
www.elsevier.com/locate/ympev

Molecular Phylogenetics and Evolution 44 (2007) 1130–1140
Chromosomal character optimization

Ward C. Wheeler *

Division of Invertebrates, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA

Received 10 October 2006; revised 17 January 2007; accepted 20 January 2007
Available online 12 February 2007
Abstract

A method is presented to optimize chromosomal data on a cladogram. This procedure simultaneously considers variation at the
nucleotide and locus levels including nucleotide substitution, insertion and deletion, locus insertions and deletion, and gene rearrange-
ment. Locus labeling is not a requirement of the procedure and such annotation will result from the dynamic homology analysis of the
chromosome data. An example of complete arthropod mtDNA sequences is presented.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Optimization; Phylogeny; Chromosome; mtDNA; Systematics; Dynamic homology
1. Introduction

Comparative data sets are now available for complete
chromosome sequences, but generally applicable tools for
their systematic analysis are not. In the same way that
sequences are arrays of nucleotides and undergo two basic
types of transformation: substitution and insertion/dele-
tion (indel), chromosomes are arrays of loci (=sequences)
that undergo locus change and indel (the locus change
being the sum of the substitutions and indels at the nucle-
otide level). In addition to these changes, the relative posi-
tion of loci can vary resulting in rearrangement. In order to
fully explain chromosomal variation, we need to accommo-
date all of these modes of transformation simultaneously
(nucleotide substitution, nucleotide indel, locus indel, and
locus rearrangement). To date these have not been simulta-
neously optimized in a character-based framework. The
methods proposed here attempt to accomplish this.
2. The data

Complete chromosomal (whole genomes in some cases)
data sets are available for a variety of taxa. Viral (e.g.
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Anderson et al., 2000) and bacterial genome sequences
are available for hundreds and thousands of taxa (http://
www.ncbi.nlm.nih.gov/genomes/lproks.cgi). There are
close to 1000 complete mitochondrial (e.g. Nardi et al.,
2003) as well as chloroplast sequences (http://
www.ncbi.nlm.nih.gov/genomes/static/euk_o.html). These
chromosomes vary from relatively short viral sequences
(10 kb, 7 loci with little rearrangement for HIV; Anderson
et al., 2000), to 16 kb for most animal mitochondrial DNA
(with 35–40 loci), to low megabase sequences with hun-
dreds of loci for some prokaryotic taxa (Fig. 1).
3. Existing approaches

The broadest array of data has been gathered from ani-
mal mtDNA and these exhibit both the strengths and
weaknesses of current chromosomal analysis (Macey
et al., 1997; Zardoya and Meyer, 1998; Inoue et al., 2001;
Miya et al., 2001, 2003; Downton et al., 2003; Macey
et al., 2004). Typically, two sorts of analysis are performed
on these data: those that are based on the nucleotide
sequences (e.g. Nardi et al., 2003), and those using gene
order information (Boore et al., 1998). The major short-
coming of the nucleotide-based studies is their wholesale
exclusion of data. Although these sequences are approxi-
mately 16 kb in length, frequently, many data go unused
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Fig. 1. Schematic representation of simple whole-genome chromosomes of HIV (left), human mtDNA (center), and E. coli (right).
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in actual analysis (<40% by Miya et al., 2003; Ishiguro
et al., 2003). The study of Nardi et al. is a case in point
employing only a small percentage (4 of 13 gene regions)
of the observations gathered in a concatenated multiple
alignment. Not only is this extremely inefficient and waste-
ful of energy and resources, but the data exclusion process
is prone to personal bias (Cameron et al., 2004).

Gene order information has been used by Boore et al.
(1998) and others for both mitochondrial and chloroplast
studies. Initially, this procedure involved hand-coding
locus adjacencies as qualitative characters and analyzing
them in standard fashion. The obvious difficulties in any
hand analysis of such complex data, and the identification
of rearrangement ‘‘hotspots,’’ (Curole and Kocher, 1999;
Mauro et al., 2006) have motivated less informal tech-
niques. Recently, Sankoff et al. (1996), Moret et al.
(2001), Bader et al. (2001), and Moret et al. (2002a,b) have
applied algorithmic, optimality-based approaches to these
data. These analyses are fine as far as they go, but they
do not make use of the wealth of nucleotide variation
(which might constitute orders of magnitude more infor-
mation than gene order).

