Topology-Bayes versus Clade-Bayes in Phylogenetic Analysis
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Several features of currently used Bayesian methods in phylogenetic analysis are discussed. The distinction between
Clade-Bayes and Topology-Bayes is presented and illustrated with an empirical example. Three problems with Bayesian
phylogenetic methods—exaggerated clade support, inconsistently biased priors, and the impossibility of hypothesis
testing of cladograms—are shown to be the result of using a Clade-based Bayesian approach. Topology-based Bayesian

methods do not share these shortcomings.

Introduction

Bayesian methods in phylogenetics have a 30-year
history, tracing back at least to Farris (1973) (discussed
in Felsenstein 2004). Explicit attempts to use empirical pri-
ors and to create Bayesian estimators of topology were at-
tempted as early as Wheeler (1991), and recent techniques
and implementations have been reviewed by Huelsenbeck
et al. (2001). The purpose of this discussion is to examine
the application of recent Bayesian techniques to the prob-
lem of estimating cladistic relationships among terminal
taxa—that is, their branching pattern.

As an optimality criterion to choose among candidate
topologies, posterior probability is a fine option, but current
use (as in Huelsenbeck and Ronquist 2003) does not follow
this path. The entities whose posterior probability is most
frequently estimated are clades. The set of clades with pos-
terior probability >one-half is presented as the Bayesian
hypothesis of phylogenetic topology. Indeed, many propo-
nents of the methodology have asserted repeatedly that
these 50% majority rule consensus topologies reflect the
probability of the truth of clade identity (Huelsenbeck
et al. 2002), and hundreds of authors employing the meth-
ods have repeated this assertion as a justification for the
methodological choice. Such an approach differs from that
of examining the relative merits of alternative topologies
directly, resulting in 3 problems: 1) exaggerated clade sup-
port, 2) inconsistently biased priors, and 3) the impossibility
of topology hypothesis testing. Here, we discuss these is-
sues and show that these problems with Bayesian phyloge-
netics are not inherent to Bayesianism per se but to the
particular path that has been taken by the majority of the
community. We show that the adoption of the Bayesian op-
timality position—supported by Rannala and Yang (1996),
though not adopted by most practitioners—abrogates these
problems.

Topology-Bayes and Clade-Bayes
Topology-Bayes

A Topology-Bayesian estimator of a phylogenetic hy-
pothesis is that topology (7;) which has the maximum pos-
terior probability (assuming all other topologies have equal
cost of error or “loss”). Here, we describe a tree T as com-
posed of a set of vertices V and edges E:
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T=(V,E). (1)

Bayes’ theorem allows for the calculation of the prob-
ability of the hypothesis—here, the topology—given the
data, pr(7;|D). This is desirable as phylogeneticists begin
with data and usually seek the best estimate of the topology.
If investigating the posterior probability of a topology
pr(T;|D), given topological “prior” probabilities pr(T;),
Bayes’ theorem can be written:

pr(7i) - pr(D|Ti)
jer pr(T;) - pr(D|T;)

Because the denominator of the right side of equation (2) is
a constant, the Topology-Bayesian estimator will maximize
pr(T;) - pr(D|T;), the product of the prior probability of the
topology and the probability of the data, given the topol-
ogy. Therefore, if the topological priors are uniform, the
Topology-Bayesian estimator will be proportional to the
maximum likelihood of the topology given the data (i.e.,
pr(T|D)*L(T|D)) (Edwards 1992). In other words, the or-
dering of topologies from most to least optimal is the same
for both the likelihood and the posterior probability, even if
the absolute values differ. Thus, the maximization of the like-
lihood of the topology also maximizes the posterior proba-
bility (see eq. 2). When we say maximum likelihood, here we
mean the maximum integrated likelihood; we use this term in
the usual sense to mean that if the topology and the so-called
nuisance parameters are generated from a prior distribution,
they can be integrated out, thus guaranteeing that the
maximum integrated likelihood topology is equivalent to
the posterior probability topology (see Steel and Penny
2000). Although different from the more typical maximum
relative likelihood, in which nuisance parameters are ad-
justed to maximize the likelihood of the topology, relative
likelihood is merely an approximation of integrated likeli-
hood, and Markov Chain Monte Carlo (MCMC) methods
permit the calculation (albeit, heuristic) of integrated likeli-
hood directly. This equivalence of the relative ordering of
integrated likelihood and posterior probability topologies,
however, is only guaranteed if the priors for the hypothesis
under consideration are uniform. If uniform topological pri-
ors are used, and the optimal topology is selected as the best
estimate of the phylogeny, as explained above, the most
likely topology is guaranteed to be the tree of maximum pos-
terior probability. If, however, this topology is not the hypoth-
esis of interest, but the frequency of clades across a group of
trees is the goal, the guaranteed proportionality is lost. Much
of the argumentation in favor of Bayesian MCMC methods
has asserted that results will be proportional to the likelihood

