel execution division. Note that in the previous
example, each pipeline can be executed independently of
the others, with the results being merged by the
composable elements of the pipeline. Pipelines are the
script components that are parallelized by POY 4.

If the previous script is executed in parallel with 1000
processors, each processor would have taken care of a
single pipeline, and the selection of the shortest trees
would have followed with only 11 (Ølog2 1000ø) rounds
of messages between processors.

The general rules for parallelization are as follows:
1. Only the master process can print to files or screen.
2. Pipelines and support calculation pseudo-replicates

are divided among all processes. If there are m processes
and n pipelines, each process does at most (Øn ⁄mø)
pipelines, to complete exactly n.

3. All processes synchronize execution at the end of
each pipeline.

Using this strategy, the application shows linear
scalability in the number of processors and number of
trees evaluated (Fig. 6). The exact execution strategy of
a particular script can be verified using the report
(script_analysis: ‘‘script.poy’’) command
(Fig. 7).

Other features

There are many other new features in the program.
The following are several highlighted functions.

Transformation between character types

POY 4 supports functions for the easy transformation
of character types. For example, suppose a user would

Fig. 4. The redraw command to refresh the screen contents. It would
have the same effect as executing it once after all the trees have been
swapped, or each time a tree is swapped. This type of command yields
a greater execution order flexibility.

Fig. 5. A POY 4 script, with comments showing the type of each
command.

81A. Varón et al. / Cladistics 26 (2010) 72–85

like to run an analysis for one complete day, select the
best tree, fix the alignment of the dynamic homology
sequences implied by the best tree found, and compute

the jackknife support values using the characters
inferred by that alignment. In this example, we will
assume that the program found only one tree during the
analysis. The script in Fig. 8 shows this approach.
Another example would show the effect that different
alignment parameters may have on the implied align-
ment of a particular tree (Fig. 9).

An important effect of the static_approx trans-
formation shown in Fig. 9 is the way it is performed for
other distance functions. For instance, assume the user
has defined an affine distance function, with cost two for
every substitution, four for gap opening, and 1 for gap
extension. (The total cost of an indel of length three
would be seven in this example.) After performing
transform (static_approx), the program will cre-
ate characters corresponding to the individual columns
of the implied alignment, representing the substitution
events, and characters of different weight representing
the individual indel blocks as inferred from the best tree
in memory. For each indel block character, the program
stores as the state names the sequence block that was
inserted (or deleted) (e.g. an inferred insertion of the
block AACTTG will have state names AACTTG and �-�
representing the presence of the block, and its absence).
All the characters can then be exported in Nona ⁄TNT
format for use in other programs, and generate the

Fig. 6. POY 4 scales linearly in parallel execution. In this example, 64
RAS + TBR were tested with one to 64 processors in parallel. The
speedup is linear in the number of processors, with a slope of � 0.9.

Fig. 7. Analysis of input script in Fig. 5 as generated by POY 4 using the script_analysis report.

Fig. 8. Computing the jackknife support values on the implied alignment of the best tree found after one day of search.

82 A. Varón et al. / Cladistics 26 (2010) 72–85

apomorphy list [using the command report (phas-
twinclad)].

Input file formats

POY 4 supports the data and tree input and specifi-
cation of Nona ⁄TNT files, NEXUS files (Maddison
et al., 1997), all GenBank sequence formats (the most
commonly used is FASTA), as well as CLUSTAL file
formats (Thompson et al., 1994). The program honours
character and state names in the input, and all reports
use them accordingly. This ensures that the user will be
able to employ the application output more efficiently
for publication.

Graphical output

Along with newick formatted trees, POY 4 can output
graphical trees in PDF format, allowing modification in
vector image editors, for screen and print layout.

Support calculation

POY 4 supports bootstrap, Bremer, and jackknife
support calculations. It is important to note that
bootstrap and jackknife will resample characters as
listed by the command report (data): that is, if
dynamic homology characters are loaded, the characters
themselves are sampled (e.g. the sequences), and not the
elements within each state (e.g. the bases).

What the program cannot do

Although flexible, POY 4 has a number of limitations.
The following are the most important functions that the
program cannot do, yet users may assume.

