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Abstract

Although there has been a recent proliferation in maximum-likelihood (ML)-based tree estimation methods based on a fixed
sequence alignment (MSA), little research has been done on incorporating indel information in this traditional framework. We
show, using a simple model on a single character example, that a trivial alignment of a different form than that previously identified
for parsimony is optimal in ML under standard assumptions treating indels as ‘‘missing’’ data, but that it is not optimal when indels
are incorporated into the character alphabet. We show that the optimality of the trivial alignment is not an artefact of simplified
theory assumptions by demonstrating that trivial alignment likelihoods of five different multiple sequence alignment datasets exhibit
this phenomenon. These results demonstrate the need for use of indel information in likelihood analysis on fixed MSAs, and suggest
that caution must be exercised when drawing conclusions from software implementations claiming improvements in likelihood
scores under an indels-as-missing assumption.

� The Willi Hennig Society 2012.

Maximum likelihood (ML) has become a popular
optimality criterion for inferring evolutionary trees
following its introduction by Fisher (1912), its
initial application to nucleotide data (Neyman, 1971;
Felsenstein, 1981), and its popularization through early
software releases (Felsenstein, 1989; Swofford, 2002).
ML is a parametric method that requires estimation of
the entries of a stochastic character transition matrix as
well as branch lengths on a phylogenetic tree. Due to the
large number of values requiring independent optimiza-
tion in an ML framework, computation times for
likelihood tree searches are much longer than those for
parsimony, andML analyses have been made more time-
consuming by increased dataset sizes, greater numbers of
partitions, and by increased model complexity. Yet
despite these additional computational burdens, likeli-
hood analyses have become increasingly tractable in the
past decade with improvements in both computing speed
and public access to multiprocessor clusters, as well as in

the increasing sophistication of search heuristics in ML
software (e.g. Jobb et al., 2004; Guindon et al., 2005,
2010; Stamatakis, 2006; Zwickl, 2006).

However, despite this increase in sophistication, the
fundamental procedure remains unchanged. A gap cost,
whether non-affine (Waterman et al., 1976), affine
(Gotoh, 1982; Edgar, 2004; Katoh et al., 2005; Larkin
et al., 2007), logarithmic (Mott, 1999), or log-affine
(Cartwright, 2007) is employed during multiple sequence
alignment via progressive algorithms, but most often not
during topology search. The pattern of the inserted
indels (‘‘missing’’ data, in a phylogenetic context) may
influence the topology found as optimal by either
increasing the number of most parsimonious trees
(Wheeler, 1994; Wiens, 1998, 2003a,b; Kearney, 2002)
or by flattening the likelihood surface. When indels are
treated as missing data in the character alphabet on a
fixed alignment, adding more indels may improve the
optimality score to the point where a ‘‘trivial’’ align-
ment, in which sequences are aligned completely out of
phase, is mathematically optimal, i.e. having a parsi-
mony cost of zero (Wheeler and Gladstein, 1994;
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Wheeler et al., 1995; Giribet and Wheeler, 1999). Trivial
alignments are characterized by two undesirable prop-
erties: (a) they have zero cost (in a parsimony frame-
work) despite contributing no biologically justified
homology statements, and (b) they are invariant with
respect to tree topology. Although the assumption of
treating indels as ‘‘missing’’ data in the character
alphabet remains standard practice in phylogenetic
analyses, little work has been done to investigate the
conceptual implications of this assumption under the
likelihood criterion.

Several methods for incorporating indel information
into phylogenetic analyses exist, among them likelihood-
based sequence alignment (Bishop and Thompson, 1986;
Thorne et al., 1991, 1992); simultaneous alignment and
topology inference by Bayesian criteria (Redelings and
Suchard, 2005, 2007; Suchard and Redelings, 2006), by
likelihood criteria (Wheeler, 2006), and by parsimony
(Wheeler, 1996; Varón et al., 2010) criteria; and by
incorporation of indels into the character alphabet for
topology search on a fixed alignment (McGuire et al.,
2001a; Young and Healy, 2003; Rivas and Eddy, 2008).
Utilization of indel information on a static MSA
eliminates trivial alignments because it defines indels
on a direct transformation path, thereby maintaining
metricity of the substitution cost matrix (Wheeler, 1993).
Additionally, incorporating indel information has been
observed to contribute to phylogenetic resolution and
node support (Whiting et al., 1997; Egan and Crandall,
2008; Simmons et al., 2008; Dwivedi and Gadagkar,
2009; Dessimoz and Gil, 2010; Pas¢ko et al., 2011).
However, the use of indel information is limited in
application outside parsimony by computational con-
straints, and so the limited number of existing model-
based methods for use on nucleotide data apply the
assumption of atomistic indel events to make analyses
tractable. Although the utility of atomistic indels has
been questioned in several studies under parsimony
(Simmons and Ochoterena, 2000, for example), to date
no model-based software implementations exist that
provide non-atomistic alternatives with heuristics that
operate in polynomial time. It is therefore imperative
that such implementations be developed and made
accessible so that the behaviours of the assumptions
can be studied.

Context of the ‘‘indel problem’’

Parameterizing insertions and deletions is a more
complex problem than determining the best-fit model
of nucleotide substitution. In likelihood analysis of
nucleotide data, we wish to estimate the likelihood
of sequence data (D) given a tree topology (T ) and
a stochastic model of evolution (Q) of any alphabet
size:

LðH; T Þ / PrðDjH; T Þ ð1Þ

There are two ends of the spectrum of general
approaches to this problem. In the broad formulation,
a given alignment of the data (ai) in the space of
alignments (A) can be treated as a random variable and
marginalized, in which case

LðH; T Þ ¼
X

ai2A

PrðD; aijH; T Þ ð2Þ

and therefore

LðH; T Þ ¼
X

ai 2A

PrðDjai; H; T Þ � PrðaijH; T Þ ð3Þ

by the chain rule for probability distributions. The first
term in the right hand side of the above equation treats
only substitutions among alphabet characters, whereas
the second term accounts for differences in alignment
probability due to differing numbers of insertion and
deletion events. Because insertion and deletion events are
accounted for by the second term in this formulation,
they do not have meaning as an entry in the character
alphabet of the continuous-time stochastic process.

By contrast, the more widely-applied and traditional
formulation of the problem is that of utilizing eqn (1),
with several additional assumptions. First, in this
approach, a heuristic MSA is taken as a fixed parameter
value for the alignment A, from which the tree topology
is inferred by search algorithms. Hence, under this ‘‘two-
step’’ formulation, the second term in the right-hand side
of eqn (3) is omitted entirely. Second, under this tradi-
tional approach, the conditional state transition proba-
bilities p(j|i, t) for an alphabet sizeK in aK · K transition
matrix P are derived by matrix exponentiation from an
instantaneous rate matrix Q having the property that

X

j

Qði; jÞ ¼ 0 ð4Þ

Because this common formulation requires all changes
to be accounted for by substitutions among characters,
insertion and deletion events have meaning as character
values. To account for insertions and deletions in this
framework, the K · K transition matrix is augmented to
a (K + 1) · (K + 1) matrix to incorporate insertion
and deletion events. Third, under the traditional two-
step approach, the continuous-time stochastic process is
assumed to be globally stationary, hence the equilibrium
character frequencies pK, obtained in the limit t fi ¥
for the entries of P are constant across the tree topology.
Fourth, the stochastic process is assumed to be globally
reversible, hence

piQði; jÞ ¼ pjQðj; iÞ ð5Þ

and so insertions and deletions are estimated as a single
(‘‘indel’’) parameter. Lastly, the stochastic process is
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assumed to be globally homogeneous, in that the same
entries of P apply across all branches of the topology.

