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transmission. To date, most of the focus in phylogenet-

Multiple sequence alignment is discussed in light of

homology assessments in phylogenetic research. Pair-
wise and multiple alignment methods are reviewed as
exact and heuristic procedures. Since the object of
alignment is to create the most efficient statement of
initial homology, methods that minimize nonhomol-
ogy are to be favored. Therefore, among all possible
alignments, the one that satisfies the phylogenetic op-
timality criterion the best should be considered the
best alignment. Since all homology statements are
subject to testing and explanation this way, consis-
tency of optimality criteria is desirable. This consis-
tency is based on the treatment of alignment gaps as
character information and the consistent use of a cost
function (e.g., insertion–deletion, transversion, and
transition) through analysis from alignment to phy-
logeny reconstruction. Cost functions are not subject
to testing via inspection; hence the assumptions they
make should be examined by varying the assumed
values in a sensitivity analysis context to test for the
robustness of results. Agreement among data may be
used to choose an optimal solution set from all of those
examined through parameter variation. This idea of
consistency between assumption and analysis through
alignment and cladogram reconstruction is not lim-
ited to parsimony analysis and could and should be
applied to other forms of analysis such as maximum
likelihood. © 2000 Academic Press

INTRODUCTION AND BACKGROUND

Like all things phylogenetic, DNA sequence align-
ment has sparked debate about the proper methodol-
ogy with which to analyze these data. Sequence infor-
mation has become a fundamental tool of not just
systematic evolutionary research but also of ecology,
bioconservation, disease control, viral origins, and
even HIV demographics and the legal intricacies of

1 Current address: Department of Biological Sciences, Columbia
University, New York, NY 10027.
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ics has been placed on cladogram construction. How-
ever, all analyses of relationships derived from se-
quence data are fundamentally based upon alignment.
Morrison and Ellis (1997) have recently examined the
effects of different sequence alignment methods on
phylogenetic topology. They conclude that variation in
the resulting phylogeny is more dependent on the mode
of alignment than on the method of phylogenetic recon-
struction. This is not surprising, since the data being
analyzed are not simply “theory neutral” observations,
but the outcome of the alignment process.

Here, we discuss the basic methodology of pairwise
sequence alignment and its extensions to multiple se-
quence alignment with respect to homology assess-
ment and phylogenetic analysis. We also discuss sev-
eral issues that arise from the interdependence of
sequence alignment and phylogenetic reconstruction.

HYPOTHESIS TESTING AND PRIMARY
HOMOLOGY

The initial step in any phylogenetic analysis is to
establish provisional (putative or primary) homology
statements across taxa. Molecular sequence alignment
is, in essence, a procedure by which we can recognize
and describe potential homology among nucleotide or
amino acid positions. Multiple sequence alignment al-
gorithms create potential homologies (in the form of
columns of bases in the data matrix). Primary homol-
ogy (sensu dePinna, 1991) or topographic identity (sen-
su Brower and Scharawoch, 1996) is generally estab-
lished through the computation of a pairwise similarity
cost function. These putative homologies are then sub-
jected to some form of phylogenetic analysis.

In a parsimony framework a logical means of assess-
ing the quality of homology statements is cladistic
character congruence (Kluge, 1989). Character congru-
ence argues that among all competing hypotheses, the
ones that are defended by the greatest number of in-
dependent congruent characters are the best sup-
1055-7903/00 $35.00
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ported. The degree of character congruence in any data
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set is based on its phylogenetic topology. Logically
then, the most parsimonious cladogram resulting from
an alignment should be derived from the same set of
assumptions that were used to generate that align-
ment. If not, the data set is generated under one set of
assumptions and analyzed under another set of as-
sumptions. Within this paradigm the best alignment is
that which yields the most parsimonious cladogram.
The hypothesis, which satisfies Occam’s razor, requires
the fewest ad hoc hypotheses (homoplasies); therefore,
the alignment(s) that yield the most parsimonious cla-
dogram(s) best satisfies our desire to maximize homol-
ogy.

