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Three methods of nucleotide character analysis are dis-
cussed. Their implications for molecular sequence
homology and phylogenetic analysis are compared. The

criterion of inter-data set congruence, both character

them on cladograms. Multiple sequence alignment pre-

cedes cladogram analysis, while the other two methods

do not “preprocess” the data, proceeding directly to
based and topological, are applied to two data sets to
elucidate and potentially discriminate among these parsi-
mony-based ideas. q 2001 The Willi Hennig Society

INTRODUCTION

Sequence data do not come in neat packages. Unlike

most non-sequence character data sets, the series of

appropriate comparisons to be made among observed

variants (characters) is not clear. In short, when compa-

rable sequences vary in length, it is not obvious which

nucleotides to compare. The same A’s, C’s, G’s, and T’s

are found in long strings in all the taxa in all positions.

Obviously, the choice of which nucleotides to compare

is fundamental to systematic analysis and will have

serious impact on the historical scenarios we examine.

The process of transforming nucleotide observations

into homology statements and cladograms involves

choices of both the means of optimizing homology and
the entities that are to be homologized in the first place.

Currently, there are three means of parsimoniously di-

agnosing sequence characters: multiple sequence

alignment followed by standard analysis (Higgins et
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al., 1996; Wheeler and Gladstein, 1994), optimization

alignment (Wheeler, 1996), and fixed-state optimiza-

tion (Wheeler, 1999b). Each of these methods creates

homology statements and parsimoniously diagnoses
cladogram optimization.

HOMOLOGY ASPECTS

The homology notions embedded in these three anal-

ysis methods can be distinguished in two ways. Multi-

ple alignment and fixed-state analysis rely on putative

homologies that are invariant—static—and each can-

didate cladogram is diagnosed based on the same set

of putative homologies. The optimization alignment

method, however, creates potentially unique homolo-

gies for each historical hypothesis. Another means of

distinguishing among the methods is by treating the

entities as comparable. In the case of multiple align-
ment and optimization alignment, the individual nu-

cleotides are potentially homologous, as opposed to

fixed-state analysis, which treats entire sequence frag-

ments as characters.
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MULTIPLE SEQUENCE ALIGNMENT

Multiple sequce alignment (MSA) is a procedure to

turn unequal length sequences into equal length char-

acter strings via the insertion of gaps. These gaps (“–”)

are place holders that signify that an insertion or dele-

tion has occurred somewhere, resulting in a lack of

homologous nucleotides at that position in that taxon.

Most alignment procedures attempt to minimize some

cost (e.g., evolutionary length) or maximize some bene-

fit (e.g., overall similarity). While the procedure to de-

termine a minimum cost alignment of two sequences is

well understood and easily accomplished (Needleman

and Wunsch, 1970), the extension to multiple se-

quences becomes difficult rapidly. Briefly, in order to

align two sequences, a matrix of (N 1 1) 3 (M 1 1)

cells is created and the minimum cost path through

this matrix given specific cost to base transformations

and insertion–deletion events is obtained. The matrix

is traversed in such a fashion that only the adjacent

three cells (usually the cells above, to the left and diago-

nally up, and to the left) are examined to determine

the cost of each cell and the most efficient path to it

(Needleman and Wunsch, 1970). This means that for

each of the N 3 M cells, three cells are involved in the

calculation of every other internal cell. While this is

manageable for two sequences (the cost of computation

being roughly proportional to the product of the se-

quence lengths) and significant shortcuts are known,

extension to phylogenetically interesting numbers of

sequences is extremely time-consuming. The align-

ment matrix for “n” sequences would have “n” axes,

and each cell would require knowledge of 2n 2 1 other

cells. Furthermore, while the cost of spanning two se-

quences is simply the summed difference, when four

or more sequences are involved, some tree search or

prior knowledge is required to determine the align-

ment and its overall cost (Sankoff and Cedegren, 1983).

These complicating factors have made true multiple

alignment unachievable for anything but the smallest

numbers of taxa. Real data sets require heuristic

MSA solutions.