Automatically detect non-homologous sequences. At the
input level, the user provides a set of states that are
believed to be homologous (e.g. fragments from the 5S
subregions for all the species). For this reason, in

dynamic homology characters, any pair of elements from
homologous states can be hypothesized homologous. This
assumption has two main implications:

1. The program cannot detect incomplete sequences
and treat them as such. If the sequences are incomplete,
the user may follow one of the procedures suggested by
Wheeler et al. (2006) to treat sections as missing data, or
simply accept that this will be a source of noise.

2. If a pair of sequences are random relative to each
other (for example when reverse complements are
included in the analysis), the program will do something
with them, no matter how little sense that may make.
The software is designed to help, but it is not a
goalkeeper.

Automatically select alignment parameters. Parameter
selection is an important problem in phylogenetic
analysis. POY 4 provides functions to apply different
parameters to each character, and assign default param-
eters in every analysis, but users must be careful in this
respect.

Detect inversions and breakpoints in the same character.
The functions provided in version 4 can detect either
inversions, or translocations, or rearrangements in a
particular character, but neither two nor three can be
detected simultaneously on the same character. How-
ever, POY 4 can simultaneously analyse multiple
characters, each of a different type, and using different
parameters. It is possible then to detect inversions in
one character, while rearrangement or translocations
are detected in others during the execution of a
combined analysis (see section on ‘‘Supported charac-
ter types’’).

Maximum likelihood. POY 3 supported phylogenetic
analyses using maximum likelihood (ML) as optimality
criterion. This optimality criterion is not supported in
POY versions 4.0 to 4.1.2. However, ML is currently in
development and will be supported again soon in a
future release of the software.

Fig. 9. Comparing the effect of various alignment parameters in the alignment implied by the same phylogenetic tree and the same locus.

83A. Varón et al. / Cladistics 26 (2010) 72–85

Performance example

As an example of the overall application performance,
and as a comparison between POY versions 3 and 4, a
random subset of 100 published anurans (Faivovich
et al., 2005) was analysed. The data set includes 12S
rRNA, tRNA valine, 16S rRNA, and fragments of
cytochrome b, rhodopsin, tyrosinase, 28S rRNA, and
RAG 1, and a small set of 38 morphological, non-
additive characters.

To compare the performance of POY version 3 and
version 4, we performed 1000 independent repetitions
consisting of one randomized Wagner build (section on
‘‘Phylogenetic tree search’’), followed by a default local
search using TBR on the tree initially constructed
(section on ‘‘Phylogenetic tree search’’), and reported
the resulting tree cost. This procedure can be executed in
POY 3 with the command:

poy -replicates 1 -seed -1 -maxtrees 1
-nooneasis -minterminals 0 -terminalsfile
ranNamesPH.txt *.fas *.ss.

In POY 4, the script would be:
read (‘‘*.fas’’, ‘‘*.ss’’)
select (‘‘ranNamesPH.txt’’)
build (1)
swap ()
report (treestats)
exit ()
The scores of the trees found by each program were

plotted in a density histogram (Fig. 10). The results
show that one repetition of the previous procedure in
POY 4 outputs a tree which is expected to belong to the
top 15% of the best trees found by this very simple
search strategy. For POY 3 to expect a tree within the

same percentile, it would be necessary to run more than
2000 repetitions. It follows that due to heuristic
improvements, POY version 4 is more than 2000 times
faster than POY 3.

To evaluate the execution time spent on each itera-
tion, we allowed each application to perform the
previous simple search as many times as possible within
a 24-h time boundary. POY 3 could perform 28
repetitions and POY 4 could perform 38 repetitions.
That is, POY 4 performs roughly 30% more Wagner
tree builds and local searches than POY 3.

Considering these results, we can see that, for this
particular data set, POY version 4 is more than 2600
times faster than POY 3. To put these numbers in
perspective, the expected results of an analysis that
could be previously performed in a cluster of more than
5000 processors using POY 3 can now be done on a
personal computer with a dual core processor.

When we analyse this data set in the same 24-h time
limit using the search (max_time:1:0:0) command
with only one processor, POY 4 found the shortest tree
four times (29 649 steps), a result that was not possible
to reproduce with POY 3.

Program resources, availability, distribution, and licence

terms

Obtaining the program

The released versions of POY 4 can be freely
downloaded from http://research.amnh.org/scicomp/
projects/poy.php as binaries and source code. The
bleeding edge development version and bug tracking
system can be found at http://code.google.com/p/poy4/.