pr(Ti|D)= (2)
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(e.g., Huelsenbeck et al. 2001); as we show here, this is only
true if the Topology-Bayesian approach is adopted.

Clade-Bayes

The Clade-Bayesian estimator is that set V. = {V,.,
V.2, ....} of clades that have a posterior probability >one-half.
Because any pair of clades from V, cannot conflict (because,
by definition, there is a positive probability that some tree con-
tains both clades), the set V.. forms a tree, which we will denote
T.. This is the Clade-Bayes topology. Unlike T}, T, has no
associated optimality value even though each clade in 7. does.
Most current Bayesian phylogenetic analyses (e.g., MrBayes)
produce T, (Huelsenbeck and Ronquist 2003). Consider the
posterior probability clade on a topology, given data:

pr(v(:,i) : pr(D‘Vc,i)
Yjev, pr(Vey) - pr(D|Ve,)

Although equation (3) represents the posterior probability for
a single clade on a given tree, this is not how clade proba-
bilities are determined in popular implementations. Instead,
a clade is assigned the probability of the tree to which it be-
longs. As tree probability is merely the frequency of a given
tree across the retained visited trees, clade probability is the
cumulative frequency of a clade of given membership across
all trees (from the retained pool) that contain it (regardless of
the taxic rearrangements inside the clade, and regardless of
the position the clade takes in the trees). This, however,
causes some undesirable effects. If uniform topological pri-
ors are stipulated as a means of representing the prior distri-
bution on clades, that clade prior distribution V. is not
uniform (Pickett and Randle 2005). Indeed, some clades will
be profoundly less probably than others, and it is impossible
to assign a label-invariant (i.e., standard) distributional
topological prior, uniform or otherwise, that will induce uni-
formity on V. (Steel and Pickett 2006). As such, even if
pr(D|V.,) is maximal (of all clades, e.g.), because that value
would be multiplied by its prior probability (which may be
quite low under uniform topological priors), it may not cor-
respond to the clade of maximum posterior probability.
Simply put, the proportionality and relative ordering of likeli-
hood and posterior probability are no longer guaranteed. In
any given case, depending on the data and the particular prior
employed, the clade of maximum likelihood may also be the
clade of maximum posterior probability, but there is no re-
quirement that this be so.

Given that T, and T, are different entities, they need not
agree. In such a case, T, and T,. would have clades in conflict
and T, would not represent the Topology-Bayes estimator
or the maximum a posteriori probability (MAP) estimate of
Rannala and Yang (1996). This could occur, for example, if
several suboptimal (i.e., lower posterior probability) topol-
ogies share a group not found in the “best” tree. Below, we
provide an example.

pr(V(nj|D) =

(3)

Example Comparison

The fact that topologies of maximum likelihood need
not correspond to the Clade-Bayes tree has been considered

recently (Svennblad et al. 2006). But the fact that the
Topology-Bayes approach and the Clade-Bayes approach
can result in topological differences has received almost
no attention. Here, we demonstrate this potential disparity
using empirical data.