A generally useful method must synthesize these
approaches and accommodate both these levels of
variation.

4. The optimization approach

Methodologies of systematic analysis of molecular
sequence data (optimality criterion aside) can be divided
into two camps—those that are based on a priori homology
statements and those that seek to identify homologies as
transformations are optimized. Broadly, these can be
referred to as alignment and optimization approaches,
respectively (Wheeler, 2005). Alignment methods rely
on some process to determine correspondences among
nucleotides that are then further analyzed to create an opti-
mal set of transformations on a cladogram or tree. Ideally,
this homology process is explicit, optimality-based, and
automatic such as with some multiple alignment programs
(e.g. CLUSTAL Higgins and Sharp, 1988; Thompson
et al., 1994; MALIGN Wheeler and Gladstein, 1994,
1991–1998). Optimality methods, on the other hand, create
unique, topology-based, dynamic homology (Wheeler,
2001; Wheeler et al., 2005) schemes for each cladogram
examined as they create their optimal transformation sets.
In the context of single locus sequence analysis, both of
these approaches can be viewed as heuristics to the general
NP-Hard tree alignment optimization problem (Wang and
Jiang, 1994).

Most analyses of chromosome data are alignment-type
investigations (e.g. Nardi et al., 2003). Individual loci are
homologized by some sort of annotation process (however
well [Rawlings et al., 2003] defined) before sequence align-
ment and phylogenetic analysis. Then the nucleotides are
concatenated into a larger alignment for subsequent treat-
ment. The locus homology process might well involve rear-
ranging chromosome sections such that appropriate
segments are aligned in the concatenated structure. This
rearrangement information is rarely used in tandem with
nucleotide variation. Though not a requirement of this type
of analysis, much hand-editing and modification of the
data frequently occur at this step (data removal, by-eye
alignment correction, and other manipulation; e.g. Nardi
et al., 2003) which mar investigations and remove poten-
tially informative variation (Harrison et al., 1985).

Objective analysis of locus order information is also
something of an alignment technique in that locus homol-
ogies are specified before the optimization of rearrange-
ments (Sankoff et al., 1996; Moret et al., 2001). These are
viewed, however, as labels, and in that context the methods
are optimization-based.



Fig. 2. Edit transformation from left sequence to right involving one
substitution and one deletion.

Fig. 3. Sequence median techniques to determine HTU states: (a) Direct
(closed arrows) and iterative-pass optimization (closed and open arrows)
sequence medians. The median sequences (Ci) are calculated based on
either their two descendants, or their descendants and immediate ancestor.
Multiple passes may be performed on the cladograms to update the vertex
sequences and improve median quality. (b) Search-based optimization of a
set of observed sequences (Si) to determine vertex sequences (Cj) using a
set of candidate sequences (S0, . . . ,S5+k). Fixed-states optimization would
limit the vertex sequences to the observed Si.
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5. Criteria

The basic approach used here will be to create and
examine alternate scenarios of chromosomal transforma-
tion on cladograms. Decisions will be made as to the rela-
tive quality of both the transformation scenarios and the
cladograms upon which they rest. An objective criterion
of quality is required to do this. The methods and discus-
sions here use simplicity of explanation, i.e. parsimony,
to decide between alternate schemata. This value is calcu-
lated as the weighted sum of all the transformation events
required to explain the entirety of chromosomal variation
on a cladogram (nucleotide substitutions and indels, locus
indels, and rearrangements). The cladogram that minimizes
this cost is the optimal solution for the problem.

Alternate optimality criteria exist to evaluate solution
quality. Most prominent of these is the application of like-
lihood. In this context, explicit statistical models of nucle-
otide and chromosomal transformation would be required
to evaluate the optimality of a cladogram-transformation
scenario. Such models and methods do not currently exist,
though a marrying of nucleotide (Thorne et al., 1991; Hein
et al., 2003; Wheeler et al., 1996–2005) and likelihood-
based rearrangement models (Larget et al., 2004) akin to
what is accomplished here for parsimony, might lead to
such a likelihood procedure.