The sine quae non of sequence alignment are gaps.
hen sequences differ in length, insertion–deletion

vents (indels) are postulated as required to explain
he variation and their places held by gap characters.
perationally, if a cost is not assigned to the insertion
f gaps during alignment a trivial alignment will result
here both sequences will have gaps at each position
ere there is a potential mismatch with an alignment

ost of zero. During cladogram construction, insertion–
eletion events are frequently (if implicitly) assigned a
ost of zero (Swofford and Olsen, 1990; Giribet and
heeler, 1999). The operation used to insert gaps dur-

ng alignment should also be reflected in the phyloge-
etic analysis of that alignment. Gaps should therefore
e treated as a 5th character state in nucleotide data
ets (or a 21st state in amino acid data sets) with the
ost of transformation between a gap and the other
tates in the cladogram determined by the assump-
ions of the alignment process. If a gap cost (or penalty)
f “two” is assigned during alignment, indels (inser-
ions or deletions) should also cost “two” in judging
hylogenetic trees based on that alignment.
Alignment and phylogenetic analysis, no matter
hich algorithms or optimality criteria are used, are

ensitive to the choice of cost functions (Fitch and
mith, 1983). Various weights must be assigned a pri-
ri to alignment parameters (assumptions) such as
ucleotide mismatch cost (including any transition–
ransversion bias) and gap cost. Since homology assess-
ents are sensitive to parameter variation the out-

ome of the phylogenetic analysis is dependent upon
hese values. Using sensitivity analysis (Wheeler,
995), the effect of one’s choice of parameter values can
e explored by examining many cost function combina-
ions. The numerous results produced by different pa-
ameter sets can be assessed via character congruence
o assay their ramifications for homology.

PAIRWISE ALIGNMENT

The initial step in nearly all methods of sequence
nalysis is pairwise alignment. Most sequence align-
ent methods seek to optimize the criterion of similar-
local and global. Local methods try to determine if
subsegments of one sequence (A) are present in an-
other (B). These methods have their greatest utility in
data base searching and retrieval (e.g., BLAST, Alts-
chul et al., 1990). Although they may be of utility in
detecting sequences with a certain degree of similarity
that may or may not be homologous, in phylogenetic
analysis it is assumed that the sequences being com-
pared are orthologous. Global methods make compari-
sons over the entire lengths of the sequences; in other
words, each element of sequence A is compared with
each element in sequence B. Global comparison is the
principal method of alignment for phylogenetic analy-
sis.

The crux of similarity maximization is the calcula-
tion of the minimum edit distance between two se-
quences. The edit distance is the number of operations
(substitutions, insertions, or deletions) required to con-
vert sequence A into sequence B. Each operation must
be given a cost (or penalty). The aggregate optimal cost
will be a measure that reflects the similarity of the two
sequences. The fundamental method of pairwise se-
quence alignment was first described by Needleman
and Wunsch (1970). The Needleman–Wunsch (N-W)
method was initially intended for proteins but applies
to any pairwise edit distance problem. The procedure
seeks to maximize a similarity measure between two
sequences. Smith et al. (1981) have shown that the
Sellers’ metric (1974) which minimizes a distance met-
ric is equivalent to the N-W algorithm. These algo-
rithms are an example of dynamic programming (Bell-
man, 1957) which permits a larger problem to be
resolved by solving smaller subproblems recursively
and assembling them into a final global result.

The N-W method can be thought of as proceeding
through four basic steps: laying out the alignment ma-
trix; initializing the matrix; “wave front” updating the
matrix elements; and the trace back. When laying out
the matrix, the two sequences define the axes of a
two-dimensional array (Fig. 1). As an example we will
consider sequence A “TAAATTGCA” and sequence B
“AATTTGGGCCA.” The top left-hand corner and bot-
tom right-hand corner of the matrix correspond to the
59 and 39 end of the sequences, respectively. To allow
for leading gaps, the first cell of the matrix (0, 0) is a
null cell where column 1 refers to the first base of
sequence A and row 1 corresponds to the first base of
sequence B. Hence, in this case we have a matrix that
has 120 elements.

In order to initialize the matrix elements, the N-W
algorithm starts from the beginning of both sequences
(top left corner) and traces its way through the matrix
to the end of both sequences (bottom right), logging a
mismatch value to each cell (Fig. 1). In the simplest
scheme of distance minimization, a specified value (for
instance 0) is placed in a cell whenever there is a
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matching state between sequences, regardless of posi-
tion. All nonidentical states are assigned a value of
one. More elaborate schemes of mismatch-scoring func-
tions can be instituted by referring to a predefined
mismatch-scoring matrix.

