
Cladistics 17, S71–S82 (2001)

doi:10.1006/clad.2000.0160, available online at http://www.idealibrary.com on

Efficiency of Parallel Direct Optimization

Daniel A. Janies1 and Ward C. Wheeler
Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street,
New York, New York 10024

data set size. Ratcheting in parallel is efficient with the
addition of up to 32 processors in the large cluster. This
Accepted December 12, 2000

Tremendous progress has been made at the level of
sequential computation in phylogenetics. However, little
attention has been paid to parallel computation. Parallel
computing is particularly suited to phylogenetics because
of the many ways large computational problems can be
broken into parts that can be analyzed concurrently. In
this paper, we investigate the scaling factors and effi-
ciency of random addition and tree refinement strategies
using the direct optimization software, POY, on a small
(10 slave processors) and a large (256 slave processors)
cluster of networked PCs running LINUX. These algo-
rithms were tested on several data sets composed of DNA
and morphology ranging from 40 to 500 taxa. Various
algorithms in POY show fundamentally different proper-
ties within and between clusters. All algorithms are effi-
cient on the small cluster for the 40-taxon data set. On
the large cluster, multibuilding exhibits excellent parallel
efficiency, whereas parallel building is inefficient. These

results are independent of data set size. Branch swapping
in parallel shows excellent speed-up for 16 slave proces-
sors on the large cluster. However, there is no appreciable
speed-up for branch swapping with the further addition

1To whom correspondence should be addressed. E-mail:

djanies@amnh.org. Software available anonymously: ftp:

//ftp.amnh.org/pub/molecular/poy.

0748-3007/01 $35.00 S71
Copyright q 2001 by The Willi Hennig Society

All rights of reproduction in any form reserved
of slave processors (.16). This result is independent of
result is independent of data set size. q 2001 The Willi Hennig

Society

INTRODUCTION

The algorithmics of tree searching have been studied

extensively, and most work has focused on methods

of initial tree construction and rearrangement (branch

swapping) (Farris, 1978, 1988, 1995; Swofford, 1989–

1999; Felsenstein, 1980–2000; Goloboff, 1993–2000;

Wheeler and Gladstein, 1994–2000; Gladstein and

Wheeler, 1996–2000). There has been tremendous im-

provement in tree search algorithms in the past 2 years.

These improvements include the use of genetic algo-

rithms [implemented as natural selection on trees (Moi-

lanen, 1999) and tree fusing (Goloboff, 1999)], sectorial

searches (Goloboff, 1999), and simulated annealing
[implemented as ratcheting (Nixon, 1999) and tree-

drifting (Goloboff, 1999)]. In about the same period of

time, workers in disciplines as diverse as filmmaking,

oil exploration, genomic contig assembly, particle

(Fig. 1, top) (commands -parallel -random n; let

n equal the number of searches, random addition se-
S72

physics, and astrophysics have begun to take advan-

tage of the power of cluster-computing.2 However,

phylogeneticists have just begun to harness parallel-

ism. Here, we report on the parallel efficiency of vari-

ous algorithms in POY, software for direct optimization

of DNA and morphology (Gladstein and Wheeler,

1996–2000; Janies and Wheeler, 2000, 2001). The algo-

rithms studied include two types of initial cladogram

building (parallel building or multibuilding) and sev-

eral strategies for tree refinement (SPR and TBR branch

swapping, parallel ratcheting, and multiratcheting).

Algorithms were tested on several data sets composed

of DNA and morphology ranging from 40 to 500 taxa.

Also a small cluster (10 slave processors) was com-

pared to a large cluster (256 slave processors).

Parallelism, Overhead, and Granularity

The current parallel implementation of POY in PVM

(Parallel Virtual Machine; Geist et al., 1993) is simple.

A master processor is designated and used to spawn

jobs to slave processors. As slave processors complete

tasks or portions thereof, slaves return results to the

master. POY running locally on the master collates the

results, decides on courses of action, and sends new

jobs to slaves. This mode of parallelism is termed mes-

sage passing.