Consider a case of arthropod morphological data with
54 taxa and 303 characters (Giribet et al. 2001). If we begin
with uniform topological prior probabilities, then the T; will
be the maximum likelihood topology. Any model will suf-
fice; here we use the no common mechansim (NCM) model
of Tuffley and Steel (1997). Because MrBayes (Huelsenbeck
and Ronquist 2003) does not seek the optimal trees (see
below), we calculated 7, (the Topology-Bayes or MAP
estimate) using POY3 (Wheeler et al. 1996-2005), which
searches and saves all identified optimal solutions, given
a criterion. The 7 characters treated as additive in the orig-
inal analysis of Giribet et al. (2001) are treated as nonad-
ditive here. T, was estimated using MrBayes (Huelsenbeck
and Ronquist 2003), implementing the same model of
evolution. Searches were performed with the following
options:

POY3: buildsperreplicate 10, replicates 10, treefuse,
likelihood, likelihoodroundingmultiplier 10,000. This
implements 10 random replicates with 10 Wagner builds
per replicate followed by tree-bisection-and-regrafting
(TBR) branch-swapping and tree fusing (Goloboff 1999)
within and between replicates; the NCM (Tuffley and
Steel 1997) model of evolution was employed, rounding
likelihoods to 5 decimal places.

MrBayes: lIset parsmodel = yes mcmc ngen =
10,000,000 samplefreq = 500 nchains = 4. This imple-
ments the NCM (Tuffley and Steel 1997) model of evolu-
tion with 2 simultaneous runs of 4 chains and 10,000,000
generations each, saving every 500th topology visited to
file.

Ten cladograms of —log likelihood 773.02908 were
found by POY3. Their strict consensus (7;) is shown in
figure la. The T, produced by MrBayes is shown in figure
16 (—log likelihood of the best binary resolution of this
consensus cladogram is 773.38128). Overall, the 2 trees
are quite similar. They differ, however, in several major
taxonomic groupings. Foremost among these is that the
Chelicerata are monophyletic in 7, and paraphyletic (pyc-
nogonids basal) in 7.

The 2 topologies are similar, but not identical. Imple-
mentation issues aside, this example clearly demonstrates
a case where T, # T..

It is worth noting that the maximum posterior proba-
bility topology from MrBayes has a —log likelihood of
773.03, which differs from the score reported by POY3
(773.02908) only in rounding. MrBayes reported only 2
trees of this score; it may have visited the other 8 topologies
of highest probability but because the program is designed
to create T, it does not seek to save all optimal topologies.
In fact, one of the 2 optimal topologies visited by MrBayes
was found before the end of the burn-in in our second run
(tree 1905000) and so would not even be included in a ma-
jority rule calculation of the postburn-in topologies. How-
ever, there would be no burn-in period and no reason to
abandon any of the visited topologies, when searching
for the optimal solution.
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Chelicerata

Fic. 1.—Bayesian cladograms of arthropod data with chelicerate and pycnogonid taxa marked: (@) T, with —log likelihood of 773.02908, (b) T,
with —log likelihood of the best binary resolution 773.38128
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Table 1

Simple Data Set of 4 Taxa (A-D) and 4 Binary Characters
Taxon Characters

D 0 0 0 1
C 0 0 1 0
B 1 1 0 0
A 1 1 1 1

Doubling Behavior: Clade-Bayes and Support

One of the properties of all statistical methods is an in-
crease in levels of support with a multiplication of identically
distributed data. In other words, larger data sets with the
same proportional balance of data in favor of, in opposition
to, and indifferent to a hypothesis will assign higher support.
Consider the data of table 1. Under NCM (Penny et al. 1994;
Tuffley and Steel 1997, p. 587. egs. 12 and 13), the maxi-
mum posterior probability cladogram is that of figure 2 at
0.5 (eq. 4).