The methods detailed here deal with the problem of
determining the minimum cost scenario of chromosomal
transformation for a single cladogram. In the context of
phylogenetic search, many such cladogram optimizations
would take place, calculating the same optimality value
for each and choosing the best.

6. General approach

The basic approach to solving, in a heuristic sense, this
complex problem is to build up a series of edit cost and
median state (in essence ancestral hypothetical taxonomic
unit—HTU) optimization heuristics from lower level prob-
lems. The three pieces of this construct are nucleotide opti-
mization, locus indel determination, and locus
rearrangement.

7. Sequence optimization

The first component of chromosomal optimization is the
determination of the cost (and transformation events)
required to transform one locus into another through their
hypothetical ancestral locus (Fig. 2). This is the same tree-
alignment problem first examined by Sankoff and Ceder-
gren (1983) and the same fundamental methods can be
employed. There are two general types of methods—esti-
mation and search (Wheeler, 2005)—that can be used.

Estimation methods attempt to construct a minimum
cost hypothetical ancestor from its two descendants (and
perhaps its ancestor) using string-matching techniques.
Direct optimization (DO—Wheeler, 1996) accomplishes
this for two descendants and iterative-pass optimization
(IP—Wheeler, 2003b) for the three including the ancestor
of the two (Fig. 3a). Search procedures examine a pre-exist-
ing set of possible ancestral sequences and use dynamic
programming to determine the optimal ancestral locus
sequence. Examples of this include fixed-state optimization
(FSO—Wheeler, 1999b) and the general search-based opti-
mization (SBO—Wheeler, 2003c). Search methods can be
rapid if the set of candidate ancestral sequences is small
but the solutions suffer proportionately. The most restric-
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tive case of this is FSO where the sequence set is limited to
those observed in terminal taxa (Fig. 3b).
ig. 5. Edits between two chromosomes (top). Rearrangement events
volve the inversion of the relative positions of individual loci L2 and L3

middle) and the two locus piece L4 + L5 (bottom).

Fig. 6. Median HTU problem for three chromosomes.
8. Locus insertion–deletion

The second component of chromosomal optimization is
the determination of the insertion–deletion pattern
required to account for varying locus complement between
two chromosomes which have the same relative positions
of loci (no rearrangements).

This can be accomplished by the use of simple string
matching modified as in DO, but for loci. In fact, the algo-
rithm is identical except the locus case has a larger alphabet
of objects to be matched (the loci in the two chromosomes
to be compared versus A, C, G, T, and GAP). As with
nucleotides, mismatch and indel costs are required. The
mismatch cost of loci would be the DO transformation cost
between loci (as described above). The cost of an indel
could be specified as a simple single parameter for an indel
of any locus size or could be more complex, allowing for
differential costs of different size loci or contiguous multiple
insertions.
Fig. 7. Breakpoint distance (a) and inversion distance (b) between two
chromosomes. (a) The adjacent loci in parentheses with three pairs found
in the upper chromosome not found in the lower. (b) The two inversions
required to edit one chromosome into the other.
9. Locus rearrangement

The third component of chromosomal optimization is
the determination of the cost (and rearrangement events)
required to convert one locus ordering into another (Figs.
4 and 5).

The median (HTU) problem (Fig. 6) for locus rear-
rangement is known to be NP-complete (Pe’er and Shamir,
1998). Whether one measures chromosomal rearrangement
in terms of chromosomal breaks (changes in locus adja-
cency; Sankoff et al., 1996; Fig. 7a) or the more complex
inversion distances (Bader et al., 2001; Fig. 7b), the basic
problem is the determination of the minimum cost median
arrangement among three chromosomes connected to a
node.