With message passing on standard network infra-

structure (e.g., 10 or 100 Mbps Ethernet), overall com-

putation of a large problem can be accelerated appreci-

ably by parallelism only if various subproblems can

be computed concurrently and independently, with a

minimum of parallel overhead. Overhead consists of

bookkeeping by the master processor to manage the

message passing and the actual time of interprocessor

communication, which is very slow relative to the

amount of computation that can be accomplished by

each slave processor.

The granularity of the algorithm refers to the size of

the subproblem spawned to each process. We investi-

gated the parallel efficiency of algorithms of various

granularity within each of the major search steps of

POY.

2Many researchers are constructing supercomputers from com-

modity hardware, standard networks, and open-source operating
systems. These supercomputers are often termed Beowulf clusters.

For a historical overview see Sterling and Savarese (1999). For a

technical background see Sterling et al., (1999).

Copyright q 2001 by The Willi Hennig Society

All rights of reproduction in any form reserved
Janies and Wheeler

Building

Initial building of each tree in a series of replicates

using the cluster as a collective, termed parallel build-

ing, requires that each slave processor receives mes-

sages from the master on which taxon to add and

which subset of places to put that taxon on a subtree
quences through refinement as specified). Parallel

FIG. 1. Contrast of strategy between parallel building (using the

cluster as a collective) and multibuilding (using a one-processor-

per-replicate strategy). “Multi” strategies have been developed for
ratcheting (efficiency of command -multiratchet decribed herein)

and for entire searches (e.g., -multirandom). Watch ftp site, listserver,

and documentation for additional commands.

Efficiency of Parallel Direct Optimization

building will use a maximum of 2t-5 slave processors

if each computes a single placement of a taxon (let t
equal the number of taxa). Over the course of a parallel

build, an average of (2t-5)/2 slave processors will be

employed.

Parallel building is a fine-grained operation. The cost

of computation of adding a single taxon is small and

expands linearly with the number of characters

(Gladstein, 1997; this work also provides some speed-

ups that have not yet been implemented in POY). The

cost of computation of adding a single taxon is simply

a treelength calculation resulting from comparing the

character states of the taxon to be added to the union

of character states for ancestor and descendents on the

branch to be added (Goloboff, 1996). The treelength

for each taxon addition must be communicated from

each slave back to the master for each addition point

for every taxon in a data set. As a result, the ratio of

communication relative to computation is very high.

Once a build is completed, the next replicate in the

series can be addressed.

As an alternative to using the slaves as a collective

on a single build, each complete build replicate can be

computed on an individual slave processor (com-

mands -parallel -random n -multibuild m;

let m equal the number of random addition sequences)

(Fig. 1). The command -multibuild m causes “m”

random addition sequence builds (no swapping) to be

performed on slave processors. In practice, m is often

set to the number of available slave processors. The

more slave processors available, the more random ad-

dition sequences that can be explored; hence, shorter

builds are usually discovered. In typical searches, the

shortest build(s) is submitted to branch swapping. If

-random n is also specified, the m builds will occur

for each search resulting in “n 3 m” builds and “n”

swapping rounds.

This strategy, termed multibuilding, is a coarse-

grained operation with a low communication/compu-

tation ratio. In multibuilding, there is no interprocessor

communication while taxa are added to various sub-

trees under independent consideration on each slave.

As a slave completes a build, it sends the best topology

(topologies) and treelength found back to the master

for collation and comparison to results of other builds
on other slaves before tree refinement operations begin.

The cost of computation of each initial build is combi-

natorially expansive for an exact search. The number of

Copyright q 2001 by The Willi Hennig Society

All rights of reproduction in any form reserved
S73

possible rooted topologies increases as a power series

(where i is the starting point and t is the number of

taxa) let y equal the number of topologies p
t

i52

(2i23)

(Cavalli-Sforza and Edwards, 1967). Multiple sequence

alignment along a tree is an NP-complete problem

(Wang and Jiang, 1994) and heuristics are required for

biologically interesting data sets. For example, if one

had 30 taxa representing exemplars of most metazoan

phyla, an exact search would require examining over

5 3 1038 trees. The heuristics commonly implemented

in phylogenetic algorithms are sensitive to the order

in which taxa are accreted into an alignment or tree

optimization procedure; thus random replication of the

build process is important to adequate searching. In

POY, the cost of computation of each build on a single

slave processor increases proportionally to t1.96 (let t
equal the number of taxa in the data set let y equal

the number of topologies) (Fig. 3a). Multibuilding is a

simple means of allowing the user to spread a series

of random builds across slave nodes of a cluster. How-

ever, as the number of taxa becomes large, the per-

slave run times could be prohibitively long.