During the wavefront update of the matrix, each cell
in the matrix is assigned a new value (Fig. 2a–2d). This
value results from a comparison of three neighbors of
matrix cell (i, j): the cell to the immediate left (i, j 2
1), directly above (i 2 1, j), and diagonal above and to

the left (i 2 1, j 2 1). A diagonal path implies a
orrespondence between sequence elements whether
here is a match or a mismatch. A gap is inserted into
he alignment by moving across a row or down a col-
mn. Gaps are assigned a cost (.0) or a trivial align-

ment will be generated with a gap at every potential
mismatch (total score 5 0). The new value of cell (i, j)
will be the minimum path cost of the three possible
routes from its neighbors (Fig. 2). The value of these
routes is calculated by adding the cell value of the
previous cell (i, j 2 1; i 2 1, j; or i 2 1, j 2 1) plus
the gap cost in the case of a gap or the mismatch cost in
the case of a correspondence. When a gap is instituted
the mismatch costs are ignored since no base corre-
spondence is implied:

D~i, j! 5 min$d~i 2 1, j 2 1! 1 mismatch cost,

d~i 2 1, j! 1 gap cost,

d~i, j 2 1! 1 gap cost},

given that d(i0, j0) 5 0.
In the example here (Figs. 1–3), the gap cost is set to

10 and the mismatch cost is set at 1. The update begins
in the null cell of the top left-hand corner (Fig. 2a). The
initial value of this cell is zero. The operation continues

FIG. 1. An initialized matrix of a pairwise nucleotide sequence
comparison with an assigned mismatch cost of 1.
neighbor cell, (0, 0). Therefore, cell (0, 1) is assigned a
value of 10, that being the gap cost of 10 plus the value
of the previous cell (0, 0), which is zero. Cell (0, 2) is
assigned a value of 20, a gap cost of 10 plus the cell
value of its only neighbor (0, 1) also 10. This process
continues across the row, sequentially adding the gap
cost to the next cell. The procedure is repeated for
column 0 as each cell in that column only has one
neighbor. Cell (1, 1) is the first cell where the optimal
determination of path cost is performed (Fig. 2a). For
cell (1, 1), the path cost from cell (0, 1) is 20, 10 from the
gap cost and 10 from the cell value of (0, 1). The same

FIG. 2. Wavefront updating of the matrix elements correspond-
ing to the first two nucleotides in sequences A and B from Fig. 1.
Each cell in the matrix has its value reassigned based on an optimal
pathcost calculation. (a) The leading cell of the matrix at the top left
(0, 0) has a default value of zero. Each horizontal or vertical path to
a cell is assigned a gap cost of 10 and the previously assigned
mismatch costs are abandoned. A diagonal path to a cell withholds
the cell’s mismatch value (1). Each path, whether horizontal, verti-
cal, or diagonal, brings with it the value of the cell from which that
path originated. The cells in the first row and column of the matrix
continuously accrete a gap cost of 10. Cell (1, 1) is the first cell in the
matrix that must discriminate which of the three paths is optimal.
An asterisk (p) designates which are the lowest path costs. In this
instance it is the diagonal path from cell (0, 0). These optimal paths
are retained in memory. (b) Once the optimal path(s) have been
retained the value of the cell from which the path originated is no
longer necessary and is not reported. The large arrows represent
optimal paths to each cell retained in memory. The process is re-
peated for cells (2, 1) and (1, 2). The optimal path for cell (2, 1) is on
the diagonal. Cell (1, 2) has two optimal paths, one on the diagonal
and one from directly above. (c) The final cell (2, 2) undergoes the
optimization procedure with a single optimal path on the diagonal.
(d) A fully updated matrix with the optimal paths retained.
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is true of the path cost from cell (1, 0), 10 from the gap
cost and 10 from the cell value. The path cost from (0,
0) to (1, 1) is 1; there is no gap cost since it is on the
diagonal and the cell value of cell (0, 0) is 0, but a
mismatch cost is applied since cell (1, 1) represents a
correspondence of an A and a T (Fig. 2a). The new cell
value entered into cell (1, 1) is 1. At this time, the path
from which that value was derived is logged. If two
path costs are equal, an arbitrary choice is usually
made, but both paths can be retained in memory. Each
cell in turn undergoes this process until all cells are
updated (Figs. 2b–2d, 3).

