(BioMied Central

BIMC Bioinformatics The Open Access Publisher

This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

The tree alignment problem
BMC Bioinformatics 2012, 13:293 doi:10.1186/1471-2105-13-293

Andres Varon (avaron@gmail.com)
Ward C Wheeler (wheeler@amnh.org)

ISSN 1471-2105
Article type Research article
Submission date 17 May 2012
Acceptance date 22 October 2012
Publication date 9 November 2012

Article URL http://www.biomedcentral.com/1471-2105/13/293

Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and
distributed freely for any purposes (see copyright notice below).

Articles in BMC journals are listed in PubMed and archived at PubMed Central.
For information about publishing your research in BMC journals or any BioMed Central journal, go to

http://www.biomedcentral.com/info/authors/

© 2012 Varon and Wheeler
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:avaron@gmail.com
mailto:wheeler@amnh.org
http://www.biomedcentral.com/1471-2105/13/293
http://www.biomedcentral.com/info/authors/
http://creativecommons.org/licenses/by/2.0

The tree alignment problem

Andrés Varén!
Email: avaron@gmail.com

Ward C Wheeler'*
*Corresponding author
Email: wheeler@amnh.org

'Division of Invertebrate Zoology, American Museum of Natural History,
New York, NY - 10024, USA

Abstract

Background

The inference of homologies among DNA sequences, that is, positions in multiple genomes that
share a common evolutionary origin, is a crucial, yet difficult task facing biologists. Its
computational counterpart is known as the multiple sequence alignment problem. There are various
criteria and methods available to perform multiple sequence alignments, and among these, the
minimization of the overall cost of the alignment on a phylogenetic tree is known in combinatorial
optimization as the Tree Alignment Problem. This problem typically occurs as a subproblem of the
Generalized Tree Alignment Problem, which looks for the tree with the lowest alignment cost among
all possible trees. This is equivalent to the Maximum Parsimony problem when the input sequences
are not aligned, that is, when phylogeny and alignments are simultaneously inferred.

Results

For large data sets, a popular heuristic is Direct Optimization (DO). DO provides a good tradeoff
between speed, scalability, and competitive scores, and is implemented in the computer program
POY. All other (competitive) algorithms have greater time complexities compared to DO. Here, we
introduce and present experiments a new algorithm Affine-DO to accommodate the indel (alignment
gap) models commonly used in phylogenetic analysis of molecular sequence data. Affine-DO has the
same time complexity as DO, but is correctly suited for the affine gap edit distance. We demonstrate
its performance with more than 330,000 experimental tests. These experiments show that the
solutions of Affine-DO are close to the lower bound inferred from a linear programming solution.
Moreover, iterating over a solution produced using Affine-DO shows little improvement.

Conclusions

Our results show that Affine-DO is likely producing near-optimal solutions, with approximations
within 10% for sequences with small divergence, and within 30% for random sequences, for which
Affine-DO produced the worst solutions. The Affine-DO algorithm has the necessary scalability and
optimality to be a significant improvement in the real-world phylogenetic analysis of sequence data.

Keywords

Tree alignment, Tree search, Phylogeny, Sequence alignment, Direct optimization

Background

The inference of homologies among DNA sequences, that is, positions in multiple genomes that share a
common evolutionary origin, is a crucial, yet difficult task facing biologists. Its computational
counterpart is known as the multiple sequence alignment problem. There are various criteria and
methods available to perform multiple sequence alignments (e.g. [1-9]). Among these, given a distance
function, to minimize the overall cost of the alignment on a phylogenetic tree is known in combinatorial
optimization as the Tree Alignment Problem (TAP) [10-15]. The TAP typically occurs as a
subproblem of the Generalized Tree Alignment Problem (GTAP) which looks for the tree with the
lowest alignment cost among all possible trees [10] . The GTAP is equivalent to the Maximum
Parsimony problem when the input sequences are not aligned, that is, when phylogeny and alignments
are simultaneously inferred.

An important element in sequence alignment and phylogenetic inference is the selection of the edit
function, and in particular, the cost G(k) of a sequence of k consecutive insertions or deletions,
generically called indels (e.g. an insertion of 3 consecutive T (k = 3) in the sequence AA could create
the sequence ATTTA. The same operation in the opposite direction would be a deletion. The sequence
alignment implied would be A~ - —-A/ATTTA, where — represents an indel). G(k) could have a
significant impact in the overall analysis [16, 17]. There are four plausible indel cost functions
described in the literature: G(k) = bk (non-affine) [18], G(k) = a + bk (affine) [18], G(k) = a+ blogk
(logarithmic) [16, 19-22], and G(k) = a + bk + clog k (affine-logarithmic) [16]. Simulations and
theoretical work have found evidence that affine-logarithmic yields the most satisfactory results, but
provides marginal benefits over the affine function, while its time complexity is much greater [16]. For
this reason, many biologists adopt the affine indel cost function. (This topic is still a subject of
controversy.)

For large data sets, a popular heuristic is Direct Optimization (DO) [15]. DO provides a good tradeoff
between speed, scalability, and competitive scores, and is implemented in the computer program

POY [23,24]. For example, the alignment for the Sankoff et al. data set [11] produced by DO has cost
302.25, matching that of GESTALT [25] and SALSA [26]. Using an approximate iterative version of
DO that has the same time complexity, POY finds a solution of cost 298.75, close to the best known
cost of PRODALLI (295.25) [27]. All other (competitive) algorithms have greater time complexities
compared to DO (e.g [25-27]). An important limitation of DO, however, is that it was not defined for
affine edit distance functions.

The properties of DO and the GTAP (DO+GTAP) for phylogenetic analysis were experimentally
evaluated in [28]. The main conclusion of that study is that DO+GTAP could lead to phylogenies and
alignments less accurate than those of the traditional methods (e.g. CLUSTALW + PAUP¥*). The initial
work of Ogden and Rosenberg [28] raised a number of important questions: Do the conclusions hold if
a better fit heuristic is used for the tree search in the GTAP? What would be the effect of using an affine
edit distance function? How do the hypothesis scores compare among the different methods? These
questions have since been answered in various followup papers.

In [29], the author found that the opposite conclusion can be drawn when a better fit heuristic for the
GTAP is used. That is, when the resulting tree is closer to the optimal solution, DO+GTAP is a superior

method. Moreover, a good fit heuristic is a fundamental aspect in phylogenetic analysis that cannot be
overlooked.