In subsequent steps of a search, parallel efficiency is

limited if initiation of work cannot begin until other

subproblems have been computed. For example, once

a set of multibuild replicates is complete the master

node evaluates the results and sends out the best topol-

ogy (topologies) for subsequent tree refinement such

as branch swapping or ratcheting. In a search such

as this, parallel efficiency is often diminished because

builds vary in execution time and the results of all

replicates are required to proceed to branch swapping

and/or ratcheting.

Branch Swapping

In SPR (subtree pruning and redrafting) branch

swapping, each taxon and each internal node are re-

moved from the tree and placed back at all other possi-

ble positions. In parallelization of SPR, various pairs

of subtrees resulting from prunings are passed to indi-

vidual slaves where the optimality value for each re-

graft is calculated. Once a set of regraftings is assessed,

the best topology (topologies) and treelengths are re-
ported back to the master. SPR involves moderate com-

munication/computation ratios. For SPR in POY on a

tree with t taxa, there are 2t-4 branches to prune off

munication/computational ratios of ratcheting be-
S74

the tree. A load-balancing problem arises in placing

the subtrees back on the tree. The larger the subtree

(number of descendants), the smaller the set of regraft-

ing points on the remaining fraction of the tree. The

granularity of swapping varies. The number of candi-

date replacements varies from 3 to 2t-3, thus producing

a large spread of execution times.

In TBR (tree bisection and reconnection), the number

of subtrees pruned is smaller than that in SPR because

prunings occur only along internal branches. However,

the number of regrafts in TBR is greater than that in

SPR because subtrees are derooted and all possible

rearrangements are tried. The number of candidate

replacements is the product of the number of branches

(minus one replacement point that represents the origi-

nal tree). Thus a load-balancing problem occurs in TBR

but it is limited by the number of prunings rather than

regrafts as in SPR.

In both modes of branch swapping, the shortest trees

are kept and further rounds of rearrangements are tried

on the shortest trees until no shorter candidate trees are

found. It is not possible to predict how many swapping

rounds will be needed as this is tied to heuristics, data

set structure, and length of initial cladogram builds.

In theory, the cost of computation of SPR should be

proportional to the square of the number of taxa and

the cost of computation of TBR should be proportional

to the cube of the number of taxa. When considering

heuristics in POY, the cost of computation for branch

swapping is proportional to t1.93 for SPR and t2.34 for

TBR (let t equal the number of taxa) (Figs. 2b and

2c). In practice, both modes of branch swapping are

employed by POY users as the default is to use SPR

followed by TBR (we examined the efficiency of com-

mands -parallel, -spr, -tbr).

Ratcheting

The parsimony ratchet (Nixon, 1999) is a novel

method that is extremely efficient at exploring tree-

space rapidly by searching multiple islands of trees.

This method resulted in search times to the shortest

known tree for the 500-taxon rbcL data set that were

several thousand times faster than those obtained us-

ing the more standard methods of random taxon se-

quence addition, SPR and TBR (Chase, et al., 1993;
Nixon, 1999). The method therefore extends the size

of data sets that can be analyzed in a reasonable time.

Copyright q 2001 by The Willi Hennig Society

All rights of reproduction in any form reserved
Janies and Wheeler

After initial cladogram building and standard branch

swapping (if specified) a randomly selected subset of

characters is reweighted as specified by the command

-ratchetpercent n (let n equal the percentage of

characters to be reweighted). A branch swapping

search on the current tree begins with the new weights.

Two swapping strategies can be used (commands

-ratchetspr n, -ratchettbr n; let n equal the

number of iterations). Typically a small number of trees

(one or two) is held as specified by the command

-ratchettrees n (let n equal the number of trees

held). The characters are then reset to the original

weights and swapping recommences on the held

tree(s). Trees shorter than the original tree might be

found. The crux of the method is that reweighted char-

acters might find trees that are potentially not on the

same “island” as the current tree. In other words, the

original best tree is locally optimal for the original

weights but is perhaps not globally optimal in trees-

pace. Areas outside of local optima are investigated to

find better local, or potentially globally optimal, solu-

tions.