The heuristic thrust for multiple alignment is quite

simple. Since aligning two sequences is easy, build the
multiple alignment out of a series of pairwise align-

ments guided by a binary tree. All the multiple align-

ment procedures in common use today follow this idea,
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but differ in how they obtain the binary “guide” tree

and how they add the pairwise results together to

generate the complete alignment. Three implementa-

tions of heuristic alignment algorithms that are in some

use today are CLUSTAL (Higgins and Sharp, 1988;

Higgins et al., 1992, 1996; Higgins, 1994; Jeanmougin

et al., 1998; Thompson et al., 1994, 1997), TREEALIGN

(Hein, 1989, 1990), and MALIGN (Wheeler and

Gladstein, 1994, 1991–1998). Each of these methods

relies on guide trees to accrete pairwise alignment. In

the cases of CLUSTAL and TREEALIGN, a distance

tree is calculated from the pairwise alignment costs

and this distance tree becomes the guide tree. In the

case of CLUSTAL, this is a Fitch–Margoliash tree;

TREEALIGN uses a method developed by Hein (1989,

1990). At the nodes (vertices) of the guide trees, consen-

sus (CLUSTAL) or quasi-optimized (TREEALIGN) sin-

gle sequences are created from the aligned pair, which

is then submitted to another pairwise alignment fur-

ther down the tree. When the root of the guide tree is

reached, the various gaps inserted on the way down

are placed into the sequences at the tips, creating se-

quences of equal length—the multiple alignment.

MALIGN also uses guide trees, but differs from

CLUSTAL and TREEALIGN in that it examines multi-

ple guide trees. These guide trees are generated

through standard tree search procedures of tree build-

ing and branch swapping. Furthermore, no individual

sequences are created at the internal vertices, but the

sequences descending from that node are carried along

and aligned in a modified pairwise manner. During

the search procedure, a complete multiple alignment is

generated for each candidate guide tree, and a heuristic

phylogenetic search is performed on the multiple align-

ment. That alignment (or alignments if multiple solu-

tions are found) that produces the most parsimonious

(i.e., lowest cost) phylogenetic result is chosen as the

“best” multiple alignment. As a result of this search

procedure, MALIGN will frequently examine many

thousands or millions of candidate alignments (usually

about n3 for n sequences). Not surprisingly, CLUSTAL

and TREEALIGN frequently generate results more rap-

idly than MALIGN.

Each of these methods, as an implementation of mul-

tiple alignment, yields the same type of result—a series

of column vectors that are then submitted to phyloge-
netic analysis. When phylogenetic analysis takes place,

the putative homologies are not altered or reexamined



short, cladograms were determining final homology

(i.e., synapomorphy), but had no role whatsoever in
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in any way. The alignment-generated homologies are

created a priori and are never revised. In this sense,

they are static. Since these homologies exist at the level
of the nucleotide position, they are “base-to-base” indi-

cating the independence of transformation at each po-

begins with an internal node (or vertex) with two ter-
sition.

PROBLEMS WITH MULTIPLE ALIGNMENT

Since multiple alignment creates putative homology

schemes without reference to the diagnosis of any spe-

cific phylogenetic topology, it may be that some align-

ments are more favorably disposed to certain topolog-

ies than others. Consider four sequences, “GGGG,”

“GAAG,” “GGG,” and “GAA,” and a cost regime of

2 for indels and 1 for base substitutions of all flavors.

If we were to use the alignment

I G G G G

II - G G G

III G A A G

IV - G A A

the topology ((I III)(II IV) is optimal, with a length of

six steps. The topology linking I and II [(I II) (III IV)]

would require seven steps and [(II III)(I IV)] eight steps.

However, suppose we had based our analysis on the

following alignment:

I G G G G

II G - G G

III G A A G

IV G A A -.

In this case, topology [(I II)(III IV)] is optimal at six

steps and the other two topologies would require seven

steps. Furthermore, a third alignment,

I G G G G

II G G G -

III G A A G

IV G A A -,

would require six steps for both [(I II)(III IV)] and

[(I III)(II IV)] with eight steps for [(I IV)(II III)].

Each of these three alignments appears reasonable

and can achieve a most parsimonious solution. If we

had used either alignments 1 or 2, however, we would

not have missed a solution. These alignments would
have been specified before the analysis, and no provi-

sion could have been made to allow individual topolo-

gies to be diagnosed with their best-case alignment. In
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putative homology.

OPTIMIZATION ALIGNMENT

A response to the lack of interaction between topol-

ogy and putative homology is optimization alignment

(OA; Wheeler, 1996). This method of directly optimiz-

ing sequence variation creates a unique set of putative

homologies (base correspondences) for each topology.

Not only are nucleotide changes and insertion–

deletion events minimized, but the base correspon-

dences themselves are chosen to minimize tree length.