Chromosomal breakpoints analysis was the first method
proposed to discuss gene rearrangement in a phylogenetic
context (Blanchette et al., 1997). Basically the locus adja-
cencies (irrespective of orientation) are listed as a series
of pairs (Fig. 7a). Those pairs present in one chromosome,
but not in another constitute the number of chromosomal
breaks required to remove the original gene adjacencies.
Fig. 4. Calculation of chromosome edit cost without rearrangement
between chromosomes A and B based on the chromosomal ‘‘alignment’’
on the right. The total cost would be the sum of the three locus indels (L1,
L5, and L7) and the edit cost between loci L2 and L4, and L3 and L6.
F
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The benefit of this metric comes in its ease of calculation,
but it does not take into consideration the orientation of
the loci. In order to use this information, the inversion dis-
tance was developed.

The inversion distance between two chromosomes is the
minimum number of reversals required to transform one
chromosome into another (Hanenhalli and Pevzner,
1995). The metric is more difficult to calculate, but allows
orientation information (sign) to be used as well as relative
location (Fig. 7b).

There are many heuristic approaches to solve these
problems (Bader et al., 2001; Moret et al., 2001, 2002a,b)
and many of these are implemented in GRAPPA (Bader
et al., 2002). As mentioned above, these methods assume
locus labels are known and that locus homology is known
a priori.
10. Synthesis and methodology

The exact solution to this multi-level problem for just a
single tree would involve the simultaneous solution of mul-
tiple NP-complete problems (tree alignment, inversion
median) and is likely intractable for all but the smallest



Fig. 8. Local search-type heuristics for chromosome edit cost modeled on
tree search heuristics of initial build (a) and refinement (b).
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of problems. The discussion here is limited to heuristic
approaches which combine the three optimization compo-
nents discussed above. There are two fundamental steps.
The first is the determination of the edit cost (in terms of
transformation events) between any two chromosomes,
and second the median state optimization of three con-
nected chromosomes to determine an unknown nodal
chromosome. After a single node is determined, some sort
of recursive revisiting of non-vertex (hypothetical taxo-
nomic unit or HTU) nodes could be accomplished (Sankoff
and Cedergren, 1983; Wheeler, 2003b) to optimize the
entire cladogram, and from there to a complete cladogram
search.

10.1. Edit distance

Given two chromosomes, what are the transformations
and ensemble cost required to convert one chromosome
into another? This conversion may involve nucleotide
changes, nucleotide indels, locus indels, and locus rear-
rangements (as breakpoints or inversions). The edit cost
distance between chromosomes A and B [H(A,B)] with M

aligned loci, nucleotide substitution/indel edit costs r, locus
indel cost h, and locus rearrangement cost e:

HðA;BÞ ¼
XM

i¼0
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j¼0

r Aj
i ;B

j
i

� � !"
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hðAi;BiÞ¼
0 ifAi 6¼ gap and Bi 6¼ gap

locus gap cost otherwise

�

e fAi;Aiþ1g;fBi:Biþ1gð Þ¼
0 iffAi;Aiþ1g¼fBi:Biþ1g
rearrange cost otherwise

�

The ancestral chromosome would be constructed from the
locus indels and mismatches as in DO with ambiguities for
those loci and indels that could not be uniquely
determined.

This can be determined, in principle, by performing the
chromosomal direct optimization for each of the M! order-
ings of A on B, adding the rearrangement cost e to the opti-
mization cost (which included locus indels and change),
and choosing the minimum value. This would guarantee
the exact edit cost, but would be very time consuming for
large numbers of loci. In practice, a heuristic subset of
orderings is used.

Analogous to the Wagner (1961) procedure used to
sequentially add taxa in building cladograms, chromo-
somes can be built by adding a locus at a time to each posi-
tion to the nascent chromosome. For each placement, the
edit cost between the complete (A) and incomplete (part
of B) chromosomes is calculated, the best placement cho-
sen, and the next locus added. This is done until all loci
are added and the minimum edit cost determined
(Fig. 8a). This could be refined by removing sets of loci
and replacing them in all possible positions, and evaluating
them in terms of improving the edit cost. Such a refinement
step would be analogous to branch swapping in cladogram
refinement (Fig. 8b).

Once the minimum edit cost is determined a candidate
ancestor can be determined for the two chromosomes
and used in a down-pass DO-type procedure to optimize
the entire chromosome.
10.2. Median problem

The median problem can be broken into a series of edit
distance calculations for a set of candidate HTU chromo-
somes (Fig. 9).