In POY, ratcheting occurs in parallel using the same

code as swapping in parallel described above. How-

ever, ratcheting is an iterative method and the cycle

described above can be continued for several iterations

(commands -ratchetspr n, -ratchettbr n).

The cost of computation of ratchettbr (Fig. 2d) in POY

is proportional to t2.51, similar to that of TBR t2.34 (let t
equal the number of taxa let y equal the number of

topologies) (Fig. 2c). However, many more trees are

examined with ratchettbr than with TBR (compare the

y axes of Figs. 2c and 2d).

Just as in the multibuilding strategy described above,

some of the simplest, yet most effective, implementa-

tions of a parallel cluster are the simultaneous explora-

tion of many replicates, each independently assigned

to slave processors. Ratcheting can be parallelized at

the level of reweighting individual random subsets of

characters and spawning each replicate to a slave via

the commands -multiratchet -ratchettbr n or

multiratchet -ratchetspr n (let n equal the number

of ratchet replicates to be spawned to slaves). Multi-

ratcheting increases the granularity and reduces com-
cause larger chunks of work are done by each slave

between communication events.

empirically by fitting curves to the number of trees examined for complete rounds of each operation for data sets of various numbers of taxa

but with a consistent number of characters. The effects of data sets of large numbers of taxa and complex structure on parallel efficiency

merit further study.
Another very simple, very coarse-grained mode of

parallelism can be applied to sensitivity analysis

(Wheeler, 1995), under which various character trans-

formation costs and data partitions of a large data set

can be assigned to subsets of processors. In fact, this

mode of parallelism requires no interprocessor com-
Efficiency of Parallel Direct Optimization S75

FIG. 2. Cost of computation estimates for POY of (a) tree building, (b) SPR, (c) TBR, and (d) Ratchet-TBR. Cost computation was estimated
munication if one chooses to use “sneakernet” to walk

between a variety of PCs to set up various jobs and
collate the results by hand (e.g., D’Haese, 2000).

METHODS

Hardware

Cluster computing is feasible due to inexpensive
commodity PC hardware, the prevalence of fast

Ethernet (100 Mbps) networks, and the free availability

Copyright q 2001 by The Willi Hennig Society

All rights of reproduction in any form reserved
of efficient and stable operating systems, message pass-

ing software, and applications. At the American Mu-

seum of Natural History, we have constructed parallel

computers from ordinary CPUs, motherboards, hard

drives, RAM, network cards, Ethernet switches, or

hubs. We run LINUX (operating system Kernel 2.2.5–

15 smp), PVM (message passing software), POY (direct

or fixed state optimization software), or MALIGN

[Wheeler and Gladstein, 1994–2000 (multiple align-

ment software)]. Other phylogenetic software is avail-

able for PVM (e.g., fast-DNAml; Ceron et al., 1998). We

chose nonproprietary hardware and software to (1)

maximize performance per dollar; (2) minimize reli-

ance on ineffective systems and repair staff; and (3)

make upgrades and repairs doable by users. Two dif-

ferent PC clusters were used to study the scalability
of POY’s algorithms. The small cluster was composed

of 11 Intel 200 MHz Pentium IIs networked via 10

S76 Janies and Wheeler

FIG. 3. Graphs of parallel efficiency of parallel building, multibuilding, and branch swapping in POY in two different clusters using the
40-taxon data set. The small cluster was composed of 11 Intel 200-MHz Pentium IIs networked via 10 Mbps Ethernet through a hub. The

large cluster is composed of 258 500-MHz Intel Pentium IIIs networked via 100 Mbps Ethernet through a Cisco 5509 switch. The solid lines

represent perfect parallel speed-up. The dotted lines represent actual speed-up. The y axis is log10 trees examined per second. The x axis is

Copyright q 2001 by The Willi Hennig Society

All rights of reproduction in any form reserved

Efficiency of Parallel Direct Optimization

Mbps Ethernet through a hub. The large cluster is com-

posed of 258 500-MHz Intel Pentium IIIs networked

via 100 Mbps Ethernet through a Cisco 5509 switch.3

We have avoided exotic network topologies to provide

the simplest possible environment for biological stud-

ies, algorithm development, and cluster engineering.