The main differences between the broad approach and
the two-step approach discussed here go beyond onto-
logical formulation of character states. The broad
approach separates insertion and deletion events from
the character alphabet on the conceptual ground that
physical changes in sequence size are not part of the
substitution process. The M01 model (McGuire et al.,
2001b) embodies the traditional approach by augment-
ing the substitution matrix to include indels as a fifth
state. By contrast, the RE08 model (Rivas and Eddy,
2008) approximates the broad formulation (eqn 2) by
modelling insertions and deletions as non-reversible
birth ⁄death parameters separate from reversible charac-
ter substitutions. Both the RE08 and M01 models
operate on fixed alignments with atomistic characters,
and are hence different from models like TKF91 and
TKF92 (Thorne et al., 1991, 1992), which operate as
ML alignment methods on initially ungapped sequences.
The justification for a non-reversible birth ⁄death indel
approach lies in the claim that the traditional approach
assumes sequences must have constant size and an indel
character frequency that is constant with respect to
divergence time. Additionally, under the traditional
approach there is a purported ‘‘memory effect’’
(Felsenstein, 2004) among neighbouring columns that
disallows insertions of lengths greater than the length of
a deletion in a given region. The birth ⁄death approach is
thus favoured because of these objections.

However, the problems with a non-reversible inser-
tion ⁄deletion approach are threefold. First, a nonrevers-
ible (insertion ⁄deletion) Markov process makes the
likelihood computation dependent on the root location,
and the likelihood-optimal solution in this context may
disagree with the outgroup designation based on other
forms of evidence, such as morphology or the strati-
graphic record. Second, a zero-divergence indel fre-
quency is biologically practical only at narrow scales of
phylogenetic inference, which are rarely the goal
of modern large-scale analyses. A root indel frequency
is plausible as either an artefact of incomplete sampling
or as a true reflection of large-scale sequence divergence.
Forcing a zero-divergence across either broad or incom-
plete sampling is likely to significantly influence the
estimated values. Third, an ‘‘evolutionary process’’
birth ⁄death modelling of insertions and deletions neces-
sarily requires estimation of a deletion rate separate from
an insertion rate. The analogous macroevolutionary
literature on diversity-dependent diversification using
molecular phylogenies, which also relies on birth-death
modelling to estimate speciation and extinction rates
(Nee, 2006), has observed that an extinction (i.e. dele-
tion) ‘‘rate’’ is likely not estimable (Rabosky, 2010)
under a globally homogeneous framework when rates
vary significantly among lineages. Additionally, a birth-

death process complementary to the substitution process
requires estimation of insertion and deletion parameters
at internal nodes. Hence, the process inherits the
problems of ancestral state reconstruction twice, once
for the substitution alphabet and once for the insertion ⁄
deletion evolutionary process. Furthermore, the process
assumes that ancestor-descendant sequences are drawn
from a generative distribution of a specific form.
Although theRE08modelmarginalizes over the ancestral
states as in maximum average likelihood (Felsenstein,
1981), it is currently unclear in what ways this approach
affects topology estimation, and whether the optimal
topology in this context differs significantly from that
selected by the reversible indel approach. Lastly, it is also
unclear whether globally homogeneous modelling of
indels, regardless of the assumed nature of insertion and
deletion events, is appropriate, and the relationship
among global homogeneity, reversibility, atomistic
columns, and insertion ⁄deletion parameterization is an
active research area. To further this discussion,we present
results that argue strongly in favour of parameterizing
indel events, regardless of the specific form.

Theory

In this section, we identify a novel form of trivial
alignment possible in likelihood analyses as a result of
treating indels as missing data on a fixed alignment.
When we refer to ML, we mean maximum average
likelihood (Felsenstein, 1981), as opposed to most
parsimonious likelihood (Barry and Hartigan, 1987) or
maximum evolutionary path likelihood (Farris, 1973).
Additionally, we note that throughout this paper we
alternate among parsimony (scores closer to zero),
conditional likelihood (scores closer to one), and log
likelihood (absolute value of scores closer to zero) in
discussing optimality.
Consider a single-character dataset, below:

Taxon 1|A
Taxon 2|A
Taxon 3|A
Taxon 4|C
Taxon 5|G
Taxon 6|T

Under a Neyman (1971) model, transition probabilities
are given by

pr ðx! xÞ ¼ 1

r
þ ðr � 1Þ

r
e�li ð6Þ

pr ðx! yÞ ¼ 1

r
� 1

r
e�li ð7Þ

where li is the (non-normalized) length of branch i, and
r = 4 for the JC69 model (Jukes and Cantor, 1969).
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In the examples below, we refer to p(x fi x) as si and
p(x fi y) as di, for branch i of the topology.

Case 1.1: Trivial Alignment under standard assumptions

We now introduce a particular (trivial) alignment,
which we will henceforth refer to as trivial identity
alignment (TIA). In TIA, substitution costs are infinite
and indel costs are nonzero such that character columns
are compressed into a minimum-length alignment of
binary states, with each character of size ntax consisting
of any proportion of atomistic indels and a single
nucleotide alphabet character. This trivial alignment
differs critically from the form of parsimony-optimal
trivial alignment identified in a previous paper (Wheeler
et al., 1995), in which nucleotide data are aligned
completely out of sequence. Whereas the contribution
to the likelihood by the term for equilibrium base
frequencies (‘‘priors’’ of Felsenstein, 1981, p. 370)
renders this parsimony-optimal form of trivial align-
ment highly suboptimal under the likelihood criterion
by penalizing the overall length of the alignment, the
reduced length of the TIA suggests its possible optimal-
ity under standard likelihood assumptions, which we
show below with a simple example. For the single
character example, the TIA is:

Taxon 1|A – – –
Taxon 2|A – – –
Taxon 3|A – – –
Taxon 4| – C – –
Taxon 5| – – G –
Taxon 6| – – – T

Consider the tree in Fig. 1. The conditional likelihood of
the row D1 (the first character of the example TIA) in
this example is calculated as

pðD1jT ; hÞ ¼ s1s2 ðs3s4 þ 3d3d4Þ
þ 3d1d2 ðs3d4 þ d3 ðs4 þ 2d4ÞÞ ð8Þ

which is maximized by making all si values equal to 1,
and all di values equal to zero. The optimized condi-
tional likelihood for D1 is therefore p̂ ðD1jT ; hÞ ¼ 1.

The conditional likelihoods of D2, D3, and D4 are
equivalent due to the root-independence of reversible
stochastic models and are calculated as

p ðDjj T ; hÞ ¼
Y10

i¼ 1

ðsi þ 3diÞ ð9Þ

where j is each of the characters j = 2, 3, 4. Because the
individual terms (si + 3di) sum to 1, the product is also 1,
and so each of these characters� conditional likelihoods
are 1.