In essence, the HTU chromosome is compared to each
of the three terminal chromosomes and the edit cost to
each summed. This is repeated through an exhaustive or
heuristic set of candidate ancestral chromosomes in order
to find the HTU yielding the minimum cost.

In the same way that chromosomes could be ‘‘built’’ and
refined for the edit cost calculation (above), a three-dimen-
sional build can be defined where two of the three chromo-
somes are sequentially constructed with respect to the
third. These builds could be sequential (yielding a
O(n) = 2n2 procedure) or simultaneous [O(n) = n4] for n

loci. In each step of the build operation (and refinement
if employed) a three-dimensional alignment of the chromo-



Fig. 9. Examination of candidate medians for three chromosomes.

Fig. 10. Simple chromosomes (a) four chromosomes with 4 or 5 loci each,
(b) data of (a) rearranged with locus 1 of taxon three moved to position 3
and locus 3 of taxon four in position 2. Pipes (‘‘|’’) denote locus
boundaries.
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somes would be performed and the joint indel-rearrange-
ment scenario that minimized this cost retained.

As with the 2-D case above, after the best scenario for
all three chromosomes is identified, a set of potential med-
ian chromosomes can be defined. The members of this set
are evaluated by summing the pair-wise edit cost to each
of the three adjacent chromosomes. The candidate median
that minimizes this cost is retained.
11. Levels of heuristic

Several approaches to heuristic solutions are used to
make the analysis of real data sets possible. The simplest
of these is the FSO approach (Wheeler, 1999b). When
chromosome ancestors are created in current implementa-
tions (POY—Wheeler et al., 1996–2005) via either 2-D or
3-D procedures (see above), the locus states are chosen
from the set of loci in the input data. Under FSO novel
sequence combinations are not calculated for locus ances-
tors. While the estimation of locus ancestor would likely
improve the optimality values of cladograms, this would
come at a premium in execution time.

A second example of this form of heurism would be to
limit the possible set of ancestral chromosomes to those
observed in the input (=leaf) data. This is truly a fixed-states
approach to chromosomal optimization. This yields a rela-
tively rapid heuristic cladogram cost, which could be very
satisfactory for large data sets (known to be within factor
of 2 of the minimum cost; since FSO is a superset of the
‘‘lifted’’ method, Gusfield, 1997). This method could also
be used to generate an initial solution rapidly, which could
then be progressively refined by more exhaustive procedures.
12. Simple example

Consider the example data of Fig. 10. There are four
chromosomes, each with three or four loci that vary in
nucleotide complement and number. Chromosomes‘‘three’’
and ‘‘four’’ are rearranged in the second instance.

When the unrearranged data (Fig. 10) are analyzed
using POY (Wheeler et al., 1996–2005) with base substitu-
tions costing 1, indels 2, and locus indels 10, and locus
breakpoint cost 1 using iterative pass optimization (these
are somewhat arbitrary parameter values; Wheeler,
2003a), the resulting topology ((one (two (three four)));
Fig. 11) had a cost of 20. This cost came from a single locus
insertion (in chromosome three), along with eight nucleo-
tide substitutions (two in loci 1–3) and one nucleotide indel
in locus 3.

When chromosome three is reordered and no rearrange-
ment is allowed, the cost increases to 34 from the extra
nucleotide changes and indels at the locus level
(Fig. 11b). When rearrangements are permitted, the cost
reduces to 23—the original cost, with three extra events
due to breakpoint cost of rearrangement along the lineage
leading to chromosome three (Fig. 11c). When inversion
costs are used (via the incorporation of GRAPPA; Bader
et al., 2002), the cost is 26 since there are more inversions
required than breakpoints in this example (this is partly
due to patterns found in the short loci suggesting addi-
tional inversions; Fig. 11c).
13. Arthropod mtDNA