Although [28] performed simulations under affine gap costs, the study used the non-affine distance
functions described for DO at the time of publication. Whether or not a different distance function
could yield different conclusions was tackled in [17]. The authors found that when using the GTAP as
phylogenetic analysis criterion under the affine gap cost function, the resulting phylogenies are
competitive with the most accurate method for simulated studies (i.e. Probcons using a ML analysis
under RaxML) [17]. It is important to note that [17] used an early implementation of the algorithms
presented in this paper (available in POY version 4 beta).

A comparison of the tree scores of various methods was recently performed in [30] and is implicit in

some of the conclusions of [17]. The authors concluded that when using a heuristic fit for the GTAP, the
hypotheses have scores better than those produced by other methods. Therefore, without hindsight (i.e.,
when accuracy cannot be measured), biologists would prefer the hypotheses generated under the GTAP.

In this paper, we introduce and present experiments a new algorithm Affine-DO. Affine-DO has the
same time complexity of DO, but is correctly suited for the affine gap edit distance. We show its
performance experimentally, as implemented in POY version 4, with more than 330,000 experimental
tests. These experiments show that the solutions of Affine-DO are close to the lower bound inferred
from an Linear Programming (LP) solution. Moreover, iterating over a solution produced using
Affine-DO has very little impact in the overall solution, a positive sign of the algorithm’s performance.

Although we build Affine-DO on top of the successful aspects of DO, DO has never been formally
described, nor have its basic properties been demonstrated. To describe Affine-DO, we first formally
define DO and demonstrate some of its properties.

Related Work

The TAP is known to be NP-Hard [31]. Due to its difficulty, a number of heuristic methods are applied
to produce reasonable (but most likely suboptimal) solutions. The first heuristic techniques [11,12]
consist of iteratively improving the assignment of each interior vertex as a median between the
sequences assigned to its three neighbors. This method can be applied to any initial assignment of
sequences and adjust them to improve the overall tree cost. In recent work, Yue et al. [32] used this
algorithm in their computer program MSAM for the tree alignment problem, using as initial assignment
the median computed between the 3 closest leaves to the interior vertex (ties arbitrarily resolved).

Hein [13, 14], designed a second heuristic solution which is implemented in the TreeAlign program. In
TreeAlign, sets of sequences are represented by alignment graphs, which hold all possible alignments
between a pair of sequences. The complete assignment can be performed in a post-order traversal of a
rooted tree, where each vertex is assigned an alignment graph of the two closest sequences in the
alignment graph of its two children vertices. The final assignment can be performed during a backtrack
on the tree. Although this method is powerful, it is not scalable (e.g. using TreeAlign to evaluate one of
the simulations used in this study did not finish within 48 hours). Moreover, the TreeAlign program
does not allow the user to fully specify the distance function. This algorithm was later improved by
Schwikowski and Vingron, producing the best tree alignment known for the Sankoff data set [33].

The most important theoretical results for the TAP are several 2 approximation algorithms, and a
Polynomial Time Approximation Scheme (PTAS) [34-37]. These algorithms solve the TAP from a

theoretical perspective, but the execution time of the PTAS renders it of no practical use. On the other
hand, the 2-approximation algorithms have shown very poor performance when compared to heuristic
methods such as that of TreeAlign.

Direct Optimization (DO) [15] is a heuristic implemented in the computer program POY [23,24,38],
which yields good execution times and competitive alignment costs. Given that DNA sequences have a
small alphabet (4 elements extended with an indel to represent insertions and deletions), DO represents
a large number of sequences in a compact way by using an extended alphabet (potentially exponential
in the sequence length). In the spirit of the TreeAlign method, DO heuristically assigns to each vertex,
during a post order traversal, a set of sequences in an edit path connecting two of the closest sequences
assigned to the children vertices. Subsequently, in a pre-order backtrack, a unique sequence is assigned
to the interior vertices to produce the solution.

DO can be implemented with a time complexity of O(n?|V|), where n is the length of the longest
sequences, and V is the vertex set of the tree. For larger alphabets the total time complexity is
O(n?|V||Z|), where | Z| < n is the alphabet.

Schwikowski and Vignon [27] published the best heuristic algorithm for the TAP, as implemented in
the PRODALI software. Although powerful, this algorithm has a potentially exponential time and
memory complexity, which in turn makes it non-scalable and difficult to use for the GTAP. Moreover,
PRODALI is not publicly available. It is for these reasons that DO is the algorithm of choice for the
GTAP, yielding slightly weaker tree cost approximations when compared to those of PRODALLI, but
suitable for better performance on larger data sets.

Results and discussion
Direct Optimization

Direct Optimization (DO) has only been described informally in the literature [15,38], and to build on
it, we must first fill this gap. At the core of the algorithm is the use of an extended alphabet to represent
sets of sequences. We begin by exploring the connection of this method with those using a tree
alignment graph.

In TreeAlign and PRODALLI, the set of optimal alignments between sequences are represented in an
alignment graph. These graphs are aligned at each vertex in the tree to find their closest sequences. An
alignment graph is then computed between these sequences, and assigned to a vertex of the tree. The
alignment between a pair of such graphs, however, is an expensive computation, both algorithmically
(O(n*)), and in its implementation. PRODALI is more expensive in practice, as it not only stores the
set of optimal, but also suboptimal alignments.

In DO, not all the possible alignments are stored, but only one. Howeyver, it stores all the possible
sequences that can be produced from this alignment. We will call such set of sequences a reduced
alignment graph (RAG). Thanks to their simplicity, DO use a more compact representation of a RAG,
to permit greater scalability than that of TreeAlign or PRODALI. DO represents them as sequences in
an extended alphabet by which we can then represent a complete RAG with an array.

It is then possible to align RAG’s, find the closest sequences contained in them, and compute their
RAG with time complexity O(n?). The following section formalizes these ideas.

Sets of Sequences, Edition Distance, and Medians

The first goal is to find a compact representation of sets of sequences produced in a pairwise alignment.
For example, the alignment ATTG A— -C is represented in an alignment graph shown in Figure 1.
Such graph can then be extended to include intermediate sequences such as ATG or ATC (Figure 1).

Figure 1 Alignment graphs. Graphs representing the alignment ATTG, A— -C. a. A plain alignment
graph. b. An alignment graph that contains more potential sequences

The same information can be efficiently stored by using an extended alphabet Xp = (X)) \ {¢} that
includes all the subsets of ¥ with the exception the empty set, as follows

{A}{T, indel}{T, indel}{G, C}.

We call such representation a Reduced Alignment Graph (RAG). Notice that all the intermediate
sequences can be produced by selecting an element from each set in the RAG, and removing all the
indels from the resulting sequence. If a sequence can be generated by following this procedure, then we
say that the sequence is included in the RAG. The example then includes the sequences ATTG, ATTC,
ATC, ATG, AC, and AG.