Additionally, due to the indels-as-missing assumption,
the character-optimal branch lengths for the example

TIA are equal to the optimal lengths shared across the
characters (i.e. there is zero homoplasy). The likelihood
of the six-taxon TIA example is therefore simply the
product of the equilibrium frequencies, which is

LT IA; 4 ¼
Y4

i¼ 1

1

r
ð10Þ

Therefore, the )log likelihood is )log LTIA,4 = 5.545.

Case 1.2: Trivial Alignment under standard assumptions
is an optimal solution

Since the parsimony score for any TIA is necessarily
zero for any topology when indels are treated as missing
data, the results of ML mirror those using TS97 ⁄No
Common Mechanism (Tuffley and Steel, 1997). Under
TS97 ⁄NCM, ML and parsimony are related by the
equation

LT ðX Þ ¼
Yn

i¼ 1

r�lðvi; T Þ�1
i ð11Þ

where n is the number of characters, vi is character i, X is
the set of n character columns, l(vi,T ) is the parsimony
score of the topology for column i, and ri is the character
alphabet size, which for DNA data under the indels-as-
missing assumption is ri = 4. Because n, the number of
characters, equals 1, the single non-trivial character
example above under TS97 ⁄NCM has likelihood

LT ðX Þ ¼ r�lðv;T Þ�1 ð12Þ

A A A - - -
- - - C - -
- - - - G -

T

I

II

1

III

IV

V

2

3 4

5 6

7 8

9 10

D1

D2

D3

D4

Fig. 1. Tree topology used to calculate likelihoods.
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By inspection, the parsimony score of the single-
character nontrivial example is l(v,T ) = 3, making the
likelihood under TS97 ⁄NCM equal to that of the TIA.
It is notable that the TIA is optimal whenever the
compressibility of the data (the difference between the
number of taxa and the number of redundant characters
within a single column) exceeds the parsimony score.
Although in the example presented, the TIA optimality
is equal to that of the single character case under
standard assumptions, we later show that the TIA
optimality is superior to that of heuristic MSAs on
several real datasets.

Case 2.1: Trivial Alignment with indel information

When indels are treated as a fifth state, likelihood
calculation is expanded by an additional term at each
node. Additionally, unlike in the preceding case, the
inclusion of indels in the character alphabet makes
character-optimal branch lengths conflict with the opti-
mal branch lengths shared by the characters. Consider
the first character of three A, as given in the topology of
Fig. 1. The simplified conditional likelihood in this case
is obtained by observing that a single change from an
indel to an A occurs on branch 5, rendering d5 = 1 ⁄5,
s5 = 1 ⁄5, and all other di = 0. This simplification results
in the conditional likelihood for the first character,

pðD1jT ; hÞ ¼ 1

5

Y

8i 6¼5
si ð13Þ

Following the procedure of relative likelihood, each
branch is optimized separately. The maximum values
taken by si occur at si = 1, when each branch length
equals zero. The individually optimal conditional like-
lihood for character 1 is therefore p̂ðD1jT ; hÞ ¼ 1

5 :
The conditional likelihood for D2 is simplified by

observing that a single change occurs on branch six
leading to the nucleotide. Therefore, d6 = 1 ⁄5,
s6 = 1 ⁄5, and all other di = 0, and

pðD2jT ; hÞ ¼ 1

5

Y

8i 6¼ 6

si ð14Þ

As for D1, the individually optimal conditional likeli-
hood for D2 is obtained by setting all si values to 1,
resulting in p̂ðD2j T ; hÞ ¼ 1

5. The results are similar for
the character-optimal conditional likelihoods of the
third and fourth characters, D3 and D4, in which the
si corresponding to the branch, 8 and either 9 or 10
(there are two equally parsimonious mappings for D4),
respectively, on which the change occurs is removed
from the product term:

pðD3jT ; hÞ ¼ 1

5

Y

8i 6¼8
si ð15Þ

pðD4jT ; hÞ ¼ 1

5

Y

8i 6¼10
si ð16Þ

The conditional likelihoods of these characters are also
optimized to 1 ⁄5. It should be noted that placing the
change for D4 on either branch 9 or branch 10 has no
effect on the character-optimal conditional likelihood.
In the best-case scenario, the likelihood of the TIA is
calculated under the condition that each character is
individually optimized on the topology (TS97 ⁄No
Common Mechanism, see below). Under these assump-
tions, branch lengths are separate for each character,
and the best likelihood score for the TIA under a fifth-
state-indel Neyman model is the product of the
individual conditional likelihoods and the equilibrium
frequencies, which is )log LTIA,5 = 12.876. However,
the likelihood score for the TIA when indels are
incorporated in the character alphabet is worse
than this best estimate. The general computational
framework for optimizing branches under these
conditions is provided by either Brent�s, (1973) method
or the Newton–Raphson method in software imple-
mentations, and is not in general directly calculable as
a closed-form solution. However, because POY5a
(http://research.amnh.org/scicomp/research/ projects/
invertebrate-zoology/poy?q=projects/poy.php) enables
indel-as-character models, the )log likelihood of the
example TIA can be calculated directly as )log
LTIA,5 = 20.944. The likelihoods of alternative single-
character datasets and their TIAs are presented in
Table 6.

Case 2.2: Trivial Alignment with indel information is not
optimal

As in Case 1.2, we consider the optimality of the
single-character TIA against the nontrivial single-
character alignment, but now consider indels as a fifth
state in the character alphabet (r = 5).

As before, the single, non-trivial character under
TS97 ⁄NCM has likelihood of eqn (12). By inspection,
the parsimony score for this single character is observed
to be l(v,T) = 3, and so is unchanged by the addition
of indels as a state. By contrast, the addition of indels
to the character alphabet adds a step to the six-taxon
TIA parsimony score (l(vi,T) = 4). Therefore, the
TS97NCM log likelihoods are )log LNT = 6.438 and
)log LTIA,5 = 12.876. From these simple examples, it is
thus apparent that adding indels to the alphabet
results in an order of magnitude drop in the optimal-
ity score on the TIA. The contribution to this
suboptimality can be divided into effects based on the
alphabet alone, and those effects based on increased
homoplasy.
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Empirical examples

Nucleotide Datasets

Five single-locus datasets were employed to assess the
performance of indel-as-missing and indel-as-state anal-
yses: scop16S, a 40-taxon 16S rRNA dataset of Scope-
lomorph fishes (Teleostei; Myctophiformes) assembled
from Yamaguchi et al. (2000a,b), with a length differ-
ence of 31 between the longest and shortest sequences;
whiting18S, a 62-taxon 18S rRNA dataset of holome-
tabolous insects (Svenson and Whiting, 2004), with a
length difference of 283 between the longest and shortest
sequences; small, a 32-taxon dataset of simulated
sequences taken from the SATé program folder (Liu
et al., 2009), with a length difference of 34 between the
longest and shortest sequences; large, a 60-taxon dataset
of randomly-selected simulated sequences from the 1000
taxon dataset large.fas in the SATé program folder, with
a length difference of 44 between the longest and
shortest sequences; and metazoa18S, a 60-taxon 18S
rRNA unpublished dataset of metazoa, with a length
difference of 479 between the longest and shortest
sequences. Pre-existing indels were purged from each
dataset before alignment.