This paper is a first examination of these choices and

the parallel efficiency of POY. We are using these results

to fine-tune the future development of hardware, soft-

ware, and network topology.

Sample Data Sets

Four data sets were chosen to provide an increasing

series in number of taxa. These data sets include the

following: 12S rDNA, 16S rDNA, and morphology for

40 phrynosomatid lizard taxa (Reeder, 1995); 18S and

28S rDNA from 130 hexapod taxa (Wheeler et al., in

press); 12S rDNA for 264 mammal taxa (Emerson and

Allard, in preparation); and rbcL DNA for 500 angio-

sperm taxa (Chase et al., 1993).

3Switches are efficient and intelligent networking devices because

they route data directly from the source node to the destination node

without creating unnecessary traffic on the network. Hubs are an
older technology that inefficiently broadcast to every node on the

network to search out the destination node before transmitting the

The secondary y axes represent the point at which parallelism begins (

Any dip in actual versus expected performance represents the sum of t

implentation of message passing parallelism. This secondary y axis is o

Copyright q 2001 by The Willi Hennig Society

All rights of reproduction in any form reserved
S77

Runs

All analyses were done while there was no other

activity on the cluster. The 40-taxon data set was run

on the small cluster but the larger data sets were not.

All data sets were run on the large cluster. The amount

of computing power applied to each data set was grad-

uated in the small cluster by adding slave processors

linearly (1 to 10 slaves) and as a series of eight dou-

blings for the large cluster (1–256 slaves) (command -
maxprocessors n). Major algorithms of POY were

tested for parallel efficiency: initial cladogram build-

ing, branch swapping, and ratcheting. Each script was

written to isolate the behavior of an algorithm rather

than execute a standard set of tree search procedures.

For example, when building was of interest, swapping

and ratcheting were not invoked. Conversely when

branch swapping and ratcheting were investigated, an

initial topology was specified and cladogram building

was disabled. Scripts and data sets are available anony-

mously (ftp://ftp.amnh.org/pub/people/djanies).

Random replicates of initial cladogram builds were

distributed to several processors via a one-processor-

per-replicate strategy (commands -parallel
-multibuild m). Alternatively, single-cladogram
builds were partitioned across many processors (com-

mands -parallel). Branch swapping rounds were
data from node to node. partitioned across many processors (commands

log2 number of slave processors to provide a series of doublings. For example:

Small cluster Large cluster

Slave Log2 slave Slave Log2 slave

processors processors processors processors

0 21 0 21

1 0 1 0

2 1 2 1

3 1.58 4 2

4 2 8 3

5 2.32 16 4

6 2.58 32 5

7 2.81 64 6

8 3 128 7

9 3.17 256 8

10 3.32
i.e., if log2 number of slave processors 5 0, then there is one slave).

he communications and programming overhead associated with the

mitted in subsequent figures for simplicity.

S78

-parallel -tbr -spr). Single-ratchet replicates

were partitioned across many processors (commands

-parallel -ratchettbr r; let r equal the number

of ratchet replicates) or each replicate was assigned a

single slave processor (commands -parallel
-multiratchet -ratchettbr r). Slight variabil-

ity in run time due to heuristics employed in these
algorithms was not corrected because the trends in the

run-time data are more important than the actual

ettbr n -multiratchet) ratcheting is very effi-

cient and fast for the three large data sets on the large
numbers.

RESULTS

Various algorithms in POY show fundamentally dif-

ferent properties within and between clusters. The re-

sults for parallel building and branch swapping for

the 40-taxon lizard data set on the large cluster contrast

with results for the small cluster for parallel building

and swapping. Parallel building exhibits excellent

speed-up (trees examined per second) for the 40-taxon

data set in the small cluster (up to 10 slave processors)

with a slight initial overhead with the addition of the

first slave processor (Fig. 3a). Parallel building is effi-

cient for the 40-taxon data set in the large cluster to 16

processors with a slight initial overhead but no addi-

tional speed-up is gained with additional processors

(Fig. 3b).

Multibuilding exhibits parallel efficiency for the

small cluster for the 40-taxon data set but with an initial

overhead for adding the first slave processor (Fig. 3c).