Observation 1. Let A € X} be a RAG. Then there are [[y, |X| sequences contained in A.

In the original problem definition, we are given a distance d between the elements in X. Let
dp(A, B) = mingea pep d(a, b), be the distance between elements in Xp. The following observation is by
definition:

Observation 2. For all A,B € Xp, there exists an a € A and b € B such that dp(A, B) = d(a, b).

Define the RAG edit distance by setting d = dp in Equation 1.

The sequence edit distance can be computed using dynamic programming [39], following the recursive
function:
e(Ay. i-1,By.j-1) +d(A;, B))

e(A1 i, B1.j) =min § e(A; 1, B1.;) + d(A;, indel) (1)
e(Ay._i, By j—1) + d(B), indel)

with base cases e({), ()) = 0, and e({),A) = e(A, () = leislAl d(A;, indel). The affine case is more
elaborate but possesses the same spirit and time complexity [40].

We will show that we can efficiently find the closest sequences in a pair of RAGs, as well as their edit
distance. Thanks to these properties, a RAG is used instead of an alignment graph, to bound the cost of
a tree with lower time complexity.

Lemma 1. For all RAGs A, B, there exists sequences U,V such that U is contained in A, V is contained
in B, and e(A,B) = e(U, V).

Proof. We define a procedure to produce U and V. Start with an empty U and V, and follow the
backtrack of Equation 1. For each case, prepend the following to U and V:

case 1 Select an element x € X; that holds Observation 2 and prepend it to U. Then find an element
y € Y that is closest to x and prepend it to V. From Observation 2 we know that
d(x,y) = dp(X;, Y)).

case 2 Select an element x € X; closest to indel and prepend x to U and indel to V. Again from
Observation 2 we know that d(x, indel) = dp(X;, {indel}).

case 3 Symmetric to case 2.

Observe that the overall time complexity remains O(n?) as in the original Needleman-Wunsch
algorithm [39].

The DO Algorithm
DO(T,), Direct Optimization

DO (Algorithm 1) estimates the cost of a tree by proceeding in a post-order traversal on a rooted tree,
starting at the root p, and assigning a RAG to each interior vertex.

Data: A binary tree 7 with root p
Data: An assignment x : L(T) — X of sequences to the leaves L of T
Data: S(v) holds a set of sequences for vertex v, initially empty for every vertex
Result: cost holds an upper bound of the cost of T, x
begin
cost < 0
foreach level of T, with the bottom level first do
foreach node v at the level do
if v is a leaf (has no children) then
Sv) < (ai,ai = {x()i})
else
Data: v has children # and w
cost < cost + ep(S(u), S(w);
U, W < the alignment of S(u) and S(w)) respectively;
S) < mp(U,W);
end
end
return cost
end

end

We have not defined yet mp(U, W) to compute each RAG. Let m(X, Y) be the set of elements in X and Y
that realize the distance dp(X, Y). Let the RAG between two aligned RAGs A, B € ¥}, |A| = |B| =nbe

mp(A, B) = (x; = m(A;, By)).

Without loss of generality, assume from now on that for all x € X \ {indel}, d(x, indel) = b for some
constant b.

Lemma 2. Let C = mp(A, B). Then for all X included in C, there exists Y and Z included in A and B
respectively, such that ep(A,B) = e(Y,Z) = e(X,Y) + e(X,Z). Moreover, Y and Z are (some of) the
closest sequences to C that are contained in A and B respectively.

Proof. Follows directly from the median definition and Lemma 1. Ul

Lemma 2 is important for the correctness of the DO algorithm. It shows that for every sequence
contained in C, there are corresponding sequences in A and B of edit distance equal to ep(A, B). This
lemma can then be used in the DO algorithm to delay the selection of a sequence from each RAG, and
use ep directly to calculate the overall cost of the tree. Without it, ep cannot be used for this purpose
directly.

Definition 1. Compatible assignments Two assignments x : V — X* and x' : V — X* are compatible
if both assign the same sequences to corresponding leaves, that is, for allv € L, x(v) = x'(v).

The following Theorem shows that the tree cost computed by DO is feasible:

Theorem 1. There exists an assignment of sequences x' compatible with x such that

DO(T, x) = Y e(x'(w),x').

(u,v)eE

Proof. Let T have root vertex p. Call x’ the final assignment of sequences to the vertices of 7. Select
any X included in S(p) and set x’(p) < X. Then for each other vertex v with parent p, following a
pre-order traversal starting at p, let x (v) < X where X € X* is included in S(v) and is closest to x’(p).
From Lemma 2, we know that for any selection at p there exists a selection in its children that would
yield the additional cost computed at p during the DO algorithm. Moreover, at each pre-order traversal
step, we assign to each vertex v the closest sequence to x’(p) included in S(v). Again from Lemma 2,
we know that the total cost of the two edges connecting p with its children must be greater than or
equal to the additional cost computed for vertex p in the DO algorithm. Therefore,

DO(T, x) = Z(u,v)eE(T) e(x' (), x'(v). O

DO is weaker than the alignment graph algorithms [14,27,33], as the later techniques maintain the set
optimal edit paths between sequences, or a superset including it. However, in these algorithms the
overall execution time and memory consumption requirements could grow exponentially [27]. In
contrast, DO maintains a polynomial memory and execution time, making it more scalable, with
competitive tree scores. Moreover, DO can be efficiently implemented thanks to the simplicity of the
data structures involved.

The Affine Gap Cost Case

In practice, biologists use DO because of its scalability and competitive costs. However, the DO
algorithm was defined for the non-affine distance functions (G(k) = bk), and does not work correctly
for the popular affine indel cost model [18] (G(k) = a + bk). Under many parameter sets, DO could
produce worse tree cost estimations than those of the Lifted Assignment if used under the affine gap
cost model (non published data). The fundamental reason for this problem is that Lemma 2 does not
hold for the affine gap cost (e.g. Figure 2), and therefore, ep cannot be directly used to correctly bound
the cost of a tree.

Figure 2 Example of suboptimal median. Let G(k) = 7 + k. The center sequence is the median for
the alignment of the left and right sequences. (The underscored C represents {C, indel}.) Although the
upper and lower sequences are included in the median, the lower one is not in an optimal edit path
connecting left and right. This example shows Lemma 2 does not hold for affine gap costs. Therefore,
there are sequences in this RAG that cannot be used directly in the DO algorithm without an extra cost,
not computed by ep. It follows that DO, if used directly for the affine gap cost case, can compute an
incorrect cost for a given tree

To overcome this problem, we extend Gotoh’s algorithm [40] to compute distances heuristically for
sequences in X3, and define a new median sequence. With these tools, we modify DO so that Lemma 2
still holds to compute tree cost bounds.