Heuristic Multiple Sequence Alignments

Each of the five datasets was aligned in each of four
commonly-employed multiple sequence alignment pro-
grams, with default settings, as follows: CLUSTALw
2.0.12 (Larkin et al., 2007), gap opening: 15, gap exten-
sion: 6.66; MAFFT 6.7.13 (Katoh et al., 2005), gap
opening 1.53, gap extension 0.00; MUSCLE 3.6 (Edgar,
2004), gap opening )400, gap extension 0.00; PRANK
v.100311 (Löytynoja and Goldman, 2008), gap opening
0.025, gap extension, 0.75. Cost parameters not displayed
as default output were confirmed by logging a verbose
form of the output to a logfile. Individual alignments
submitted to PRANK were additionally supplied with a
guide tree in the form of the RAxML-optimal topology
generated from the corresponding MAFFT alignment
(see Tree Search Intensity section), and the ‘‘phylogeny-
informed’’ multiple sequence alignment was carried out
using the default HKY model of evolution.

Additionally, implied alignments (Wheeler, 2003)
were generated for each dataset via direct optimization
(Wheeler, 1996) in POY 4.1.2.1 (Varón et al., 2010)
under a parsimony weighting scheme that approximates
a five-state GTR based on the logarithm of the priors.
Five-by-five cost matrices were generated for each
unaligned dataset, and priors for indels were calculated
via the number of indels over the aligned rows and
columns in each dataset. The tree search to generate
each implied alignment was carried out by assigning a
hundredfold-scaled version of the corresponding cost

matrix to each dataset, and then performing 100
random addition sequences, followed by SPR and
TBR branch swapping; 50 iterations of parsimony
ratchet, reweighting 20% of the characters by a factor
of 3; and 200 iterations of tree fusing, followed by an
iterative pass with neighbourhood size 2. The resulting
implied alignments were used as a fifth multiple
sequence alignment, the GTR-Neyman-implied-
alignment (GTRNCMIA) for each dataset.

For all resulting alignments, median proportion indels
per taxon, defined as the median proportion of per-
taxon atomistic indel characters across all taxa in an
alignment, were calculated in Mesquite ver. 2.7.2
(Maddison and Maddison, 2010) and the number of
parsimony-informative, constant, and autapomorphic
characters under both an indels-as-missing and indels-
as-state assumption were calculated using a script in C.

Trivial Alignments

For each of the five datasets, TIAs were generated for
comparison with those generated using the default
parameters of the traditional alignment programs.
Because the problem of generating the TIA is likely to
be NP-hard based on its similarity to the NP-hard
tree-alignment (Sankoff, 1975), binary-character clique
(Hamel and Steel, 1996), and strip-packing (Martello
et al., 2003) problems, heuristic TIAs were generated in
POY4.1.2.1 as implied alignments using a custom 5 · 5
cost matrix specifying mismatch cost 1000, gap insertion
cost 10, and match cost 0. TIAs were generated
in POY4.1.2.1 via topology search consisting of 20
random-addition sequences, followed by TBR swapping.
The likelihoods of final identity alignments were eval-
uated in RAxML7.2.6 (-m GTRGAMMA -c4) and
PHYML3.0 (-m GTR -s SPR) for indels-as-missing, and
as prealigned data in POY5a using a 4 · 4 + 1 GTR
model in which all nucleotide to gap transitions were
estimated as a single parameter. Log likelihoods of the
equilibrium frequencies alone were calculated for
comparison to TIA likelihoods.

Tree Search Intensity

Topology searches for each multiple sequence align-
ment used a GTR+C4 model, with empirical equilib-
rium base frequencies, and were divided into two sets:
(a) analyses treating indels as missing data, and
(b) analyses treating indels as a state. Indels-as-missing
analyses were carried out in the commonly used ML
software packages RAxML 7.2.6 (Stamatakis, 2006)
with commands -m GTRGAMMA -c 4, PHYML 3.0
(Guindon et al., 2005, 2010) with commands -m GTR -s
SPR, and TreeFinder (Jobb et al., 2004) with commands
GTR[Optimum,Empirical]:G[Optimum]:4 and search
depth 2. Additionally, ML analyses were carried out in
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POY5a, with base frequencies, rate matrix entries,
gamma shape parameter, and branch lengths calibrated
to those produced by PHYML. Branch length values on
topologies produced by POY5a exhibited an average
discrepancy of 0.01 from values estimated in PHYML,
presumably due to differences in floating point approx-
imation. Topology searches in POY5a were conducted
by specifying prealigned data using the command read
(prealigned:(filename,tcm:(1,0))) and then by generating
a parsimony topology using the same search intensity as
for the implied alignments. The parsimony topology was
then transformed to likelihood under exact iterative pass
optimization using the command transform(likeli-
hood:(gtr,gamma:(4),estimate)) and subjected to a
constrained SPR search using the command swap-
(all,spr,sectorial:5) to replicate the search intensity used
by RAxML. Cross-validations of tree scores were
conducted on a subsample of trees produced by the
different programs by re-estimating branch lengths and
rate matrices and comparing the re-evaluated scores to
the original scores.

Given the paucity of software implementing indel
models for ML, two versions of indel-as-state analyses
were conducted in POY5a. First, each character-to-gap
transition was treated as separate parameters (e.g.
A M ) „ C M )) by adding the condition gap:(inde-
pendent) to the transform command. Second, nucleo-
tide-to-gap transitions were treated as a single parameter
(e.g. A M ) = C M )) by adding the condition
gap:(coupled) to the transform command. All analyses
were run from the command line on either a 2.4 GHz
Intel Core 2 Duo MacBook Pro with 4 GB 667 MHz
DDR2SDRAM under OSX ver. 10.5.8 or on the
Demeter Cluster (256 · 2.8 GHz Pentium 4 Xeon CPU)
at the American Museum of Natural History. All data-
sets, heuristic multiple sequence alignments, and tree
topologies are available in the Supporting Appendix S1.

Results

Sequence alignment properties

Multiple sequence alignments of the five datasets
varied in length depending on the alignment program
used (Table 1, column 3). Differences in aligned
sequence length resulted from differences in the median
proportion of indels per taxon. In all cases, default affine
CLUSTAL alignments exhibited the fewest median
proportion indels per taxon and the shortest aligned
lengths, and either PRANK+GT or the GTRNCMIA
exhibited the highest median proportion indels per
taxon and the longest aligned lengths for all five
datasets. The non-affine default MAFFT and MUSCLE
alignments exhibited similar median proportion
indels per taxon, falling in between those generated by

CLUSTAL and those generated by PRANK+GT and
GTRNCMIA.

The pattern of inserted indels exhibited significant
interaction with nucleotide characters. Treating indels as
a state reduced the proportion of constant characters
(CS) in all alignments (Table 1, column 6), with the
smallest differences in constant characters observed in
the alignments of the scop16S and whiting18S datasets.