Binaries for sequential and parallel execution are
available for Microsoft Windows XP, Vista, and Mac
OS X Tiger and Leopard (Universal binaries). Binaries
for sequential execution in Linux ·86 are also available
for download. For all other architectures, users can
download the source code and compile themselves. POY
4 is highly portable, and has been successfully compiled
in Linux AMD-64 and Itanium2, AIX, Sun OS, and
Solaris, both for sequential and for parallel execution.
For parallel environments of individual workstations or
computers clusters, it is necessary to use any of the
available implementations of the MPI version 1.0.

Licence

POY 4 is open source, distributed under GPL v. 2,
written in OCaml and C. Inversion and breakpoint
distance functions are provided by GRAPPA
(Moret et al., 2002) (http://www.cs.unm.edu/~moret/
GRAPPA/). PDF generation is provided by Camlpdf
of Coherent Graphics (http://www.coherentgraphics.

Fig. 10. Density histogram of the frequency of occurrence of different
tree costs in POY version 3 and version 4 for the example data set.

84 A. Varón et al. / Cladistics 26 (2010) 72–85

co.uk). The three-dimensional alignment functions of
versions 4.0 and 4.1 are provided using software from
David R. Powell (Powell et al., 2000), (ftp://ftp.csse.
monash.edu.au/software/powell/README.html).

Acknowledgements

Many thanks to all the people who tried POY 4 in all
of its development stages, gave us, and continue
providing excellent comments and bug reports. We
would like to thank, in particular, Illya Bomash, Megan
Cevasco, Louise Crowley, Torsten Dikow, Julian
Faivovich, Gonzalo Giribet, Taran Grant, Christian
Kehlmaier, Frederic Legendre, Nicholas Lucaroni, Kurt
M. Pickett, Fernando Marques, Paola Pedraza-Peiial-
osa, Leo Smith, and Ilya Temkin for their comments,
which have helped to improve the application. We
would also like to thank Lone Aagesen, Pablo Goloboff,
and an anonymous referee for their valuable comments
regarding the manuscript. A.V., L.S.V. and W.C.W.
were supported by the US Army Research Laboratory
and the US Army Research Office [W911NF-05-1-0271].
A.V. and W.C.W. were also supported by the NSF-ITR
grant ‘‘Building the tree of life: A national resource for
phyloinformatics and computational phylogenetics’’
[NSF EF 03-31495]. W.C.W. was also supported by
the National Science Foundation grants ‘‘An Integrated
approach to the origin and diversification of protosto-
mes’’ [NSF DEB 05-31677] and ‘‘Assembling the tree of
life: phylogeny of spiders’’ [NSF EAR 02-28699].

References

Blanchette, M., Bourque, G., Sankoff, D., 1997. Breakpoint phylog-
enies. In: Proceedings of the Genome Informatics Workshop VIII.
eds: Takagi, T. and Miyano, S. Universal Academy Press, Tokyo,
pp. 25–34.

Bremer, K., 1994. Branch support and tree stability. Cladistics, 10,
294–304.

Caprara, A., 1997. Sorting by Reversals is Difficult. in RECOMB �97:
Proceedings of the First Annual International Conference on
Computational Molecular Biology. ACM, New York, NY, USA.
pp. 75–83.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2001. Intro-
duction to Algorithms, 2nd edn. The MIT Press, Cambridge, MA.

De Laet, J.E., 2004. Parsimony and the problem of inapplicables in
sequence data. In: Parsimony Phylogeny and Genomics. ed: Albert,
V.A. Oxford University Press, Oxford, pp. 81–116.

Faivovich, J., Haddad, C.F.B., Garcia, P.C.A., Frost, D.R.,
Campbell, J.A., Wheeler, W.C., 2005. Systematic review of the
frog family Hylidae, with special reference to Hylinae: phylogenetic
analysis and taxonomic revision. Bull. Am. Mus. Nat. Hist. 294,
240.

Farris, J.S., Kluge, A.G., Eckhardt, M.J., 1970. A numerical approach
to phylogenetic systematics. Syst. Zool. 19, 172–189.

Felsenstein, J., 2004. Infering Phylogenies. Sinauer Associates,
Sunderland, MA.

Fitch, W.M., 1971. Toward defining the course of evolution: minimum
change for a specific tree topology. Syst. Zool. 20, 406–416.