Heuristic Pairwise RAG Alignment

Let A and B be a pair of RAG’s to be aligned. Define the affine edit distance function, analogous to ep,
using 4 auxiliary matrices (g, d, v, and h), as

eaitp (A1..i» B1..j) = min{g[i,j].d[i.j],v[i.j], hli.j]}.

The matrices g, d, v, and h will be filled recursively. Before defining them formally, the basic intuition
of the procedure is that g[i, j] is the cost of an alignment where A; and B; align elements other than an
indel. d[i, j] is the cost of an alignment using indel elements in A; and B;. v[i,/] is the cost of an
alignment where we use a “vertical” indel block by aligning B; with an indel. Finally, A[i,] is the cost
of an alignment where we use a “horizontal” indel block by aligning A; with an indel.

To compute these values, we define a number of accessory functions. The cost of a pure substitution
subst(X,Y) = dp(X \ {indel}, Y \ {indel}). Symmetric to the substitution cost, we need the cost of
extending a gap when indel € A,B C X:

0 ifindel € X and indel € Y

diag(X,Y) = .
oo otherwise.

There are three remaining accessory functions required to compute the matrices g, i, v, and d. Each
function handles various cases where a or b needs to be added. The first function, go(A, i) evaluates

whether or not it is necessary to add a gap opening value when aligning A; with a gap:

0 ifi =1 and indel € A;
go(A,i) = 0 ifi > 1andindel ¢ A;_y and indel € A;

a otherwise.

The second function go’ (X, Y) calculates the extra cost incurred when not selecting an indel in one of
the sequences means splitting an indel block:

0 ifindel ¢ X

g0 (X,Y) = subst(X,Y)+ [)
a otherwise.

The third, and final accessory function, computes what would be the extra cost of extending an indel,
that is:

0 ifindel € X
b otherwise.

ge(X) = [

Finally, the recursive functions for the cost matrices is defined as:

gli—1,j — 1]+subst(A;, B))
dli—1,j— 1] +subst(A;, B)+

gli,jl = min go(A, i) + go(B,)) (2
v[i—1,j— 1]+go'(B;,A;)

hli—1,j—1]+go'(A;, By),

Mijl = min | 1h/~ HHeeB) | 3)
dli,j— 1] +ge(B)) + go(B,)),
Wijl = min) LT Liltge@) 4)
d[l - 1’.]] +ge(Al) + 80(A7 l)a
dli,j1 = diag(A;,B;) + (5)
min d[lj_l’J:_l] . _ (6)
gli—1,j—114go(A,i) + go(B,)),

with base cases g[0,0] =0, d[0,0] = o0, v[0,0] = go(A, 1), h[0,0] = go(B, 1),
g=[0,i]=4d[0,i]=v[0,i]= 00,h[0,i]= h[0,i — 1] 4+ge(B;), 1 <i < |B|,
v[j,0]=v[j — 1,0] +ge(A)), and g[j,0] = d[j,0] = h[j,0] = 00,1 < j < |A].

The following theorem shows that if we align a pair of sequences in A, B, then we can bound the cost of
the closest pair of sequences included in them.

Theorem 2. There exists a sequence X contained in A and a sequence Y contained in B such that
eqr, (A, B) > ep(X, Y).

Proof. We are going to create a pair of sequences X and Y contained in A and B respectively that have
edit cost at most ey, (A, B). To do so, follow the backtrack that yields ey, (A, B), and at each position i

and j in the aligned A and B assign X, and Y}, where k is the alignment position corresponding to the
aligned X; and Y; as follows:

1. gli,jlis the cost of aligning A;_; and B;_; when a non-indel element of A; and B; is aligned. If
the backtrack uses g[7,] then assign to X; and Y; the closest elements in A; \ indel and B; \ indel.
Observe that all the cases in Equation 2 align a non-indel element from A; and B;, and add a cost
that is always greater than or equal to subst(A;, B;)) = d(X;,Y)).

2. h[i,j]is the cost of extending an indel in the horizontal direction. Therefore, select X; = indel,
and
indel if indel € B;

Yy = .
Y,y € B; otherwise.

If Yy = indel, then the alignment of X; and Y} causes no additional cost in the particular
alignment being built between X and Y. Otherwise, then there is an extra cost, of at least the b
parameter, which both cases of Equation 3 account for. Additionally, if the previous pair of
aligned elements are a pair of indels (second case in 3, see below for the treatment of this
option), then an extra indel opening cost is added.

3. v[i,j] is the cost of extending an indel block in the vertical direction. The treatment is symmetric
to that of 4, with Y; = indel and

indel if indel € A;
x,x € A; otherwise.

4. d[i,j] is the cost of extending an indel in the diagonal direction, that is, when both A and B hold
indels, and those indels are being selected during the backtrack. Equation 6 ensures that this
choice is only possible by assigning oo whenever at least one of A; or B; does not contain an
indel. Otherwise, if this option is selected, then simply assign indel to both X; and Y} with no
extra cost for the alignment of X and Y.

The Main Algorithm: Affine-DO

We will now use ey, (A, B) to bound the cost of a tree using a post-order traversal, in the same way we
did with DO (Algorithm 1). In order to do so a RAG to be assigned on each step must be defined (i.e.
the function mp in Algorithm 1). To create the RAG M (initially empty), do as follows in each of the 4
items described in the proof of Theorem 2:

1. If we selected two indels in X; and Y;, don’t change M.
2. If Xy = indel and Y}, # indel, then prepend {indel} U B; to M.
3. If X # indel and Y, = indel, then prepend {indel} U A; to M.

4. If X;, # indel and Y, # indel, then prepend
{x € A;,for some y € Bj,d(x,y) = d(Xy, Yi)} + {y € Bj,for some x € A;,d(x,y) = d(X, Yi)} to
M.

5. Once the complete M’ is created, remove all the elements M; = {indel} to create the indel-less
RAG M. We call M the RAG produced by i, (A, B).

Definition 2. Affine-DO Affine-DO is Algorithm 1, modified by replacing mp with m,, and ep with

eajfp-

It is now possible to use the Affine-DO algorithm to bound heuristically the cost of an instance of the
TAP.

Theorem 3. Given a rooted tree T with root p, and an Affine-DO assignment S : V(T) — X3, there
exists an assignment x' : V(T) — X* such that X = x'(p) and the cost computed by Affine-DO equals
that implied by x'.

Proof. If there are no indels involved in the tree alignment, then the arguments of Theorem 1 would
suffice. Hence, we now concentrate on the cases that involve indels.