Additionally, treating indels as a state increased the
proportion of parsimony-informative characters (IS) in
all alignments (Table 1, column 7), with the largest
increases observed in the alignments of the whiting18S
and metazoa18S datasets. Treating indels as a state also
slightly increased the proportion of autapomorphic
characters (AS) in most alignments (Table 1, column 8),
with the exception of the CLUSTAL alignments of the
large and whiting18S datasets. The relative ratios of
differences in the proportion of informative characters
to autapomorphic characters (P ⁄A) between the two
treatments of indels (Table 1, column 9) ranged from
0.323 for the MAFFT alignment of the large dataset to
13.002 for the CLUSTAL alignment of the scop16S
dataset. Most values for the heuristic multiple sequence
alignments (MSAs) fell between zero and one, and
below 3.5. Among the tree-informed alignment methods
(PRANK+GT and GTRNCMIA), GTRNCMIA
alignments exhibited larger P ⁄A values for all datasets
except the scop16S dataset.

Trivial alignment properties

Treating indels as a state decreased the proportion of
constant characters in TIAs (Table 1). This effect was an
order of magnitude larger for TIAs than for the MSAs
of the corresponding datasets, with the simulated
dataset (large and small) TIAs exhibiting the largest
differences in constant characters between the two indel
treatments. Treating indels as a state increased the
proportions of both informative and autapomorphic
characters by an order of magnitude in all datasets
except the whiting18S dataset.

Four of the five datasets (whiting18S, small, large, and
metazoa18S) exhibited approximately equal base fre-
quencies across the nucleotide alphabet (Table 2), with
scop16S exhibiting a slight bias toward adenine and a
slight deficiency in cytosine. When indels were treated as
missing data, TIAs for all datasets exhibited parsimony
scores of 0, as well as likelihood scores closely resem-
bling the contribution by the equilibrium frequencies
(Table 2, column 3).

As expected, when indels were treated as a fifth
character state, equilibrium base frequencies for all
trivial alignments significantly decreased, and the pro-
portion of indels dominated the frequencies by at least
three orders of magnitude. TIAs exhibited non-zero
unweighted parsimony scores.
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Multiple sequence alignment scores

Indel-as-missing. There were two sources of variability
in the log likelihood scores of each dataset (Table 3).
Most of the variation in scores was due to different
alignment methods (Table 3, column 9) which, in all
cases, was at least an order of magnitude larger than the
largest variation in log likelihood resulting from differ-
ences in tree estimation (see Supporting Appendix S1).
The scop16S and small datasets exhibited the lowest
percentage variation in log likelihood scores across tree
estimators (Table 3, column 10), and the metazoa18S
and large datasets exhibited the highest percentage
variation in log likelihood scores across tree estimators.
The whiting18S dataset exhibited the third highest
percentage variation in log likelihood score across tree
estimators.

Different tree estimators produced different log like-
lihood scores for a given alignment (Stamatakis, 2008).
In general, RAxML and PHYML log likelihood scores
were more similar to one another than to scores from
TreeFinder. Scores from POY5a were never better than
those of RAxML or PHYML, but were better than
those of TreeFinder in several cases.

Across tree estimators, the PRANK+GT and
GTRNCMIA alignments exhibited the best log likeli-
hood scores and showed little variability in alignment
rank. MUSCLE alignments exhibited the worst align-
ment scores, and showed little variability in alignment
rank. CLUSTAL and MAFFT alignments exhibited
variation in alignment rank. Despite differences in align-
ment scores across tree estimators, all produced the same
average ranking of alignments. PRANK+GT align-
ments were optimal, followed by GTRNCMIA, CLUS-
TAL, MAFFT and MUSCLE alignments, respectively.

Table 1
Differences in character properties of sequence alignments between the indels-as-missing and indels-as-state assumptions

Dataset Taxa Length Alignment MPI* DCS� DIS� DAS§ P ⁄A–

scop16S 40 1315 CLUSTAL 0.049 )0.032 0.030 0.002 13.002
scop16S 40 1320 MAFFT 0.053 )0.037 0.019 0.018 1.042
scop16S 40 1332 MUSCLE 0.061 )0.041 0.019 0.022 0.862
scop16S 40 1379 PRANK+GT 0.093 )0.077 0.028 0.049 0.559
scop16S 40 1397 GTRNCMIA 0.105 )0.087 0.030 0.057 0.532
scop16S 40 4520 TIA – )0.865 0.375 0.490 0.765
whiting18S 62 1828 CLUSTAL 0.051 )0.099 0.111 )0.011 9.619
whiting18S 62 1838 MAFFT 0.057 )0.122 0.112 0.010 10.789
whiting18S 62 1853 MUSCLE 0.064 )0.132 0.102 0.030 3.375
whiting18S 62 1909 PRANK+GT 0.092 )0.174 0.112 0.062 1.814
whiting18S 62 1887 GTRNCMIA 0.081 )0.162 0.125 0.037 3.357
whiting18S 62 2324 TIA – )0.420 0.210 0.210 1.000
small 32 1109 CLUSTAL 0.095 )0.040 0.020 0.020 1.000
small 32 1144 MAFFT 0.123 )0.051 0.044 0.007 6.250
small 32 1153 MUSCLE 0.130 )0.083 0.044 0.013 3.400
small 32 1337 PRANK+GT 0.249 )0.188 0.058 0.122 0.513
small 32 1331 GTRNCMIA 0.246 )0.180 0.093 0.087 1.069
small 32 8300 TIA – )0.998 0.475 0.523 0.910
large 60 1074 CLUSTAL 0.059 )0.005 0.013 )0.008 1.556
large 60 1665 MAFFT 0.393 )0.144 0.035 0.108 0.323
large 60 1529 MUSCLE 0.339 )0.076 0.061 0.014 4.227
large 60 2603 PRANK+GT 0.611 )0.247 0.112 0.136 0.824
large 60 2039 GTRNCMIA 0.504 )0.307 0.204 0.103 1.967
large 60 17 268 TIA – )1.000 0.430 0.570 0.754
metazoa18S 60 2504 CLUSTAL 0.298 )0.165 0.111 0.040 2.743
metazoa18S 60 2607 MAFFT 0.326 )0.184 0.119 0.051 2.338
metazoa18S 60 2637 MUSCLE 0.333 )0.179 0.102 0.064 1.592
metazoa18S 60 3372 PRANK+GT 0.478 )0.397 0.136 0.250 0.544
metazoa18S 60 3692 GTRNCMIA 0.524 )0.524 0.184 0.281 0.655
metazoa18S 60 10 018 TIA – )0.945 0.427 0.517 0.826

*Median proportion indels per taxon.

�The difference in the proportion of constant characters, calculated as CS(+) ) CS()), where the (+) and ()) indicate indels treated as a state,
and as missing data, respectively.

�The difference in the proportion of parsimony-informative characters, calculated as IS(+) ) IS()).

§The difference in the proportion of autapomorphic characters, calculated as AS(+) ) AS()).