All possible alignments, whether optimal or subop-
timal, are represented as pathways through the array.
The traceback begins at the terminal (bottom right)
element of the matrix. Any previously retained lowest
path cost notation that can be connected consecutively
through (i 2 1, j), (i, j 2 1), or (i 2 1, j 2 1) is traced
back through the matrix (Fig. 4). This trajectory rep-
resents a sequence of edit operations which transforms
sequence A into sequence B. This edit path forms the
alignment. An uninterrupted diagonal through the ar-
ray would represent no gap assignments. There may be
more than one optimal pathway (Fig. 5); with this
particular parameter set there are six possible path-
ways through the matrix. The traceback procedure
merely recognizes any series of retained cell to cell
paths that are contiguous through the entire matrix.

FIG. 3. A fully updated pairwise matrix of the complete se-
quences with the optimal paths. The cell values are retained only for
illustration; they represent local edit distances. The terminal cell
(10, 12) represents the global edit distance between sequences A and
B.
the wavefront update and it is at this point that posi-
tional homology is established.

Cost functions. The gap cost and mismatch cost
associated with the N-W algorithm are in a dynamic
relationship; increasing mismatch cost will create
more gaps in the alignment and increasing gap cost
will increase the number of mismatches. Accordingly,
an alignment may only be optimal for a particular
combination of mismatch and gap costs. Alter these
values and the optimal alignment may alter as well
yielding a different phylogenetic data set. How, then,
does one decide which combination of parameter sets to
use? In general these choices are arbitrary. The follow-
ing is a discussion of various implementations of cost
functions in the N-W algorithm. There is a myriad of
variations on the implementation of cost functions.
Most of these implementations are attempts to mimic
biological processes or constraints, which are thought
to regulate the evolution of DNA or protein sequences.

Mismatch cost functions. There are many varia-
tions on the type of mismatch costs one can assign
when laying out the N-W matrix. Aside from binary
cost functions (0 5 nucleotide match or 1 5 mismatch),
a transformation matrix of substitution costs can be
instituted which will assign a separate penalty for each
class of mismatches observed. Nucleotide sequence
alignment has six types of mismatches in a symmetri-

FIG. 4. The traceback procedure begins at the terminal cell
(bottom right corner) in the matrix and tracks a path back through
the matrix following all retained optimal paths until the top left cell
(0, 0) is reached.
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cal transformation matrix. One could assign values to
these transformations in a mismatch cost matrix based
on many different criteria, for instance, observed nu-
cleotide bias. These transformations are often grouped
into two classes, transitions and transversions, but
they are certainly not limited to these. Amino acid
alignments can have much more complicated transfor-
mation matrices and there are many different types of
amino acid substitution matrices in use.

The minimum mutation distance matrix (Fitch,
1966) is based on the minimum number of nucleotides
which must be changed in order to convert the codon
for one amino acid to the codon of another amino acid.
The most common type of transformation table is the
log odds matrix. These log odds matrices contain the
relative frequencies with which amino acids are as-
sumed to replace one another over time. The odds ratio
is the ratio of the number of times residue X is replaced
by residue Y in a pairwise alignment divided by the
number of times residue X would be expected to replace
residue Y is replacements occur at random. Positive
values in the matrix indicate a replacement rate

FIG. 5. An edit graph representation of the traceback operation
n the highlighted region of Fig. 4. Positions in sequence A are
epresented above the diagonal arrows or to the right of the vertical
rrows, positions from sequence B are below the diagonal arrows or
o the left of the vertical arrows. This particular parameter set
gap 5 10, mismatch 5 1) yielded six different optimal paths through
he matrix. Each of the six equally optimal alignments can be recon-
tructed by following every possible route through the edit graph.
cate a replacement rate less than expected by chance.
It is assumed these values roughly correspond to con-
servative and nonconservative replacements, respec-
tively. These log odds values can easily be converted
into mismatch cost transformation matrices.

The most prevalent of the log odds matrices is the
PAM matrix (Dayhoff et al., 1978). The PAM matrix
(allowed point mutations) is constructed by pairwise
comparison of 72 sequence families consisting of more
than 1300 sequences. A PAMx matrix is calculated
from the original PAM1 by multiplying the PAM1 ma-
trix by x times with itself, thus giving the probability of
x pam1 mutations. Low PAMx matrices are used with
losely related sequences, while high PAMx sequences

are to be used for distantly related sequences (Dayhoff
et al., 1983). Blosum matrices (Henikoff and Henikoff,
1992) are based on well-conserved blocks of multiply
aligned sequence segments, or motifs, that represented
the most conserved regions of aligned families. Various
Blosum matrices differ by the way the clustered se-
quences are built. Blosom 62 contains blocks that are
at least 62% similar with one or more of the blocks in
the cluster. These substitution probabilities are aver-
ages derived from pairwise alignments over a wide
range of evolutionary distances. All log odds matrices
are of course dependent upon the alignment parame-
ters used in their construction.