. 2710 1

FF G 2
(4)

In this case, T. = T, and the posterior probability of group
A + B (V(ap)) is equal to 0.5. The evidence in favor of AB is
equal to that against. If we were to replicate these data n
times, with exactly the same balance of evidence for and
against AB, pr(V,g) would increase with » until arbitrarily
close to 1 (eq. 5).

pr(Tiamicon) = T30y 4 ¢
3

1

Tra ®)

pr(Vag)=

This same behavior will be observed in a bootstrap,
jackknife analysis or other resampling approach to support.
Similarly, the same behavior would be observed for any
data, contrived or otherwise, that are duplicated identically,
regardless of the model employed; our example is presented
to permit exact calculations. Although reasonable on statis-
tical grounds, even when support levels are very close to
unity, there are still as many observations contradicting
the grouping as supporting. The point here is that this be-
havior is an ineluctable outcome of data duplication. It is
important to note that the“inflation” of support values de-
scribed here is not related to the higher values seen in
Bayesian over bootstrap or jackknife support (Cummings
et al. 2003; Erixon et al. 2003; Simmons et al. 2004), re-
ported from 7. It is also worth noting that if the T, approach
is adopted, the support inflation seen in 7. becomes moot.

Priors: Uniform, Biased, and Empirical

A central issue surrounding Bayesian techniques is the
choice of appropriate prior probabilities. For the purposes
here, we can divide these into 3 types: uniform, biased, and
empirical. Uniform or ignorance priors are usually em-
ployed when there is no useful preexisting information
on the entity to be estimated. Phylogenetic analysis tends

B D

Fi. 2—Maximum posterior probability (0.5) cladogram of data
from table 1 under the NCM (Tuffley and Steel, 1997) model of
substitution. The 2 alternate cladograms have posterior probabilities of
0.25.

to adhere to uniform topological priors, and discussions
tend to rely on current evidence to draw conclusions in
the admirable feeling that the investigator cannot say which
hypotheses are more probable a priori. Biased priors attach
greater or lesser initial probability to entities based on non-
uniform distributions. In many cases of Bayesian analysis,
this is not undesirable. It may be well known that processes
follow certain distributions and profitable use can be made
of them. In phylogenetic analysis, they are less well re-
garded because they are not based on biological information.
Empirical priors are based, unsurprisingly, on previous ex-
perience, data, and knowledge. In general, empirical priors
are unobjectionable because they allow the use of previous
empirical results. Some strict Bayesians object to the use of
data as priors when the data themselves are not, in fact, tem-
porally and ontologically prior to the other data under con-
sideration. This objection derives from the fundamental
difference with frequentist statistics: the Bayesian view that
prior events predict future events. We note this strict inter-
pretation here only to point out that as phylogeneticists begin
using empirical data as prior assertions, this philosophical
objection may loom, especially if the prior data did not occur
first, even if they were observed first and thus formed the
prior phylogenetic viewpoint (as would be the case, e.g.,
if morphology was used as priors for molecular data; mor-
phology is not temporally antecedent to DNA and thus
would violate this strict Bayesian interpretation of appropri-
ate prior data).

Priors are attached to the entities to be estimated and
hence play different roles for T; and T\.. As mentioned above,
phylogenetic Bayesian methods generally employ uniform
priors; the most commonly used is the “proportional-to-
distinguishable-arrangements” distribution (Rosen 1978).
This is straightforward with 7, because each topology (as
in eq. 3) can be assigned the inverse of number of topologies.
This cannot be done for T..

Steel and Pickett (2006) have shown that uniform pri-
ors cannot be constructed for clades (V,.;). In short, clades
of size 2 or n — 2 (for n taxa) will have higher probabilities
than those of intermediate size. This can result in huge prior
disparities (orders of magnitude) among clades (Pickett and
Randle 2005). In absence of any data, some groups will be
favored over others. This is not a problem that occurs with
Topology-Bayesian analysis (7,). The problem only arises
when topological priors (and their resultant clade priors) are
used to estimate clade posteriors, as in Clade-Bayesian (T .)
analyses.
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Fic. 3.—Arthropod cladogram with maximum posterior probability using morphologically estimated prior probabilities (under NCM) and
molecular likelihood values calculated via the methods in Wheeler (2006).
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Empirical priors on topologies are an underexplored
area. Wheeler (1991) tried to do this using morphological
data to create priors that were then combined with likeli-
hoods based on molecular data. Using an explicit model
of evolution, we can employ this approach using the prob-
ability of a topology given a set of morphological data to
approximate an empirical prior (eq. 6). Of course, any
model of evolution might be invoked for the data that yield
the topology prior. Here, we employ NCM.