–The absolute value of the ratio of DIS to DAS.
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Indel-as-state. Treating indels as independent, rather
than coupled, resulted in better log likelihood scores
overall, with few exceptions. For all datasets, treating

indels as a state in POY5a (Table 4) increased log
likelihood scores by between 20 and 30% relative to
POY5a indels-as-missing scores (Table 3), regardless of

Table 2
Trivial identity alignment properties

Alignment Parsimony Base frequency* Likelihood� f(A)� f(C) f(G) f(T) f())

Indels-as-missing
scopTIA 0 6196.550 6287.073 0.310 0.273 0.219 0.198 –
smallTIA 0 11499.426 11515.130 0.255 0.243 0.238 0.263 –
metazoaTIA 0 13862.078 13905.980 0.256 0.220 0.265 0.259 –
largeTIA 0 23937.828 23941.520 0.254 0.250 0.247 0.249 –
whitingTIA 0 3212.978 3220.505 0.232 0.250 0.286 0.232 –

Indels-as-state
scopTIA 5538 4375.051 36479.437 0.087 0.076 0.060 0.054 0.724
smallTIA 11528 4458.113 66836.578 0.031 0.029 0.028 0.033 0.879
metazoaTIA 13408 7166.793 87306.429 0.046 0.038 0.048 0.047 0.822
largeTIA 24654 5247.781 151057.720 0.015 0.016 0.014 0.015 0.942
whitingTIA 1272 3704.426 11223.688 0.170 0.184 0.210 0.170 0.266

*The )log likelihood of the equilibrium frequencies alone, calculated as � logðf ðAÞ NA f ðCÞ NC f ðGÞ NG f ðT Þ NT f ð�Þ N� Þ.
�Under Indels-as-missing, this score is the best score between searches of similar intensity in RAxML and PHYML under a GTR+C4 model.

Scores between the two programs were in all cases equivalent to one another to one decimal place. Under Indels-as-state, this score is the likelihood
calculated in POY under a five-state GTR+C4 model with nucleotide-to-indel transitions coupled.

�Frequency values of alphabet characters, rounded to three decimal places. Frequency values used in calculations were accurate to five decimal
places.

Table 3
)Log likelihood scores and ranks of heuristic MSAs under the indels-as-missing assumption

Dataset CLUSTAL MUSCLE MAFFT PRANK GTRNCMIA Ranks* SD� PV�

RAxML
scop16S 15534.580 15497.409 15586.875 15298.217 15406.107 4, 3, 5, 1, 2 114.050 0.737
whiting18S 5301.630 5122.640 5149.720 4936.403 4978.695 5, 3, 4, 1, 2 145.855 2.861
small 29377.889 29859.684 29692.456 29207.467 29280.066 3, 5, 4, 1, 2 280.139 0.950
large 65776.105 70561.593 65402.169 63009.494 63906.222 4, 5, 3, 1, 2 2923.235 4.447
metazoa18S 38358.668 39539.582 39037.312 37141.467 34877.445 3, 5, 4, 2, 1 1860.361 4.923

PHYML
scop16S 15532.120 15499.340 15585.402 15294.497 15405.417 4, 3, 5, 1, 2 114.879 0.743
whiting18S 5301.090 5121.701 5149.115 4935.992 4979.863 5, 3, 4, 1, 2 145.449 2.853
small 29377.741 29860.246 29692.212 29207.273 29279.794 3, 5, 4, 1, 2 280.393 0.951
large 65778.044 70562.991 65401.966 63009.196 63905.974 4, 5, 3, 1, 2 2923.933 4.448
metazoa18S 38362.613 39531.740 39042.111 37141.305 34877.314 3, 5, 4, 2, 1 1859.695 4.921

TreeFinder
scop16S 15538.020 15501.000 15594.100 15297.650 15406.830 4, 3, 5, 1, 2 116.890 0.756
whiting18S 5323.906 5139.330 5192.912 4942.678 4984.636 5, 3, 4, 1, 2 155.707 3.043
small 29376.770 29856.820 29692.320 29206.460 29278.780 3, 5, 4, 1, 2 279.740 0.949
large 65793.761 70574.200 65403.330 63009.192 63905.900 4, 5, 3, 1, 2 2928.606 4.455
metazoa18S 38306.209 39520.493 39007.630 37104.248 34834.680 3, 5, 4, 2, 1 1866.924 4.945

POY5a
scop16S 15550.290 15520.777 15604.831 15304.652 15424.412 4, 3, 5, 1, 2 118.341 0.764
whiting18S 5304.617 5123.776 5154.554 4938.872 4978.629 5, 3, 4, 1, 2 146.716 2.877
small 29382.497 29880.961 29709.951 29216.327 29286.360 3, 5, 4, 1, 2 286.800 0.972
large 65808.194 70611.676 65462.583 63014.545 63905.971 3, 5, 4, 1, 2 2941.279 4.473
metazoa18S 38379.246 39590.655 39078.137 37146.145 34879.084 3, 5, 4, 2, 1 1879.748 4.971

*The rank of )log likelihood scores for each heuristic MSA, per dataset. The median ranks, taken with respect to each alignment implementation,
were 3, 5, 4, 1, 2 for all likelihood implementations.

�The standard deviation of the )log likelihood scores for each dataset.

�The per cent variation in the )log likelihood scores, calculated as 100 · (SD ⁄mean).
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whether indels were treated as independent or coupled.
Treating indels as a state increased the variance of log
likelihood scores relative to POY5a indels-as-missing
scores in all cases except for the metazoa18S dataset,
regardless of whether indels were independent or cou-
pled.

Treating indels as a state significantly increased the
per cent variation in the small and large dataset
likelihood scores relative to the indels-as-missing condi-
tion, and also slightly increased the per cent variation in
the scop16S dataset log likelihoods. By contrast, treating
indels as a state decreased per cent variation in
likelihood scores for the whiting18S and metazoa18S
datasets.

Treating indels as a state altered the average ranking
of alignments relative to the indels-as-missing rankings.
CLUSTAL alignments had the best likelihoods, fol-
lowed by MAFFT and the GTRNCMIA alignments,
which differed in rank significantly on the scop16S and
whiting18S datasets. MUSCLE alignments ranked
fourth, differing from the indels-as-missing condition
in the improved scores on the metazoa18S dataset.
PRANK+GT alignment rank differed most signifi-
cantly from the indels-as-missing condition in exhibiting

the worst log likelihood scores for the biological datasets
scop16S, whiting18S and metazoa18S, and second-worst
likelihood scores on the simulated datasets small and
large.

Alignment performance under standard assumptions and
with indel information. When indels were treated as
missing data, TIAs exhibited the best log likelihood
scores for each of the five datasets. The mean multiple
sequence alignment likelihood scores for each of the five
datasets fell well below the TIA likelihoods. In most
cases, the TIA log likelihood scores were nearly twice
the optimality score of those of the multiple sequence
alignments (Table 5).

When indels were treated as a state, TIA likelihoods
dropped below those of the multiple sequence align-
ments across all datasets, regardless of whether indels
were treated as independent or coupled (Table 5).