The goal of the process is to yield parsimonious clado-

grams in terms of the weighted sum of nucleotide

transformations and insertion–deletion events. Like

alignment, homologies are created at the level of nucle-

otide position or base to base. Unlike alignment, how-

ever, these homologies are dynamically determined

and uniquely tailored to each topology.

The procedure is based on the heuristic determina-

tion of hypothetical ancestral sequences. The algorithm
minal observed sequences as descendants (Fig. 1). The

most parsimonious hypothetical ancestral sequence is
FIG. 1. Optimization alignment process for four sequences and a

given topology.
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created for this node via a dynamic programming pro-

cedure whereby all ancestral sequences are implicitly

examined. This is accomplished in a manner very close

to a pairwise alignment, except that the cost to be

minimized is the weighted union/intersection cost

usually used to diagnose phylogenetic hypotheses and

“gaps” are optimized out since real sequences do not

contain unambiguous gaps. This is explained in more

detail elsewhere (Fig. 2; Wheeler, 1996, 2000, 2001). A

second difference is that the product of this operation

is a single sequence and the cost of producing that

sequence from its descendants. This sequence is then

used as one of the descendants of its parent node, and

the operation is repeated. The weighted sum of all the

events required to form the nodal sequences is the cost

of the cladogram as with other Sankoff-style character

optimizations. After this “down-pass,” an “up-pass”

can be performed to determine the most parsimonious

set of character states at each position for each hypo-

thetical ancestor.

In the case of the three sequences mentioned above,
OA yields both of the length-6 cladograms directly and

the alternate patterns of homology are presented as
alternate synapomorphy schemes.

FIXED-STATE OPTIMIZATION

Even with the dynamic homology schemes created
via OA, considerable confusion may remain with

FIG. 2. Determination of hypothetical ancestral sequences during

the “down-pass” of optimization alignment.
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group (or individual sequence) have hundreds of nu-

cleotides while others seem to have none or just a few.

In these situations, huge numbers of insertion–deletion

events need to be postulated (they must go some-

where) and the placement of these gaps can seem hap-

hazard. Furthermore, these indels must be accounted

for over several ancestral nodes of the cladogram (OA)

or in all taxa (multiple alignment), causing consider-

able damage downstream.

The motivating force behind this behavior is the

treatment of the individual nucleotides as potential

homologies. If the entire fragment were to be treated

as a unified structure, as with a large complex morpho-

logical feature, the extreme apomorphy of such a se-

quence would not spill over into other areas of compar-

ison. This is the idea behind fixed-state character

optimization (FSO; Wheeler, 1999b). FSO treats contig-

uous strings of nucleotides as character states in a com-

plex character defined by the extent of homologous

regions of nucleotide sequence. In this way, the entire

18S rDNA might be a character, with the actual se-

quences exhibited by individual taxa as the character

states. Each unique sequence defines a character state.

Potentially, there are as many character states as taxa.

This would seem to be uninformative, and it would

be if all the transformations among all the states were

taken to be equally costly. This is not the case, however.

The transformation costs among the states are deter-

mined by the weighted sum of the various events re-

quired to transform one sequence into another, i.e., the

minimum edit cost in indels, transitions, and transver-

sion (or any other specified transformation types).

These edit costs define a matrix of pair-wise transfor-

mation costs among the states (Fig. 3). The optimization

step then proceeds via a standard dynamic optimiza-

tion (Sankoff-style) procedure for a multistate charac-
ter with predetermined transformation costs (Sankoff
“gappy” sequences of greatly unequal length. Situa-

tions frequently occur in which the members of one
and Rousseau, 1975).

Since the states of the character are defined by the
FIG. 3. Transformation cost matrix for four sequences with an indel

cost of 2 and a nucleotide substitution cost of 1.
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actual sequence variation observed, the range of hypo-

thetical ancestral states (5sequences) is limited. Arbi-

trary combinations of nucleotides are not permitted;

hence the cladogram length will in most cases be

longer. This phenomenon will become less pronounced

with increases in the numbers of taxa, which can in-

crease the number of possible nodal states. Further-

more, “impossible” secondary structure, stop codons,
etc. cannot occur, since only observed sequences are
reconstructed at the internal nodes.

CONGRUENCE AND COMPARISON
Although each of these three methods of optimizing

FIG. 4. Cladogram of arthropod relationships of Wheeler (2001)

Auchenorrhyncha Tibicen sp.

Lepidoptera Papilio sp.