Gap penalty functions. Gap coding in phylogenetic
analysis is not necessarily straightforward. Gaps are
not observations but are constructs in the alignment
representing implied insertions or deletions. The deci-
sion to institute a gap in the alignment is a result of the
path cost calculation during the wavefront update of
the matrix elements. The simplest mode of inserting
gaps into the alignment is to consider each cell in the
matrix that implies a gap to be independent of any
contiguous cell that also implies a gap. This is the
unitary or simple gap cost. In this mode, five contigu-
ous gap symbols contribute to the alignment cost as
much as five dispersed gap symbols. This is the method
used in the N-W algorithm.

More complicated gap dependencies have been pro-
posed (Waterman et al., 1976; Gotoh, 1982; Waterman,
1984; Miller and Meyers, 1988). These methods treat
each contiguous string of gap characters as a single
event instead of the sum of “k” events, where “k” is the
length of the string. These procedures take into con-
sideration the number of adjacent gap symbols in a
string and are commonly known as affine gap costs.
These penalties are composed of two parts, the gap
initiation cost and the length-dependent gap extension
cost. The gap extension cost need not be a linear func-
tion. With concave gap functions, the value of each
increment in the gap extension cost decreases with
each additional gap character to the string. Gu and Li
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and found the length distribution to be a log function.
This implies a gapping function of wg 5 a 1 b ln k

here a is the gap initiation cost, b is the gap extension
ost and k is the gap length. Although many algorithms
hich incorporate concave gap costs have been de-

cribed in the literature (Knight and Meyers, 1995;
iller and Meyers, 1988; Allison, 1993), few computer

pplications actually include them. An additional mod-
fication in gapping is to allow gaps at the beginning
nd end of a sequence to be free of any cost. Cost-free
nd gaps should be used with caution as this enters the
ealm of local alignment.

One of the most problematic areas in phylogenetic
equence alignment is the influence of long gaps. Dy-
amic programming cannot look forward into the ma-
rix. The wavefront update, which establishes the op-
imal path costs, is unidirectional and can only base its
ecision to institute a gap or correspondence based on
he observed cost function up to the present point. As a
ap becomes increasingly long it may become more
conomical to begin to apply mismatches than to ex-
end the gap even though there may be a high scoring
ontiguous string of matches later on in the matrix.
his is apparent in many 18S ribosomal data sets (see
hiting et al., 1997). Long gaps are particularly a

roblem when memory-saving modifications of the N-
-algorithm are applied (see below). Gotoh (1982) de-

igned an algorithm to deal with this issue which as-
igned a constant cost for any gap exceeding a specified
ength. Another approach also developed by Gotoh
1990) uses a series of linear functions of decreasing
lope, which approximate a concave function. These
ore complex gapping functions contribute to the com-

utational complexity and memory requirements of the
peration because all (or many) cell values in column i
nd row j must be considered during the update of cell
i, j) (Fig. 6).

Affine gap costs and character coding. Characters
n a phylogenetic analysis of sequence data are essen-
ially columns in the alignment. One of the assump-
ions in phylogenetics analysis is that these columns
re independent of one another. They are not, however.
he positional homology assessments (the decision to

nstitute a gap or a correspondence) are entirely con-
ext dependent and are based on the determination of
he minimum path costs during the wavefront. When
ssigning affine gap costs, the neighborhood of influ-
nce expands even further back into the matrix (Fig.
). The decision to treat a series of contiguous gaps as
singular event may be biologically founded but it is

ot logically consistent with how we designate what is
character and the phylogenetic analysis of those

haracters. If a long gap is a singular evolutionary
vent, it will be represented in the phylogenetic anal-
sis many times since it occupies several columns in
the matrix. This results in a problem: how does one
code the gap character transformation cost in the ver-
tical column of the data matrix if it is dependent on
other positions? Furthermore, what of the nucleotide
variation which corresponds with the gap positions?
Treating gaps as missing data is not a solution, since
these gaps are not in any way “missing” but the results
of a specific mode of sequence change. The effect of
missing data can be dubious during the character-state
optimization procedure, missing data can be construed
as an unobserved nucleotide or amino acid and the
character state which provides the shortest length tree
is inserted (Nixon and Davis, 1991; Platnick et al.,
1991). This is not desirable when gaps are implied.
Since gap distribution is an integral part of the posi-
tional homology assignment process there is no justifi-
cation for excluding gap positions from the character
analysis.