A test data set was created by downloading 108 arthro-
pod complete mtDNA sequences (unique species) from
GenBank (http://www.ncbi.nih.gov/). Based on annota-
tion, there were 4587 ‘‘loci’’ (segments within and between
annotated regions) defined, 4502 of which were unique and
at least 20 nucleotides in length. These were analyzed using
POY (Wheeler et al., 1996–2005, ported to a 64 bit system)
with the fixedstates heuristic (Wheeler, 1999a) for rear-
rangements (only observed gene orders—the 108 input—
considered for medians) under a variety of transformation

http://www.ncbi.nih.gov/


Fig. 11. Edits between four example chromosomes on three trees. (a)
Sequence data of Fig. 10a. (b) Sequence data of Fig. 10b optimized
without rearrangement—requiring many nucleotide changes; sequence
data of Fig. 10b, allowing rearrangements measured by breakpoint and
inversion requiring many fewer nucleotides changes at a cost of 3 or 6
rearrangements.

Table 1
Arthropod chromosome results

Rearrangement
cost

Locus
gap
cost

Locus
length
cost

Locus
‘‘Swap’’

Cladogram
cost

Execution
time

0 0 1 0 634,556 14,262
100 630,258 58,327

2 0 788,909 13,168
100 698,967 64,717

1000 0 0 721,373 26,793
100 717,424 39,966

1 0 752,902 12,898
100 747,371 39,338

2 0 1,078,173 13,882
100 903,569 49,267

1000 0 1 0 731,112 13,999
100 708,594 77,171

2 0 851,607 13,214
100 804,133 70,901

1000 0 0 1,136,003 14,100
100 1,083,837 52,297

1 0 1,264,452 13,970
100 1,192,635 47,081

2 0 1,364,482 13,177
100 1,254,597 89,607

100,000 0 1 0 731,723 14,010
100 708,594 76,486

2 0 851,607 13,077
100 80,120 70,503

1000 0 0 1,136,231 12,892
100 1,087,239 51,889

1 0 1,269,572 13,926
100 1,202,557 45,436

2 0 1,381,291 13,850
100 1,250,420 44,437

Runs with locus gap and locus size gap both set to zero were not per-
formed due to metricity constraints.
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cost parameters. For each analysis, five replicates were per-
formed each containing five Wagner build random repli-
cates, TBR branch swapping, and tree fusing (Goloboff,
1999). Tree buffers were limited to 10 in all phases of anal-
ysis. All analyses treated the mtDNA chromosomes as cir-
cular with all sequence segments reversible and
rearrangeable. Nucleotide substitutions were set to 1 and
indels to 2 (linear cost) throughout. Individual runs varied
in four parameters: locus build, whether chromosome
medians were refined by ‘‘swapping’’ or not; cost of rear-
rangement events (0, 1000, 100,0000) measured by break-
points (Blanchette et al., 1997); initial cost of a locus
origin or loss (0, 1000); cost of locus origin or loss by length
of segment (0, 1, or 2 length). Overall, 30 analyses were per-
formed on an 8 · 2.2 GHz CPU AMD multiprocessor. The
runs without locus swapping took from 12,898 to 14,262 s
with one exception (26,793 s), those with swapping 39,338–
77,171 s. Results are summarized in Table 1 and three sam-
ple cladograms are shown in Fig. 12.

As one might expect, more aggressive median refinement
reduced overall cladogram cost. This improvement varied
from less than 1% when rearrangements carried no cost—
but still improved locus matching, to improvements of over
10% when rearrangements were costly (100,000). The taxo-
nomic results of these analyses are not particularly satisfy-
ing, yet when combined with other data (e.g.
morphological, nuclear) return results more in line with
our notions of arthropod relationships (below).
14. Annotation

Annotation is the process of taking raw sequence data
and identifying gene regions and other landmarks. Stan-
dard gene arrangement techniques presume loci are known