Diptera Drosophila melanogaster
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global, static nucleotide changes; while optimization

seeks to do this also, it allows for topology-specific

putative homology schemes. These two methods, how-

ever, are minimizing the same combinations of base

changes and indels, but in different ways. FSO seeks

to minimize the overall change (in nucleotide substitu-

tions and indels) as well, but in the form of transforma-

tions among a limited set of extremely complex charac-

ter states. If the actual lengths of cladograms presented

by these methods are not directly comparable, how can

meaningful choices be made among these techniques?

Congruence among data is the fulcrum of parsimoni-

ous phylogenetic analysis. The cladogram indicating

the greatest congruence among characters (most parsi-

monious) is the least contradicted and the most fa-

vored. This logic can be extended to among-data set

comparisons. Methods that result in greater congru-

ence among data sets are more desirable than others.

This congruence may be measured in two ways: char-

acter based and topology based. Character congruence

seeks to assay the level of homoplasy incurred through

the combination of data, usually measured by the ILD

(Mickevich and Farris, 1981) and expressed as a per-

centage of combined cladogram length due to among-

data set homoplasy. Topological measures of congru-
sequence characters is based on parsimony, the entities

that are minimized differ. MSA seeks to minimize

TABLE 1

Taxon List for the Analysis of Arthropod Relationships

Mollusca

Cephalopoda Loligo pealei
Polyplacophora Lepidochiton cavernae

Annelida

Polycheata Glycera sp.

Oligocheata Lumbricus terrestris
Hirudinea Haemopis marmorata

Onychophora

Peripatoidae Peripatus trinitatis
Peripatopsidae Peripatoides novozealandia

Trilobita Groundplan of Ramsköld and

Edgecombe (1991)

Chelicerata

Pycnogonida Anoplodactylus portus
Xiphosura Limulus polyphemus
Scorpiones Centruroides hentzii
Uropygi Mastigoproctus giganteus
Araneae Nephila clavipes
Araneae Peucetia viridens

Crustacea

Cirrepedia Balanus sp.

Malacostraca Callinectes sp.

Myriapoda

Chilopoda Scutigera coleoptrata
Diplopoda Spirobolus sp.

Hexapoda

Zygentoma Thermobius sp.

Ephemerida Heptagenia sp.

Odonata Libellula pulchella
Odonata Dorocordulia lepida
Dictyoptera Mantis religiosa
S7
ence attempt to describe the degree of agreement

among the results of phylogenetic analyses. The simi-

larity of cladograms generated from several data sets



Hexapoda

Odonata Agrion maculatum
Hymenoptera Monobia sp.

congruence are maximized by FSO and minimized by

MSA. The results of these analyses are summarized in
S8

may be compared via some metric (e.g., Wheeler,

1999a).

Here we will apply both character and topological

congruence measures to analysis of arthropod

(Wheeler et al., 1993; Wheeler, 1999a,b) and chelicerate

(Wheeler and Hayashi, 1998) data sets to examine the

relative performance of MSA, OA, and MSO analyses.

Each of the two test data sets (arthropod and chelic-

erate) consists of morphological and multiple molecu-

lar data sets. The character incongruence (as measured

by ILD) and taxonomic incongruence (as measured by

TILD) will be used to distinguish among these three ap-

proaches.

Arthropods

The arthropod data set is an enlarged version of

the data set of Wheeler et al. (1993) used in Wheeler

(1999a,b). This data set consists of 26 taxa, one of which,

Trilobita, is extinct and “missing” for all molecular

data. For the extant taxa, three sources of molecular

information are used: 18S rDNA (an approximately

1000-bp fragment), 28S rDNA (an approximately 350-

bp fragment), and Ubiquitin (228 bp). A morphological

data set of 100 discrete characters for all of the taxa

was also analyzed (Table 1 and Fig. 4).

Chelicerates

The chelicerate data set is that of Wheeler and Hay-

ashi (1998). This data set consists of 34 taxa (one with

morphology only), 93 morphological characters, 18S

rDNA, and 28SrDNA fragments (Table 2 and Fig. 5).

MSA, OA, and FSO were each performed on these

data sets. In the case of the arthropods, morphological

character transformations and indels were assigned a

cost of 2 and transversions and transitions 1. For the

chelicerate case, all transformations (morphological,

indels, transversions, and transitions) were assigned

equal weight (1). Multiple alignment was performed

using the program MALIGN (Wheeler and Gladstein,

1991–1998, 1994). This is not necessarily the best or

certainly the only way to perform multiple alignment,

but MALIGN attempts to create parsimonious align-

ments, those that generate parsimonious cladograms,

and hence most appropriate to parsimony-based phy-
logenetic reconstruction. OA and FSO were accom-

plished through the use of POY (Gladstein and

Wheeler, 1997).