pr (D morph ‘ Ti)
ZjET pr (Dmomh |TJ)
There is no reason why such empirically derived priors could

not be constructed using a variety of data sources, provided
that they are applied over a distribution of topologies.

pr(T;)= (6)

Arthropod Example of Empirical Priors

If we use the estimation of empirical priors of equation (6),
we can extend this with likelihoods based on molecular
data (D) for the same taxa to:

pr(Dmorph|Ti) 'pr(Dmol|Ti)
Djer Pr(Dimorph |T1) ~Pr(Dimol |T/)

To maximize pr(7T;|Dmo1), We need only maximize the nu-
merator of equation (7) (the denominator is again a constant).
As L(T|D) is proportional to pr(D|T), the topology with
greatest posterior probability will be that which maximizes:

L(Ti|Dm0rph> . L(Ti|Dmol)~ (8)

The value of equation (7) can be optimized via a search over
topologies by standard techniques. Wheeler (2006) per-
formed a likelihood-based analysis of combined arthropod
data (including the morphology cited above), and the result
that maximized the value of equation (8) is shown in figure 3.
This cladogram is based on the data of Giribet et al. (2001)
with 54 taxa, 303 morphological characters, and 8 molecular
loci. A single addition sequence + TBR was used in this il-
lustration. The S6GF5 model of Wheeler (2006) was applied
(general time reversible + gaps) using direct optimization
Wheeler (1996) on unaligned sequences with 2 I" classes
and invariant sites (0) parameters estimated from the se-
quence data. Morphological data analyzed as above. The
total —log likelihood reported by POY3 was 115,417.38.

pr(Ti|Dmol) =

(7)

Hypothesis Testing

The central act of phylogenetic analysis is establishing
the relative merits of 2 hypotheses. This can be done on
a variety of grounds (= optimality criteria) and as long
as the comparisons are transitive, a best solution can be
found. Parsimony, likelihood, and Topology-Bayes all
do this by default. In each case, an optimality value (cost,
likelihood, and posterior probability) is assigned to each
cladogram and reported by the investigator. This value is
used to compare and test pairs of hypotheses. No such com-
parison can made for Clade-Bayes (7 .) trees in the form that

they are usually reported. Although it is true that any tree-
shaped object upon which characters are plotted can be
assigned an optimality score (and thus, the posterior prob-
ability of any given Clade-Bayes tree could be calculated as
a Topology-Bayes hypothesis, but therefore abandoning the
Clade-Bayes approach), investigators rarely, if ever, calcu-
late or report such optimality scores. As such, few, if any of
the reported Clade-Bayes trees from the literature can be
compared with subsequent analyses of the same data, which
may give different results. Thus, it is impossible to say that
any Clade-Bayes topology is superior or inferior to any
other, unless subsequent investigators compute the optimal-
ity score of the Clade-Bayes trees as topologies. As with
jackknife or bootstrap trees, the strength of clade support
is presented by the investigator, but not the cladogram op-
timality. It is also worth noting that any tree that is less re-
solved than the optimal binary tree—whether Clade-Bayes,
jackknife, bootstrap, or other consensus tree—is most likely
less optimal (in this case lower posterior probability, but
strictly they could be equal) because the consensus is most
likely due to character conflict. Hence, Clade-Bayes trees
may perhaps be regarded as statements of support but
not as best-supported scientific hypotheses of phylogenetic
relationships.

Bayesian methods can have a place in systematic anal-
ysis, but this position must be based on the relative quality
of topologies, not their constituent parts. This requires the
use of the Topology-Bayes approach advocated here.
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