To prove those remaining cases, we will use induction on the vertices of the tree. To do so, we will
count the credits that each vertex adds to the subtree it roots as added by the Affine-DO algorithm. The
credits represent the maximum total cost of the indels involved in a particular subtree; we will compare
them with the debits incurred by a set of indels, and verify that the credits are always greater than or
equal to the debits. To simplify the description, we will call type A subsequences of maximal size
holding only indels, and type B subsequences of maximal size holding sets that include, but are not
limited to, indels, and type C maximal subsequences holding sets with no indel. We will count without
loss of generality the credits and debits within those subsequences. In Figures 3 and 4, Type A is
represented as a line, type B as a box with a center line, and type C as an empty box.

Figure 3 Credits and debits in the simple cases. credits and debits incurred by the different possible
arrangements of subsegments with matching limits in S(p), S(u), and S(v). The only cases with

credits = debits > 0 (in the right box) represents with filled boxes the assignments that would yield an
indel block

Figure 4 Credits and debits in the complex cases. In the upper part, overlapping blocks of type B in
S(u) and S(v), with a complex pattern of insertions and deletions in S(p). The total credits added at
S(p) by Affine-DO can be transferred to # and v. In the lower, the credits transferred to v can be
assigned to m individual insertion blocks (solid boxes), and one deletion block (dashed empty box)
which maintain debits > credits

For the inductive step, consider the leaves of the tree. By definition, for all v € L, S(v) can contain
subsequences of neither type A nor B, as there are no indels allowed. Therefore, the theorem holds
true, with a credits = debits = 0.

Consider now the interior vertex v, with children u# and v. In Figure 3, all the simple cases where the
limits of the subsequences in S(u#) and S(v) match those of S(p). It is straightforward to see that in all
those cases credits = debits.

Consider now the more difficult case when the blocks do not have exact limits. Assume without loss of
generality that S(«) and S(v) have a segment of type B, and S(p) has in the corresponding segment a
series of blocks of type A and C (Figure 4). (There can be no subsequences of type B in S(p) aligned
with those of type B in S(u) and S(v) as myy, does not allow it.)

The total credit granted by Equation 2 is ¢ > 2ma + 2by ;| s;. We can transfer ¢/2 to u (v), so that in
one edge rooted by u (v), a series of insertions corresponding to the subsequences sy, $, . . . , Sy, can
occur (Figure 4), while the other branch supports a single deletion of length / — } ", s; (Figure 4
lower, upper dashed box). The total debit of these events now rooted in u would be

am+1)+bY si+b(l—Y 5) <c/2+a+bl (7

i=1 i=1

By the inductive hypothesis, the subtree rooted by u (v) has credits > debits, and from Equation 7 we
also have that credits > debits in p, therefore the theorem holds, and the overall tree rooted by p has a
sequence assignment of cost at most that computed by the Affine-DO algorithm. O

Theorem 4. If ¥ is small, then Affine-DO has time complexity O(n*|V|) time, otherwise the time
complexity is O(n*|V||Z)).

Proof. 1f the alphabet is small, then m,s, and dp can be pre-computed in a lookup table for constant
time comparison of the sets. For large alphabets the maximum size of the sets contained in Xp can be
made constant. Otherwise, a binary tree representation of the sets would be necessary, adding a ||
factor to the set comparison. Each heuristic alignment can be performed using dynamic programming,
with time complexity O(n?) where n is the maximum sequence length (Ukkonen’s [41] algorithm
makes no obvious improvement as insertions and deletions could have cost 0 when aligning sequences
in X7) . BEach alignment must be repeated for |V| vertices during the post-order traversal, yielding the
claimed time complexity. O

Experimental Evaluation

In this section, we describe the methods used to generate the instance problems, assess the solutions
generated by each algorithm, and compare the algorithms. This allows the assessment of the
performance of each algorithm, Affine-DO in greater detail, and an evaluation of Affine-DO using
exact solutions for trees with only 3 leaves.

Data Sets

To generate the instance problems, We simulated a number of sequences using DAWG 1.1.1 [42] with
insertions and deletions following a power law distribution. The simulations followed random binary
trees of 50 leaves comprising all the combinations of the parameters listed in Table 1. These produced
a total of 96,000 independent simulations. For each data set, we collected the true sequence
assignment. This information allows the comparison of the cost calculated by Affine-DO with the cost
implied by the true sequence of events. Our expectation was to produce costs lower than those using
the true sequence assignment.

Solution Assessment

The sequences assigned by the simulation can be far from the optimal solution. To evaluate Affine-DO,
we used two algorithms: the standard Fixed States algorithm, which is known to be a 2-approximation,
and the cost calculated by the solution of an LP instance of the problem. A good heuristic solution
should always be located between these two bounds. As a comparison measure for each solution, the

Table 1 Simulation parameters

Parameter Values Evaluated
Substitution Rate 1.5

Average Branch Length 0.05,0.1,0.2,0.3, 00
Max. Gap 1,2,5,10, 15

70, 100, 150, 200,
300, 400, 500, 1000

All combinations of parameters were employed to generate the test data sets. The branch length variation equals the average
branch length.

Root Sequence Length

ratio between the solution cost and the LP bound was computed. The closer the ratio to 1.0, the better
is the solution.

This form of evaluation has the main advantage (but also disadvantage), of being overly pessimistic.
Most likely, the LP solution is unachievable, and therefore, the approximation ratio inferred for the
solution produced by Affine-DO will most likely be an overestimate. To assess how over-negative the
LP bound is, we produced 2100 random sequences divided in triplets of lengths between 70 and 1000.
For each triplet, the Affine-DO, the LP bound, and the exact solution were computed. These three
solutions were compared to provide an experimental overview of the potential performance of our
algorithm. We selected random sequences because preliminary experiments showed evidence that these
produce the most difficult instances for Affine-DO.

Algorithms compared

We implemented a number of algorithms to approximate the tree alignment problem. Our
implementation can be divided in two groups: initial assignment, and iterative improvement.

Initial Assignment

includes the Fixed States (a stronger version of the Lifted Assignment [34,43]), Direct

Optimization [15], and Affine-DO. Each of these algorithms starts with a function y and creates a x’
compatible with y which is an instance solution. DO and Affine-DO have already been described. The
Fixed States [43] is a simple algorithm were the interior vertices are optimally assigned one of the leaf
sequences of the input tree, yielding a 2-approximation solution [34].