Fig. 12. Example arthropod complete mtDNA cladograms. The left cladogram resulted from analysis with rearrangement cost and initial locus indel cost
set to zero, no locus refinement or swapping, and locus indel cost set equal to its length; the center cladogram was based on rearrangement cost and initial
locus indel cost set to 1000, locus refinement of all locus segment sizes (<100), and locus indel cost set equal to its length; the right cladogram used a
rearrangement cost of 100,000, initial locus indel cost of 1000, locus refinement of all locus segment sizes (<100), and locus indel cost set to twice its length.
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and labeled. The method presented not only does not
require a priori locus annotation, but produces one as an
result (at least as far as gene labeling is concerned) in the
proper context of historical homology. Since locus homol-
ogy is dynamically determined, this aspect of annotation
will be a topology specific, dynamic homology statement.
A process akin to the implied alignment (Wheeler, 2003a)
of nucleotides can be performed on the locus data yielding
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locus homologies relative to the data at hand. If one or
more of these chromosomes have been annotated previ-
ously, the absolute annotation can be extended to the other
chromosomes (Fig. 13).

The most important aspect of annotation is not
addressed with the optimization techniques described here
and that is identifying the breaks between loci. These
breaks not only delimit the gene regions, but also define
Fig. 13. Sequence data of Fig. 10b optimized with rearrangement showing
annotation information. The ‘‘Annotation’’ portion shows locus homol-
ogy to the first taxon, ‘‘Presence–Absence’’ the novel and deleted loci
again with respect to the first taxon, and the ‘‘Complete chromosome
implied alignment’’ the nucleotide homologies implied by the topology
and locus-level variation.
the potential points of rearrangement. Ideally, such breaks
would be able to occur at any position in the chromosomal
sequence. Additional break locations can be added (at a
cost of increasing the cost of rearrangement) to reduce
some of the reliance on gene delimitation and its effects
on phylogenetic analysis.

15. Combined analysis

Ideally, data sets are analyzed in combination to bring
the greatest amount of information to bear on a phyloge-
netic problem. Chromosomal characters, as treated here,
can readily be combined with other information in a simul-
taneous analysis. As an example, the data of Giribet et al.
(2005) (with partial mtDNA information deleted, but
including seven nuclear loci and 352 morphological charac-
ters for 67 taxa) were augmented with 26 complete mtDNA
sequences from GenBank (in some cases the data of closely
related taxa were substituted when an exact match was
unavailable). The analysis was performed using POY
(Wheeler et al., 1996–2005) on a cluster of 20 pIV Xeon
CPUs with 5 random replicates of 5 wagner tree builds
per replicate, TBR branch swapping and tree fusing. Mor-
phological changes and nucleotide indels were accorded a
cost of 2, nucleotide substitutions 1, locus rearrangements
(breakpoints) 100, locus indels cost 100 plus twice the locus
length; locus refinement (swapping) was set to 100 (comple-
tion). The analysis examined 2,260,769 trees, taking
105,519 s yielding two cladograms at a weighted cost of
361,401 (Fig. 14). These results differ from those of Giribet
et al. (2005) specifically by interdigitating several hexapod
and non-hexapod taxa as is often seen in solely mitochon-
drial analyses.

16. Discussion

The strength of this approach to the phylogenetic anal-
ysis of chromosomal variation comes from its foundation
in historical homology. This requires the simultaneous
optimization of both sequence and locus level variation
and in the definition of an explicit optimality criterion to
choose among transformation scenarios and cladograms.
Another benefit comes with the dynamic locus homology
framework where loci are not required to be labeled (e.g.
18S rDNA) before analysis. The benefits are not without
cost, however. The explicitness of the optimality criterion
does require that additional analytical parameters be spec-
ified—locus indel and rearrangement costs—and the results
will depend on the choice of these values (even though con-
strained by metricity). The annotation result of locus
dynamic homology requires reference to a specific clado-
gram. As with nucleotide homology statements, these
higher level correspondences are topology dependent.

A shortcoming of the method is its dependence on the a
priori delimitation of the loci or at least the fragments
which participate in rearrangement. To some extent this
can be ameliorated by breaking up regions into smaller



Fig. 14. Arthropod consensus cladogram based on combined analysis of
morphology, nuclear, and mitochondrial data. The two constituent
cladograms had a cost of 361,401. Taxa with ‘‘*’’ include complete
mtDNA data.
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fixed or randomly sized fragments, but such rearrangement
analysis depends on the recognition of pieces that can be
shuffled, and analytical times may increase significantly
with the profusion of sequence fragments.
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