Speed-up under multibuilding is linear for up to 10

slave processors of the small cluster but speed-up re-

fracts beyond 16 slave processors with the large cluster

(Fig. 3d).

Parallel building is not efficient for the three large

data sets (130 hexapods, 264 mammals, and 500 angio-

sperms) for the large cluster (Figs. 4a, 4c, and 4e). This

result is slightly dependent on data set size with some

speed-up for the hexapod data set to 64 processors but

almost no speed-up for any of the other large data sets.

Multibuilding exhibits excellent parallel efficiency

for the three large data sets on the large cluster (Figs.

4b, 4d, and 4f). Speed-up is very close to linear with
the addition of processors regardless of data set or

cluster size.

SPR branch swapping and TBR branch swapping

Copyright q 2001 by The Willi Hennig Society

All rights of reproduction in any form reserved
Janies and Wheeler

show good speed-up for the 40-taxon data set for up

to 8 slave processors on the small cluster but the curve

flattens with the addition of slave processors (Fig. 3e).

Speed-up for branch swapping refracts beyond the ad-

dition of 16 slave processors on the large cluster for

all data sets (Figs. 3f, 5a, 5b, and 5c).

Ratcheting (Nixon, 1999) is implemented in branch

swapping. The parallel efficiency of partitioning each

ratchet job across the slave processors of the large clus-

ter is similar to that in branch swapping. Ratcheting

(-parallel -ratchettbr n) shows good speed-

up with the addition of up to 16 processors and this

is independent of data set size (Figs. 6a, 6c, and 6e).

However, unlike branch swapping, there are lags in

speed-up upon the initiation of parallel ratcheting in

the 130-hexapod data set (Fig. 6a) and the 264-mammal

data set (Fig. 6c). This lag does not occur in the 500-

angiosperm data set (Fig. 6e).

With the modification of the parallel behavior of

ratcheting such that each replicate is assigned a single

slave processor (commands -parallel -ratch-
cluster (Figs. 6b, 6d, and 6f).

DISCUSSION

Parallel building is efficient in small clusters for small

data sets. The efficiency of parallel building in the large

cluster is poor irrespective of data set size. However,

this strategy may work well if the number of taxa

greatly exceeds the number of slave processors in the

cluster. Nevertheless, parallel building will certainly

involve a large number of communication events and

will require fast switches.

The lack of speed-up of multibuilding with the addi-

tion of more than 16 processors on the 40-taxon data

set in the large cluster is counterintuitive. One explana-

tion is that the refraction at 16 processors in the large

cluster is a manifestation of the overhead seen after

the addition of only one slave processor for multibuild-

ing on the 40-taxon data set on the small cluster. The

small cluster has 10 Mbps Ethernet running via a hub,
whereas the large cluster has 100 Mbps switched

Ethernet; thus the overhead lag did not manifest itself

until there was moderate master–slave communication

Efficiency of Parallel Direct Optimization S79
FIG. 4. Graphs of parallel efficiency of parallel building and multibuilding on the large cluster for three data sets: 130 hexapods, 264 mammals,

and 500 angiosperms. Parallel building is inefficient and multibuilding is efficient to 256 processors regardless of data set size.

Copyright q 2001 by The Willi Hennig Society

All rights of reproduction in any form reserved

large cluster for three data sets: 130 hexapods, 264 mammals, and

500 angiosperms. Branch swapping is very efficient to 16 processors

but not beyond. This result is independent of data set size.

Copyright q 2001 by The Willi Hennig Society

All rights of reproduction in any form reserved
Janies and Wheeler

(Fig. 3d). The inefficiency on the large cluster of multi-

building of small (Fig. 3d) versus large data sets (Figs.

4b, 4d, and 4f) is likely due to the increase in the com-

munication/computation ratio with small data sets

(i.e., the per-slave run time is short).

These results are fundamental to improving the algo-

rithms for multiuser load balancing and to achieve

maximum performance per unit investment. The excel-

lent parallel efficiency of the multibuild and multi-

ratchet algorithms is very encouraging. These results

demonstrate the viability of building clusters com-

posed of hundreds of processors without investing in

expensive, nonstandard, network hardware. Also, the

success of one-replicate-per-slave strategies, such as

multibuild or multiratchet, forces a shift in allocation

of monetary resources from networking infrastructure

to higher clockspeed processors to shorten per-proces-

sor run times. We are currently prototyping faster slave

processors and faster network topologies and proto-

cols. Work is under way to develop algorithms that

are adaptive and have multiple layers of parallelism.