Discussion

Weshowthatanovel formof trivialalignment (heuristic
TIA) exists in both parsimony and ML frameworks, and

Table 4
)Log likelihood scores and ranks of heuristic MSAs under the indels-as-state assumption

Dataset CLUSTAL MUSCLE MAFFT PRANK GTRNCMIA Ranks* SD PV

POY indels independent (all transformations unequal)
scop16S 17502.079 17630.136 17475.334 17918.445 17644.414 2, 3, 1, 5, 4 175.792 0.997
whiting18S 8615.444 8711.837 8728.307 9026.259 8609.090 2, 3, 4, 5, 1 169.933 1.945
small 32054.197 33937.911 32809.508 33904.058 33073.306 1, 5, 2, 4, 3 792.439 2.390
large 69167.188 95314.502 82237.960 91151.178 74924.892 1, 5, 3, 4, 2 10888.660 13.189
metazoa18S 51104.708 53902.119 53149.401 56052.226 53214.680 1, 4, 2, 5, 3 1775.959 3.321

POY indels coupled (all transformations equal)
scop16S 17507.656 17644.756 17504.662 17932.247 17647.699 2, 3, 1, 5, 4 173.959 0.986
whiting18S 8638.792 8725.563 8847.194 9046.251 8614.815 2, 3, 4, 5, 1 177.090 2.018
small 32057.046 33941.854 32816.774 33905.659 33075.249 1, 5, 2, 4, 3 791.959 2.388
large 69169.077 95246.828 82251.754 91153.548 74924.892 1, 5, 3, 4, 2 10868.657 13.166
metazoa18S 51184.408 53966.430 53262.021 56124.226 53280.379 1, 4, 2, 5, 3 1771.355 3.307

*The rank of )log likelihood scores for each heuristic MSA, per dataset. The median ranks, taken with respect to each alignment implementation,
were 1, 4, 2, 3, 5 for both coupled and independent treatment of the indel parameter in POY.

Table 5
Comparison of TIA and heuristic MSA performance under the different indel treatments

Indel treatment Alignment type*

Dataset

scop16S whiting18S small large metazoa18S

Missing Mean MSA 15469.126 5103.038 29486.104 65740.155 37787.804
Missing TIA 6287.080 3220.532 11515.360 23941.527 13905.979
State (coupled) Mean MSA 17647.404 8774.523 33159.316 82549.220 53563.493
State (coupled) TIA 36479.437 11223.688 66836.578 151057.720 87306.429
State (independent) Mean MSA 17634.082 8738.187 33155.796 82559.144 53484.627
State (independent) TIA 36031.374 10970.053 65458.790 147461.013 86165.294

*Mean )log likelihood scores for each dataset were calculated using values from Table 3 (indels-as-missing) and Table 4 (indels-as-state) for
heuristic MSAs, and Table 2 for TIAs.
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that TIA remains the optimal solution in ML analyses
when indels are treated as missing data. Although the
calculated likelihoods of the TIA example provided
invoke a Neyman fifth-state indel model, whose assump-
tions are likely to be extremely simplistic compared to
real data and the dynamics of indel events, the
relationships among heuristic MSAs and trivial align-
ments predicted under these simplified assumptions were
nonetheless validated when alternative single-character
TIAs were examined (Table 6), and when real datasets
were analysed using a GTR model with indels explicitly
modelled as a separate parameter. These results indicate
that the optimality of the TIA under standard ML is a
real phenomenon independent of the model complexity
employed.

The existence of the TIA as an optimal solution when
indels are treated as missing data in the substitution
alphabet has two implications. First, and most obvi-
ously, it suggests that indel events should be included as
a state if one wishes to use the substitution likelihood
(eqn 3, left term of right-hand side) to infer an optimal
topology from a fixed MSA, to avoid potential bias
(‘‘trivialization’’) in the placement of otherwise invisible
indel events. This approach has been well-motivated in
the parsimony literature. Alternatively, it suggests that a
substitution likelihood may not be the best method for
inferring the likelihood of the tree ⁄alignment pairing of
data. This second point has been made before by Thorne
et al. (1991), who observe that the inference of evolu-
tionarily relevant parameters from a single alignment is
likely to be biased in proportion to the degree of
divergence among the sequences. The implications of
this problem are illustrated by the iterative SATé
procedure (Liu et al., 2009), which divides an initial
heuristic MSA into subsets that are re-aligned and
merged according to the structure of the tree topology
associated with the alignment from the preceding
iteration. Because this method operates under standard
likelihood assumptions, its optimal solution is a TIA,
whether identified or not.

Tree-based methods are one solution to the problems
associated with progressive alignment algorithms.
Methods for simultaneous (as opposed to iterative)
phylogeny ⁄alignment inference exist (Sankoff, 1975;
Wheeler, 1996, 2006; Suchard and Redelings, 2006;
Redelings and Suchard, 2007; Varón et al., 2010) under
several optimality frameworks, most notably parsimony
affine direct optimization (Wheeler et al., 2006; Varón
et al., 2008). The use of a consistent optimality criterion
during alignment and tree search has been shown (for
parsimony and a limited form of most parsimonious
likelihood) to produce more optimal results than stan-
dard two-step procedures (Whiting et al., 2006). The
utility of a tree-based approach is implied in this study
by the comparable performance of the PRANK+GT
and GTRNCMIA alignments with indels as missing
data, and the apparent stability of the GTRNCMIA
alignment ranking to the inclusion of indels in the
alphabet. However, the two methods approach the
problem from different directions. The former penalizes
alignments by their proportion of indel events, given a
fixed guide tree, and is in many regards similar to the
broad approach referenced earlier in the section on this
‘‘indel problem.’’ The latter method searches for the best
tree ⁄alignment combination using a parsimony cost
matrix approximating the P matrix entries of the GTR
model.

The largely consistent range in the TIA P ⁄A ratios
between 0.75 and 1.0 itself suggests that an increase
in the proportion of autapomorphic characters relative
to informative characters when indels are parameterized
on a fixed alignment may be a significant predictor of an
inversion in alignment rank between an indels-as-miss-
ing and indels-as-state assumption, and thus a signifi-
cant predictor of whether a given alignment of real
data might be ‘‘trivialized’’ in the direction of a TIA.
However, this idea is contradicted by the ranks of
several MSAs with P ⁄A ratios in this range, among them
the MUSCLE scop16S, GTRNCMIA metazoa18S, and
CLUSTAL small alignments. Additionally, the wide
variation in P ⁄A ratios and alignment ranks across
alignment methods for a single dataset (Table 1) sug-
gests that a more complex combination of aligned length
and character patterns interacts with the estimation by
ML implementations of shared branch lengths across
characters to produce a homoplasy artefact explaining
the observed phenomena. This last idea is supported by
the extreme difference in rankings of the PRANK+GT
and GTRNCMIA alignments, which exhibit similar
lengths and changes in character patterns (although in
nearly all cases, the GTRNCMIA alignments have
higher P ⁄A ratios), but significantly different alignment
ranks between the indels-as-missing and indels-as-state
assumptions. The suboptimality of the PRANK+GT
approach may also be due to, or exacerbated by, the
suboptimality of the marginalization approach favoured