Copyright q 2001 by The Willi Hennig Society

All rights of reproduction in any form reserved
In both cases, character congruence and topological
Ward Wheeler

TABLE 2

Taxon List for the Analysis of Chelicerate Relationships

Onychophora

Peripatopsidae Peripatopsis capensis
Chelicerata

Pycnogonida Anoplodactylus portus
Anoplodactylus lentus
Colossendeis sp.

Xiphosura Limulus polyphemus
Scorpiones Centruroides hentzii

Androctonus australis
Hadrurus arizonensis
Paruroctonus meaensis

Araneae Hypochilus pococki
Gea heptagon
Eurypelma californica
Thelechoris striatipes
Heptathela kimurai
Liphistius bristowei

Palpigradi sp.

Pseudoscorpiones Americhenernes sp.

Solifugae Chanbria regalis
Opiliones Vonones ornata

Leiobunum sp.

Acari Amblyomma americanum
Rhiphicephalus sanguineus
Tetranychus urticae

Ricinulei Ricinoididae sp. (juvenile)

Amblypygi Amblypygi sp.

Thelyphonida Mastigoproctus giganteus
Schizomida Trithyreus pentapeltis

Crustacea

Reptantia Callinectes sp.

Anostraca Artemia salina
Thoracica Balanus sp.

Myriapoda

Chilopoda Scutigera coleoptrata
Diplopoda Spirobolus sp.
Tables 3 and 4.

DISCUSSION
The central question raised by these modes of analy-

sis is what are the units to be homologized? Since OA

and MSA purport to optimize numerically identical



FIG. 5. Cladogram of chelicerate relationships from Wheeler and

Hayashi (1998) with indel cost of 1 and transitions and transver-

in sequence data affect historical hypotheses and are
sions 1.

criteria, they must be viewed as different means of

optimizing (Fig. 6) the same thing: the minimum

weighted number of nucleotide transformations and

indels. In these implementations, OA is superior in

both cladogram length and topological congruence to

MSA. If we accept for a moment the superiority of OA
over alignment, the comparison to be made is between

OA and FSO.

FSO 48 14 19

a ILD.
b TILD.
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directly comparable (as stated above). In the compari-

sons here, both character and topological congruence

measures were higher for FSO. If congruence were the

undisputed determinate of methodological superiority,

the case would rely on the accumulation of such exam-

ples until a clear pattern presented itself. If the conclu-

sions of the two data sets examined here held generally,

FSO would be the way to go and sequence level homol-

ogy would be preferred over nucleotide-level compari-

sons. This is not necessarily the case, however (see

Edgecombe et al., 1999 for a counter example).

The choice of comparable or homologous entities is

also one of epistemology. How do we perceive varia-

tion, information, and transformation among variable

sequences? The choice can be (and perhaps should be)

made on grounds completely unrelated to the behavior

of any data. The choice can be made on an ontological

or even an aesthetic basis. On the other hand, an opera-

tional or optimality-based perspective is also possible.

Which method exhibits the best numerically defined

behavior (such as congruence, however measured)?

I have no answer to this question. I believe strong

arguments can be made from both views. We can say

now, however, that these different notions of homology
Homology and the Optimization of DNA Sequence Data
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and Randall Schuh for discussing these ideas.The cladogram lengths of these two methods are not

TABLE 3

Anthropod Congruence

Combined data Morphology 18S rDNA 28S rDNA Ubiquitin ILD or TILD

Character congruence

MSA 2123 252 503 919 387 0.0292a

OA 2007 252 501 848 392 0.00698a

FSO 2271 252 584 943 484 0.00352a

Topological congruence

MSA 85 14 19 12 8 0.18b

OA 75 14 19 10 8 0.14b

b

fundamental to our choice among competing sce-

narios.

ACKNOWLEDGMENTS
12 1 0.096
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TABLE 4

Chelicerate Congruence

Combined data Morphology 18S rDNA 28S rDNA ILD or TILD

Character congruence

MSA 3027 201 1406 1217 0.067a

OA 2322 201 1082 966 0.031a

FSO 2470 201 1210 996 0.026a

Topological congruence

MSA 130 13 29 25 0.485b

OA 126 13 32 25 0.444b
FSO 93 13 23 21 0.387b

a
 ILD.
b TILD.
FIG. 6. Cartoon of the relationship among different homology no-
tions and methods.
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