Iterative Improvement

modifies an existing x’ by readjusting each interior vertex using its three neighbors. This procedure is
repeated iteratively, until a (user provided) maximum number of iterations is reached, or no further tree
cost improvements can be achieved. The adjustment itself can be done using an approximated or an
exact three dimensional alignment, which we call the Approximate Iterative and Exact Iterative
algorithms. Approximate Iterative (Figure 5), uses DO or Affine-DO (the selection depends on which
kind of edit distance function is used) to solve the TAP on the three possible rooted trees formed by the
three neighbors of the vertex used as leaves. The assignment yielding the best cost is selected as the
new center. The exact three dimensional alignment has time complexity O(n?) [44]. Our
implementation uses the low memory algorithms implemented by Powell [44], though they can be
improved to O(n*) memory consumption [45].

Figure 5 Approximate DO. An iteration of the approximated iterative improvement. To improve x,
Affine-DO is used to produce x;, x,, and x3 in the three possible rooted trees with leaves u, v, and w. If
the best assignment x; yields better cost than the original x, then it is replaced, otherwise no change is
made

We compared MSAM [32], Affine-DO, Approximate Iterative, Exact Iterative, and Fixed States, using
a lower bound computed with an LP solution. We do not include DO in the comparisons because it
could not solve this problem [46]. It is therefore impossible to compare it directly with our algorithm.
GESTALT, SALSA, and PRODALI were unavailable, and so, could not be used in our comparative
evaluation. TreeAlign did not produce a solution for the simulations within 48 hours of execution time,
and therefore, was not included in the comparisons.

In total, more than 330,000 solutions were evaluated. We only present those results that show
significant differences, and represent the overall patterns detected. The Exact Iterative algorithm was
only evaluated for the short sequences (70 to 100 bases), due to the tremendous execution time it
requires. Fixed States followed by iterative improvement is not included because its execution time is
prohibitive for this number of tests (POY version 4 supports this type of analysis). Nevertheless,
preliminary analyses showed that this combination of algorithms produce results in between Fixed
States and Affine-DO, but not competitive with Affine-DO.

Algorithm Comparison

The most important patterns observed between the evaluated algorithms are presented in Figure 6 and
Table 2. In general, Affine-DO yields a better approximation than Fixed States. According to the
density histograms (data not shown), the expected approximation ratio of 1.1 (versus 1.5 for Fixed
States) in the best parameter combination, and 1.5 (versus 1.7) for the worst. Iterative improvement
(both in exact and approximated forms) has a small overall impact in the approximation ratio (with a
maximal decrease of 0.05 when compared with the solution inferred by Affine-DO alone). In all cases,
Affine-DO found better solutions than the simulations (Table 2).

Figure 6 Algorithm comparison. General patterns observed in the approximation ratio of the different
algorithms. Simulation is the simulated data, ADO is Affine-DO, Approx. and Exact IADO are the
approximated and the exact iterative Affine-DO algorithms respectively, initial and final MSAM are the
initial and final estimations of the MSAM algorithm. a. substitutions =1, @ = 0, b = 1, branch
length=0.05. b. substitutions =4, a = 3, b = 1, branch length=0.05. c. substitutions =4,a =3,b =1,
branch length=0.3

Although the combination of Affine-DO and Iterative improvement produces better solutions, its
execution time is dramatically higher. In the current implementation, running on a 3.0 Ghz, 64 bit Intel
Xeon 5160 CPU with 32 GB of RAM, Affine-DO evaluates each tree in less than 1 second in the worst
case, while Affine-DO + Iterative improvement may take more than 1 hour per tree. For this reason,
Affine-DO is well suited for heuristics that require a very large number of tree evaluations such as the
GTAP, where millions of trees are evaluated during a heuristic search.

Table 2 Numerical comparison of a pair of parameter combinations that represents the variation
observed between the different algorithms

Subst. Gap Op. Branch Len. Algorithm Min. Median Max
Simulated 1.088 1.218 1.337

Fixed States 1.275 1.534 1.755

! 0 0.05 ADO 1.044 1.148 1.215
ADO + Iter. 1.044 1.123 1.202

Simulated 1.731 2.022 2.396

1 0 0.3 Fixed States 1.621 1.725 1.816
ADO 1.314 1.398 1.453

ADO + Iter. 1.300 1.377 1.393

Simulated 1.108 1.262 1.415

Fixed States 1.302 1.557 1.766

4 3 0.05 ADO 1.084 1.208 1.312
ADO + Iter. 1.067 1.171 1.283

Simulated 2.012 2.284 2.611

4 3 0.3 Fixed States 1.688 1.795 1.868
ADO 1.433 1.500 1.542

ADO + Iter. 1.388 1.442 1.453

Each individual indel has cost 1.

Approximation of Affine-DO

Figure 7 shows the density histogram of the guaranteed approximation of the Affine-DO algorithm
when compared with the LP theoretical solution for a representative set of parameters. The results
show that Affine-DO has a guaranteed approximation of less than 60% in every case.

Figure 7 Affine-DO vs. Theoretical LP bound. Guaranteed approximation ratio of Affine-DO
compared with the theoretical LP bound, for different cost and sequence generation parameters. a.
substitutions =1, a = 0, b = 1. b. substitutions=2,a =1, b = 1. c. substitutions=4,a=1,b =3

Typically, the larger the sequence divergence, the larger is the approximation degree of Affine-DO. The
same pattern is observed for larger a. To test an extreme case, were the branch length is maximal, we
evaluated the behavior of random sequences in the same set of trees. Figure 8 shows the results of this
experiment.

Figure 8 Affine-DO vs. Theoretical LP bound with random sequences. Guaranteed approximation
of Affine-DO for random sequences. In the left substitutions=1, a = 0, b = 2, in the center
substitutions=1, a = 0, b = 1, and in the right substitutions=2, a = 1, b = 1. These are representative
of the distributions observed in the experiments

The worst case is observed with an average approximation slightly over 1.5. This variation, however,
could have been caused by a more relaxed LP bound, which could be producing an overly pessimistic
evaluation of the algorithm. To assess the importance of this factor, we evaluated its tightness
experimentally.

Comparison with an exact solution

To assess Affine-DO and the tightness of the LP bound, we computed the exact solution for 700
unrooted trees consisting of 3 leaves with random sequences assigned to their leaves, under all the
parameter sets tested. Figure 9 shows the density histograms for the results obtained.

Figure 9 Affine-DO vs. exact solution. Tightness of the Affine-DO solution according to the LP
bound compared to the exact approximation. Observe that even for a very small data set, the LP bound
is not realistic, and Affine-DO is close to the optimal solution. a. substitutions =1,a =0,b = 1. b.
substitutions =2, a =1, b = 1. c. substitutions=4,a=1,b =3

Note that the LP-inferred bound is overly negative even for these small test data sets, with the inferred
approximation expected at around 1.15, while in reality Affine-DO finds solutions that are expected to
approximate within 1.05 of the optimal solution, a 10% difference for trees consisting of only 3
sequences.