Goloboff, P., 1999a. Nona (no name). http://www.cladistics.com.
Goloboff, P.A., 1999b. Analyzing large data sets in reasonable times:

solutions for composite optima. Cladistics, 4, 415–428.
Goloboff, P.A., Farris, J.S., Nixon, K.C., 2008. TNT, a free program

for phylogenetic analysis. Cladistics, 24, 5.
Hamming, R.W., 1950. Error detecting and error correcting codes. Bell

Syst. Tech. J. 26, 147–160.
Hendy, M.D., Penny, D., 1982. Branch and bound algorithms to

determine minimal evolutionary trees. Math. Biosci. 60, 133–142.
Janies, D.A., Wheeler, W.C., 2001. Efficiency of parallel direct

optimization. Cladistics, 17, S71–S82.
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by

simulated annealing. Science, 220, 4598.
Liebecq, C., (ed.), 1992. Biochemical Nomenclature and Related

Documents, 2nd edn. Portland Press, London.
Maddison, D.R., Swofford, D.L., Maddison, W.P., 1997. NEXUS: an

extensible file format for systematic information. Syst. Biol. 46,
590–621.

Moret, B.M.E., Bader, D.A., Warnow, T., 2002. High-performance
algorithm engineering for computational phylogenetics. J. Super-
computing, 22, 99–111.

Nixon, K.C., 1999. The parsimony ratchet, a new method for rapid
parsimony analysis. Cladistics, 15, 407–414.

de Pinna, M.C.C., 1991. Concepts and tests of homology in the
cladistic paradigm. Cladistics, 7, 367–394.

Powell, D.R., Allison, L., Dix, T.I., 2000. Fast, optimal alignment of
three sequences using linear gap costs. J. Theor. Biol. 207, 325–336.

Sankoff, D., Rousseau, P., 1975. Locating the vertices of a Steiner tree
in an arbitrary space. Math. Program. 9, 240–246.

Sankoff, D., Cedergren, R.J., Lapalme, G., 1976. Frequency of
insertion-deletion, transversion, and transition in the evolution of
5S ribosomal RNA. J. Mol. Evol. 7, 133–149.

Swofford, D.L., 1993. PAUP: Phylogenetic Analysis Using Parsimony,
Ver. 3.1.1. Smithsonian Institution, Washington, DC.

Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W:
improving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, positions—specific gap penalties
and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

Varón, A., Vinh, L.S., Bomash, I., Wheeler, W.C., 2008. POY
4.0.2900. http://research.amnh.org/scicomp/.

Varón, A., Wheeler, W., Bar-Noy, A., 2009. An efficient heuristic for
the tree alignment problem, submitted.

Vinh, L.S., Varón, A., Wheeler, W.C., 2006. Pairwise alignment with
rearrangements. Genome Inform. 17, 2.

Wang, L., Jiang, T., 1994. On the complexity of multiple sequence
alignment. J. Comput. Biol. 1, 337–348.

Wang, L., Jiang, T., Lawler, E.L., 1996. Approximation algorithms for
tree alignment with a given phylogeny. Algorithmica, 16, 302–315.

Wheeler, W.C., 1996. Optimization alignment: the end of multiple
sequence alignment in phylogenetics? Cladistics, 12, 1–9.

Wheeler, W.C., 1999. Fixed character states and the optimization of
molecular sequence data. Cladistics, 15, 379–385.

Wheeler, W.C., 2001. Homology and the optimization of dna sequence
data. Cladistics, 17, S3–S11.

Wheeler, W.C., 2003. Iterative pass optimization of sequence data.
Cladistics, 19, 254–260.

Wheeler, W.C., Gladstein, D., De Laet, J., 2003. POY, Phylogeny
Reconstruction via Optimization of DNA and other Data version
3.0.11 (6 May 2003). American Museum of Natural History. ftp://
ftp.amnh.org.

Wheeler, W.C., Aagesen, L., Arango, C.P., Faivovich, J., Grant, T.,
D�Haese, C., Janies, D., Smith, W.L., Varón, A., Giribet, G., 2006.
Dynamic Homology and Phylogenetic Systematics: A Unified
Approach Using POY. American Museum of Natural History.

85A. Varón et al. / Cladistics 26 (2010) 72–85