Future versions of POY will adjust each step of a search

based on knowledge of algorithmic efficiency and

monitoring of efficiencies and user load. One way to

accomplish this is to spawn jobs hierarchically by des-

ignating master processors, submasters, and slaves. For

example, we found that branch swapping is efficient

to about 16 processors. With this knowledge a large

cluster of 256 processors will be divided into 16 teams

of 16 slaves under the control of submasters and each

team will be assigned swapping replicates. With more

efficient and user-transparent algorithms, and contin-

ued performance/price increases in CPU products, we
predict that these techniques and hardware will be-

come commonplace in evolutionary biology and geno-
S80

FIG. 5. Graphs of parallel efficiency of branch swapping on the
mics in a very short period of time.

ACKNOWLEDGMENTS

The National Aeronautics and Space Administration—Ames Re-

search Center (NAG 2-1399 to Janies and Wheeler and NAG 2-1399

to Wheeler and MacLow), the American Museum of Natural History,

and the New York City Department of Cultural Affairs provided

research funding. Lisa Gugenheim, Tim Mohrmann, Pete Makovicky,
Diego Pol, Estelle Perrera, Al Phillips, Julian Faivovich, Rebecca

Klasfeld, Mike Benedetto and Mario Reed of the AMNH were instru-

mental in the procurement and construction of the parallel cluster.

Efficiency of Parallel Direct Optimization S81
FIG. 6. Graphs of parallel efficiency of ratcheting and multiratcheting on the large cluster for three data sets: 130 hexapods, 264 mammals,

and 500 angiosperms. The parallel efficiency of partitioning each ratchet job across the slave processors of the large cluster is efficient to about

16 processors. However, multiratcheting is very efficient and these results are independent of data set size.

Copyright q 2001 by The Willi Hennig Society

All rights of reproduction in any form reserved

S82

Valuable comments on the manuscript were provided by Gonzalo
Giribet, Susan Perkins, and Marc Allard. Thanks to all who provided

test data sets: Todd Reeder, lizards; Mike Whiting and Jim Carpenter,
hexapods; Ginny Emerson, mammals, Chase et al., 1993, rbcL.

REFERENCES

Ceron, C., Dopazo, J., Zapata, E., Carazo, J., and Trelles, O. (1998).
Parallel implementation of DNAml program on message-passing
architectures. Parallel Comput. 24, 701–716.

Cavalli-Sforza, L. L., and Edwards, A. F. W. (1967). Phylogenetic
analysis: Models and estimation procedures. Am. J. Hum. Genet.
19, 233–257.

Chase, M., Soltis, D., Olmstead, R., Morgan, D., Les, D., Mishler, B.,
Duvall, M., Price, R., Hills, H., Qiu, Y., Kron, K., Rettig, J., Conti,
E., Palmer, J., Manhart, J., Sytsma, K., Michaels, H., Kress, W.,
Karol, K., Clark, W., Hedren, M., Gaut, B., Jansen, R., Kim, K.,
Wimpee, C., Smith, J., Furnier, G., Strauss, S., Xiang, Q., Plunkett,
G., Soltis, P., Swensen, S., Williams, S., Gadek, P., Quinn, C.,
Eguiarte, L., Golenberg, E., Learn, G., Graham, S., Barrett, S.,
Dayanandan, S., and Albert, V. (1993). Phylogenetics of seed plants:
An analysis of nucleotide sequences from the plastid gene. Ann.
MO Bot. Gard. 60, 528–580.

D’Haese, C. (2000). Origine de la diversité et évolution des Collem-
boles Poduromorphes: Phylogénies morphologiques et moléculaires.
Thèse de Doctorat du Muséum National d’Histoire Naturelle, Paris.

Farris, J. S. (1978). Wagner78; program and documentation. Copyright
J. S. Farris.

Farris, J. S. (1988). Hennig86 v1.5; program and documentation. Copy-
right J. S. Farris. Naturhistoriska riksmuseet, Stockholm, Sweden.