Conclusions

We have presented a novel algorithm that we have called Affine-DO for the TAP under affine gap costs.
Our experimental evaluation, the largest performed for this kind of problem, shows that Affine-DO
performs better than Fixed States. However, we observed that the LP bound is too pessimistic,
producing unfeasible solutions 10% worse, even for the smallest non-trivial tree consisting of 3 leaves.
Based on these observations, we believe that Affine-DO is producing near-optimal solutions, with
approximations within 10% for sequences with small divergence, and within 30% for random
sequences, for which Affine-DO produced the worst solutions.

Affine-DO is well suited for the GTAP under affine sequence edit distances, and yields significantly
better results when augmented with iterative methods. The main open question is whether or not there
exists a guaranteed bound for DO or Affine-DO. Then, if the answer is positive, whether or not it is
possible to improve the PTAS using these ideas. Additionally, many of these ideas can be applied for
true simultaneous tree and alignment estimation under other optimality criteria such as ML and MAP.
Their use under these different optimality criteria remains to be explored.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

WW defined the Fixed States and DO algorithms. AV developed Affine-DO and performed all analyses
under supervision of WW. AV and WW wrote and revised the manuscript. Both authors read and
approved the final manuscript for publication.

Acknowledgements

This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and
the U. S. Army Research Office under grant number W911NF- 05-1-0271.

References

10.

11.

12.

13.

14.

15.

16.

. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: Improving the sensitivity of progressive

multiple sequence alignment through sequence weighting, positions—specific gap penalties
and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.

Morgenstern B: DIALIGN 2: improvement of the segment-to-segment approach to multiple
sequence alignment. Bioinformatics 1999, 15:211-218.

. Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence

alignment based on fast Fourier transform. Nucl Acids Res 2002, 30:3059-3066.

. Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space

complexity. BMC Bioinformatics 2004, 5:113,
[[http://www.biomedcentral.com/1471-2105/6/113]].

. Fleissner R, Metzler D, von Haeseler A: Simultaneous Statistical Multiple Alignment and

Phylogeny Reconstruction. Syst Biol 2005, 54(4):548-561.

Redelings BD, Suchard MA: Joint Bayesian Estimation of Alignment and Phylogeny. Syst Biol
2005, 54:401-418.

. Do CB, Mahabhashyam MSP, Brudno M, Batzoglou S: ProbCons: Probabilistic

consistency-based multiple sequence alignment. Genome Res 2005, 15:330-340.

. Wheeler WC: Dynamic Homology and the Likelihood Criterion. Cladistics 2006, 22:157-170.

Nelesen S, Liu K, Zhao D, Linder CR, Warnow T: The effect of the guide tree on multiple
sequence alignments and subsequenct phylogenetic analyses. Pac Symp Biocomputing 2008,
13:25-36.

Sankoff D: Minimal Mutation Trees of Sequences. SIAM J Appl Mathematics 1975, 28:35-42.

Sankoff D, Cedergren RJ, Lapalme G: Frequency of Insertion-Deletion, Transversion, and
Transition in the Evolution of 5S Ribosomal RNA. J Mol Evol 1976, 7:133-149.

Sankoff D, Cedergren RJ: Simultaneous Comparison of Three or more Sequences Related by a
Tree, Reading, MA: Addison-Wesley 1983 :253-263.

Hein J: A New Method That Simultaneously Aligns and Reconstructs Ancestral Sequences
for Any Number of Homologous Sequences, When The Phylogeny is Given. Mol Biol Evol
1989, 6(6):649-668.

Hein J: Unified approach to alignment and phylogenies. Methods in Enzymology 1990, 183.

Wheeler WC: Optimization Alignment: The End of Multiple Sequence Alignment in
Phylogenetics? Cladistics 1996, 12:1-9.

Cartwright RA: Logarithmic gap costs decrease alignment accuracy. BMC Bioinformatics
2006, 7:527-539.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

Liu K, Nelesen S, Raghavan S, Linder CR, Warnow T: Barking up the wrong treelength: the
impact of gap penalty on alignment and tree accuracy. IEEE Trans Comput Biol Bioinf 2008.

Waterman MS, Smith TF, Beyer WA: Some biological sequence metrics. Advances in
Mathematics 1976, 20(3):367-387, [[http://www.sciencedirect.com/science/article/BO6WIF-
4CRY72S-1TG/1/ad09f046408307294171dcadc664d801]].

Benner SA, Cohen MA: Empirical and structural models for insertions and deletions in the
divergent evolution of proteins. J Mol Evol 1993, 229:1065-1082.

Gu X, Li WH: The size distribution of insertions and deletions in human and rodent
pseudogenes suggests the logarithmic gap penalty for sequence alignment. J Mol Evol 1995,
40(4):464-473, [[http://dx.doi.org/10.1007/BF00164032]].

Zhang Z, Gerstein M: Patterns of nucleotide substitution, insertion and deletion in the human
genome inferred from pseudogenes. Nucl Acids Res 2003, 31(18):5338-5348,
[[http://nar.oxfordjournals.org/cgi/content/abstract/31/18/5338]].

Chang MSS, Benner SA: Empirical Analysis of Protein Insertions and Deletions Determining
Parameters for the Correct Placement of Gaps in Protein Sequence Alignments. J Mol Biol
2004, 341(2):617-631, [[http://www.sciencedirect.com/science/article/B6WK7-4CMHDHJ-
6/2/9cbe746387e0610d53e294114342f02c]].

Wheeler WC, Gladstein D, De Laet J: POY, Phylogeny Reconstruction via Optimization of DNA
and other Data version 3.0.11 (May 6 of 2003). American Museum of Natural History 2003,
[[ftp://ftp.amnh.org]].

Varé6n A, Vinh LS, Wheeler WC: POY version 4: phylogenetic analysis using dynamic
homologies. Cladistics 2009, 26:72-85.

Lancia G, Ravi R: GESTALT: Genomic steiner alignments. Lecture Notes in Computer Science
1999, 1645:101.

Lancia G, Ravi R: SALSA: Sequence alignment via Steiner Ancestors 2008, [[http:/
/citeseer.ist.psu.edu/356333.html]].

Schwikowski B, Vingron M: Weighted sequence graphs: boosting iterated dynamic
programming using locally suboptimal solutions. Discrete Appl Math 2003, 127:95-117.

Ogden TH, Rosenberg MS: Alignment and Topological Accuracy of the Direct Optimization
approach via POY and Traditional Phylogenetics via ClustalW + PAUP*. Syst Biol 2007,
56(2):182-193.