Table 6
Alternate single-character trivial identity alignments

Taxa NA NC NG NT

)Log likelihood*

Single, 4 TIA, 4 Single, 5 TIA, 5

6 2 2 1 1 5.545 5.545 6.437 20.944
7 3 1 1 2 5.545 5.545 6.437 20.944
8 2 2 2 2 5.545 5.545 6.437 20.944
10 3 3 2 2 5.545 5.545 6.437 20.944
12 3 3 3 3 5.545 5.545 6.437 20.944

*Likelihood scores calculated in POY under the Neyman-4 and
Neyman-5 models discussed in the theory section, using the commands
read (prealigned:(file,tcm:(1,0))), either transform (likelihood:(jc69))
for Neyman-4 or transform (likelihood:(jc69,gap:(character))) for
Neyman-5, then build(), and swap(all).
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by eqn (3) when combined with the treatment of indels
as a substitution alphabet character, or due to signifi-
cant bias by the guide tree used to place indels in the
alignment. Guide tree bias has been observed in other
studies to constrain the tree found as optimal to
resemble the tree used during progressive alignment
(Lake, 1991), but the effect may instead be to bias the
gap placement in the PRANK alignments. Given these
results, it remains unclear what predictors best inform
on the suitability of indel placement for ML analyses of
sequence datasets.

In a TIA, indels are essentially placeholders for
maximizing within-column single-nucleotide similarity.
Although this conceptual treatment of indels is ques-
tionable at best, it is consistent with a ‘‘two-step’’ cost
framework, albeit in an admittedly esoteric way. Under
standard ML assumptions, indels have zero parsimony
cost and probability 1 during topology search, despite
having a cost during alignment. Whereas many authors
have worked forward from alignment to topology
search and developed methods for coding indels into a
parsimony cost matrix to be used during tree search
(Simmons and Ochoterena, 2000; Young and Healy,
2003; Müller, 2006; Simmons et al., 2007) or model-
based framework (Thorne et al., 1991, 1992; McGuire
et al., 2001b; Redelings and Suchard, 2005, 2007;
Wheeler, 2006; Rivas and Eddy, 2008), the TIA
addresses the converse statement–if indels have no cost
during topology search, they have no cost during
alignment. If this statement is consistent with the
assumption of treating indels as missing data, then the
optimality scores resulting from this procedure should
be higher than those produced by heuristic MSAs, and
even the heuristic TIAs provided here outperform the
MSAs considered. Therefore, it is likely that a more
rigorous search will produce TIAs of still greater
optimality under standard ML.

An immediate question is whether maximizing
within-column similarity statements results in a legit-
imate hypothesis of potential homologues in a
two-step framework, the debate on the utility of
‘‘similarity’’ in comparative biology (Rieppel and
Kearney, 2002; Rieppel, 2006, and sources therein)
notwithstanding. The TIA is presented here only as a
numerical optimum and byproduct consequence of
current ML assumptions; we do not intend it to be,
nor are we advocating its use as, a legitimate MSA,
even though it is in the solution space. However, an
examination of the phylogenetic hypotheses pro-
duced by a TIA under standard ML remains to be
conducted. As we show, the TIA is only optimal when
indels are treated as missing data and is clearly
suboptimal when indels are treated as a state. Hence,
the treatment of indels by TIA under standard
assumptions is confirmed when indels are incorporated
in the model.

The indel models implemented on the biological
datasets in this study are not new, as indel models
(SiFjG), are available in POY3 (Wheeler, 2006; Wheeler
et al., 2006), in MAC5 (McGuire et al., 2001a) and in
dnamle (Rivas and Eddy, 2008). The models imple-
mented in the present analysis resemble the POY3
implementations S6F5G (GTR+indels coupled) and
S10F5 (GTR+indels independent). However, whereas
the POY3 implementation of indel models is restricted
to dynamic (Needleman and Wunsch, 1970) likelihood
(i.e. dominant and total likelihood) calculations, the
present implementation has potentially broader utility
for increasing the number of indel-related studies by
operating on static characters in heuristic MSAs, thus
making it accessible to current two-step procedures.
Additionally, the indel model implemented here in
heuristic MSAs differs from previous continuous-time
Markov indel models currently available as the soft-
ware MAC5 and dnamle (McGuire et al., 2001a; Rivas
and Eddy, 2008), in being a rearrangement-based
ML method that is both reversible and stationary,
sensu Jayaswal et al. (2005, 2011). As mentioned earlier,
reversibility has been cited as a problem for indel models
for two reasons: first, it assumes a frequency of indel
characters that is constant with respect to divergence
time, and second, it assumes that the sequences under
study have the same expected lengths at all divergence
times (Rivas and Eddy, 2008). Additionally, the
presently-employed model, like M01 (McGuire et al.,
2001b), and RE08 (Rivas and Eddy, 2008), assumes
independence among columns, potentially overweigh-
ting indels of greater length (Simmons et al., 2007) and
biasing the topologies inferred as optimal. However, as
has also been noted frequently in both parsimony
analyses and a few model-based analyses, the utility of
including indel information regardless of the assump-
tions is better than excluding it altogether (e.g. McGuire
et al., 2001b; Bapteste and Philippe, 2002; Vogt, 2002;
González et al., 2006; van Rheede et al., 2006; Dwivedi
and Gadagkar, 2009), although much more work
remains to be done to assess this claim for model-based
analyses. The proportion of contiguous indels observed
in an analysis will depend significantly on the marker
utilized and on the taxonomic sampling employed. In
the scop16S and whiting18S datasets of the present
study, inferred contiguous internal indels within a taxon
were rarely larger than four, whereas in metazoa18S and
the simulated datasets, contiguous indels were of much
greater length. Future work must design studies with
length-variable indels in mind. Additionally, new model-
based approaches to length-variable indel events should
focus on achieving local homogeneity, rather than
global homogeneity, as in TKF92 (Thorne et al.,
1992), which only allows insertions and deletions of
indel blocks of a constant length over all branches of a
topology.
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Conclusions

We considered the performance of heuristic TIA
against heuristic multiple sequence alignments (MSAs)
for five datasets under a traditional ML framework of a
globally homogeneous, stationary, reversible GTR+C
model on static characters. Under this standard ML
framework with indels treated as missing data, the
heuristic TIA alignment, identified as optimal in both
ML and parsimony, outperformed heuristic MSAs by a
factor of two in nearly all cases.

By contrast, when indels were modelled as a state
using a globally homogeneous, stationary, reversible
GTR+C model, log-likelihood scores necessarily
increased, given the transition from a 4 · 4 to a 5 · 5
rate matrix, regardless of whether indels were treated as
a single event or as separate events. However, under
this GTR+indels model, the performance of the
heuristic TIA alignment dropped below those of the
heuristic MSAs. The numerical optimality of the TIA
under standard ML emphasizes the need for incorpo-
ration of indels (however parameterized) into models in
ML analyses to eliminate this trivial optimum. Ideally,
ML analyses must be conducted using parameterized
indel information explicitly. At the very least, caution
must be exercised when using new software claiming
improvement in likelihood scores under standard
assumptions.

Because identifying a potentially trivialized alignment
of real data remains difficult, caution must also be
exercised when drawing conclusions from alignments
based on likelihood scores generated in standard tree
search implementations.
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