Farris, J. S. (1995). Parsimony Jackknifer, v.4.22. Copyright J. S. Farris.
Naturhistoriska riksmuseet, Stockholm, Sweden.

Felsenstein, J. (1980–2000). PHYLIP (Phylogeny Inference Package).
University of Washington. http://evolution.genetics.washington.
edu/phylip.html.

Geist, A., Beguelin, J., Dongarra, W., Jiang, R., Manchek, V., and
Sunderam, V. (1993). PVM 3 User’s Guide and Reference Manual,
Technical Report ORNL/TM-12187. Oak Ridge National Labora-

tory, Oak Ridge, TN.

Gladstein, D. (1997). Efficient incremental character optimization.
Cladistics 13, 21–26.

Copyright q 2001 by The Willi Hennig Society

All rights of reproduction in any form reserved
Janies and Wheeler

Gladstein, D., and Wheeler, W. (1996–2000). POY. Software for direct
optimization of DNA and other data. American Museum of Natural
History. New York, NY. ftp://ftp.amnh.org/pub/molecular/poy.

Goloboff, P. (1993–2000). NONA 2.0 INSUE Fundación e Instituto
Miguel Lillo Miguel Lillo 205, 4000 S. M. de Tucumán, Argentina.
http://www.cladistics.com/nona/nona.exe.

Goloboff, P. A. (1996). Methods for faster parsimony analysis. Cladis-
tics 12, 199–220.

Goloboff, P. A. (1999). Analyzing large data sets in reasonable times:
Solutions for composite optima. Cladistics 15, 415–428.

Janies, D., and Wheeler, W. (2000). POY.pdf. Documentation, sample
data sets, and shell scripts for sensitivity analyses for POY, software
for direct optimization of DNA and character data. ftp://ftp.
amnh.org/pub/molecular/poy/poy.pdf.

Janies, D. A., and Wheeler, W. C. (2001). Theory and practice of
parallel direct optimization, In Techniques in Molecular Systematics
and Evolution. (R. Desalle, G. Giribet, and W. Wheeler, eds.) Birk-
hauser Verlag, Basel, in press.

Moilanen, A. (1999). Searching for most parsimonious trees with simu-
lated evolutionary optimization. Cladistics 15, 39–50.

Nixon, K. (1999). The Parsimony Ratchet, a new method for rapid
parsimony analysis. Cladistics 15, 407–414.

Reeder, T. (1995). Phylogenetic relationships among phrynosomatid
lizards as inferred from mitochondrial ribosomal DNA sequences:
Substitutional bias and information content of transitions relative to
transversions. Mol. Phylogenet. Evol. 4, 203–222.

Sterling, T., and Savarese, D. (1999). A coming of age for Beowulf-
class computing. In “Euro-Par’99, LNCS 1685” (P. Amestoy et al.,
Eds). pp. 78–88.

Sterling, T., Salmon, J., Becker, D., and Savarese, D. (1999). “How
to Build a Beowulf : A Guide to the Implementation and Application
of PC Clusters.” MIT Press, Cambridge.

Swofford, D. (1989–1999). PAUP*4.0. Sinauer, Sunderland, MA.
http://www.sinauer.com/Titles/frswofford.htm.

Wang, L., and Jiang, T. (1994). On the complexity of multiple sequence
alignment. J. Comput. Biol. 1, 337–348.

Wheeler, W. C. (1995). Sequence alignment, parameter sensitivity, and
the phylogenetic analysis of molecular data. Syst. Biol. 44, 321–331.

Wheeler, W. C., and Gladstein, D. (1994–2000). MALIGN (Multiple
Alignment Using Tree Searches), version 2.7, Parallel version 1.5.
American Museum of Natural History. ftp://ftp:amnh.org/pub/

molecular/malign.

Wheeler, W. C., Whiting, M. F., Carpenter, J. C., and Wheeler, Q. D.
(2001). The phylogeny of the insect orders. Cladistics, in press.

	INTRODUCTION
	FIG. 1.
	FIG. 2.

	METHODS
	FIG. 3.

	RESULTS
	DISCUSSION
	FIG. 4.
	FIG. 5.

	ACKNOWLEDGMENTS
	FIG. 6.

	REFERENCES