Lehtonen S: Phylogeny Estimation and Alignment via POY versus Clustal + PAUP*: A
Response to Ogden and Rosenberg (2007). Syst Biol 2008, 57(4):653—657.

Wheeler WC: Sequence Alignment, edited by M. S. Rosenberg., Berkeley, CA, USA: University of
California Press 2009 chap. Simulation Approaches to Evaluating Alignment Error and Methods
for Comparing Alternate Alignments, :179-208.

Wang L, Jiang T: On the Complexity of Multiple Sequence Alignment. J Comput Biol 1994,
1:337-348.

Yue F, Shi J, Tang J: Simultaneous phylogeny reconstruction and multiple sequence
alignment. BMC Bioinf 2009, 10(Suppl 1):S11.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

Schwikowski B, Vingron M: The deferred path heuristic for the generalized tree alignment
problem. In RECOMB ’97: Proceedings of the first annual international conference on
Computational molecular biology, New York, NY, USA: ACM Press 1997:257-266,
[[http://doi.acm.org/10.1145/267521.267884]].

Wang L, Jiang T, Lawler EL: Approximation Algorithms for Tree Alignment with a Given
Phylogeny. Algorithmica 1996, 16:302-315.

Wang L, Gusfield D: Impoved Approximation Algorithms for Tree Alignment. J Algorithms
1997, 25(2):255-273.

Ravi R, Kececioglu JD: Approximation algorithms for multiple sequence alignment under a
fixed evolutionary tree. Discret Appl Math 1998, 88:355-366.

Wang L, Jiang T, Gusfield D: A More Efficient Approximation Scheme for Tree Alignment.
SIAM J Comput 2000, 30:283-299.

Wheeler WC, Aagesen L, Arango CP, Faivovich J, Grant T, D’Haese C, Janies D, Smith WL,
Varén A, Giribet G: Dynamic Homology and Phylogenetic Systematics: A Unified Approach using
POY. American Museum of Natural History 2006.

Needleman SB, Wunsch CD: A General Method Applicable to the Search for Similarities in
the Amino Acid Sequence of Two Proteins. J Mol Biol 1970, 48:443-453.

Gotoh O: An improved algorithm for matching biological sequences. J Mol Biol 1982, 162:705
- 708.

Ukkonen E: Algorithms for approximate string matching. /nf Control 1985, 64(1-3):100-118.

Cartwright RA: DNA Assembly with gaps (Dawg): simulating sequence evolution.
Bioinformatics 2005, 21(Suppl. 3):iii31-iii38.

Wheeler WC: Fixed Character States and the Optimization of Molecular Sequence Data.
Cladistics 1999, 15:379 — 385.

Powell DR, Allison L, Dix TI: Fast, optimal alignment of three sequences using linear gap
costs. J Theor Biol 2000, 207:325-336.

Yue F, Tang J: A divide-and-conquer implementation of three sequence alignment and
ancestor inference. In Proc. of the 1st IEEE International Conference on Bioinformatics and
Biomedicine (BIBM) 2007:143-150.

Varén A, Wheeler WC: Application note: on extension gap in POY version 3. Cladistics 2008,
24(6):1070-1070.

Figure 1

0+ O/
AAA----- TTT
. 743
Figure 2

AAACCCCCTTT
——

|

AAACCCTTT

\7+5

AAACCCCCTTT

42

a+bl

NS NS

== a2 =
wv/

= =

Figure 53."

uonewixoiddy

—

—
——
—

Branch Lengths

% 0.05
O 041

& 0.3

14

0c

Sk

Ausueq

ok

1.6

1.4

1.2

1.0

Guaranteed Approximation

s
7 T
A I Pt S LI SIS I TSI ISP IS I IS5

ge

0c

Sk

[o]3 S 0

Aususqg

1.4

12

Guaranteed Approximation

222227

Aysuoq

12 1.4 1.6

1.0

Figure 7

Guaranteed Approximation

0oL

09

0s

oy 0¢ 0T or 0

1.60

1.55

1.50

1.45

1.40

1.35

1.30

Guaranteed Approximation

Estimated Approximation with LP

O True Approximation

Ausuaqg

1.05 1.10 1.15 1.20 1.25 1.30

1.00

Approximation

13

Estimated Approximation with LP

True Approximation

Ausueqg

1.8

1.6

1.4

1.2

1.0

Approximation

1.05 1.10 1.15 1.20 1.25 1.30

1.00
Figure 9

Approximation

0.05
O 0.1
N 0.3

A

Branch Lengths
(74}

7
77277777

Z

ro

77/ /i

wiZ
Wi

0¢ ql o S 0

Ausuaq

1.4 1.6 1.8
Guaranteed Approximation

1.2

1.0

Figure 10

25

o
Al
To)
b
>
=
7
c
)
(@]
o
¥
To)
o

Figure 11

77T

%fxzmlxzz;ﬂ
¢4

Guaranteed Approximation

15 20 25

Density

10

Figure 12

=
-
-
A
A
5 1A
s 1
N
s 1 —
s
S
0 1
X
o
A
297 i
o 2 A —
A
ot i 2 i
8 i 2
A
o X
v
s
5 I 1
A 7
5
A
09 1 2,
A vty e
A vl e —
27
':j 7Y .'5 o
7 R 0 1 I
A
|40 00 22 2 P,
|45 20 120 PA P,
2 A
%%,%%
Ay
.',.5 7, %%
o VR A P o o
WA 0 W 2 YA
A0 0 2 A A
402000 0 2 P, o
7 7 A
[7 2, 0. e
P, 2 0 P 77
0 2 A A, kg N
2 i 1 A Ir
v 2 P A |
e A i

1.0

1.2 1.4

Guaranteed Approximation

1.6

1.8

Density
30 40 50 60 70

20

10

Figure 13

RN

1.30

1.35

I I I
1.40 1.45 1.50

Guaranteed Approximation

I
1.55

1.60

Density

Estimated Approximation with LP

1.30

o _
<
_ O True Approximation
S - 2
] 7
o _|
Al
i %
o] 7
7
%
o I 7
| | | | | | |
1.10 1.15 1.20 1.25

1.00 1.05

Figure 14

Approximation

Density

40

30

20

10
I

Figure 15

1.3

Estimated Approximation with LP
True Approximation

1.0

1.2 1.4 1.6 1.8

Approximation

40

S
&
7

< _ _
[a\|

L %

n Z
7
2 —
7
%
o ’—(] % 7/,
[[[[[[|
1.00 1.05 1.10 1.15 1.20 1.25 1.30
Approximation

Figure 16

	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16