We do not reject the utility of biological constraints
when performing alignments, we submit that it creates
a complexity in the delimition of characters and state
transformation costs which is not usually carried over
into the phylogenetic analysis. A restriction of using
independent positional homology is that columns as
characters do not apply with gap positions which are
derived using affine gap functions since the gap char-
acters are interrelated. A tentative solution would be to
use unitary (independent, linear) gap costs in the
alignment. Alternatively, the entire gap could be the
character with the different character states deter-
mined by length differences and corresponding nucle-
otide variation although alternative solutions may lie
outside the realm of alignment (Wheeler, 1996;
Wheeler, 1999).

FIG. 6. Affine gap costs consider not only the three cells (i, j 2
1; i 2 1, j; i 2 1, j 2 1) adjacent to cell (i, j) but every cell in row
i and every cell in column j. The cell value of each of these cells
represents the lowest edit distance required to reach that cell from
the first cell (0, 0) in the matrix.
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ory. There have been many attempts at conserving
computational effort and memory requirements for dy-
namic programming in general. One can assume that it
is not necessary to explore the entire pairwise matrix
to find the optimal edit distance. Using a diagonal path
through the matrix as the null optimal, one need only
consider a portion of the matrix a certain distance from
the diagonal. Ukkonen (1985) utilizes the notion that
the optimal solution is somewhere near the diagonal by
defining a boundary (2k 1 1) around the diagonal
ased on the number of gaps present in the sequence so
ar. Meyers and Miller (1988) devised a method based
n Hirschberg (1975) which does not require that the
atrix be retained permanently as in the N-W algo-

ithm. The edit distance score is used in a divide-and-
onquer procedure that recursively bisects the matrix
ntil there is a series of smaller alignments which
equire less computational effort. The alignments are
ubsequently concatenated. Gotoh (1990) then modi-
ed the traceback procedure to include all possible
ptimal alignments. These methods are generalizable
o the multiple sequence alignment problem (Carillo
nd Lipman, 1988) described below.

MULTIPLE SEQUENCE ALIGNMENT

The N-W algorithm was originally defined for two
equences. In principle, the procedure can be extended
o any number of sequences, thereby defining an N-
imensional matrix. However, the addition of se-
uences opens up an immense computational problem.
he number of cells in a true simultaneous multiple
lignment matrix are exponentially related to the
umber of taxa and sequence length. Even using the
ethods that save storage and effort, simultaneous

lignment of more than a few sequences is computa-
ionally intractable.

Sankoff and Cedergren (1983) proposed a tree-based
ultiple alignment method within an N-dimensional

N-W framework. Their method requires, however, that
the cladogram of relationships is known a priori and
alignments are performed with the cost of each cell in
the alignment space determined by the “known” cla-
dogram. Initially, a space is created with )0

n Ln 1 1
cells (n is the number of the sequences and L their
lengths). A pass is made through this space as with the
two-dimensional method, updating each cell. The up-
dated cost of each cell would be the minimum of the
cost of each adjacent cell incremented by the cost of the
current cell, as determined by the known tree. For n
taxa there are 2n 2 1 cells to be examined (all the
combinations, indels, and base matches and mis-
matches) to determine the cost of each cell.

This is a straightforward extension of the two-di-
mensional N-W case. As with the 2-d case, the cost of
each cell is determined by the minimum of the sum of
the path to the current cell. Where the cost of cell (i, j)
for sequences A and B and transformation cost set “w”,

dij 5 minH di,j 2 1 1 w~“—”, Bj!
di 2 1,j 1 w~Ai, “—”!
di 2 1,j 2 1 1 w~Ai, Bj!

J
for two sequences becomes

dij· · ·k 5 minHdi,j 2 1,· · ·k 1 w~“—”, Bj, . . . , ck!

di 2 1,j· · ·k 1 w~Ai, “—”, . . . , ck!
···

J
di, j,· · ·k 2 1 1 w~Ai, Bj, . . . , “—”!,

when “k” sequences are included. The minimization
occurs over all possible combinations of gaps and
matches for a total of 2k 2 1 path to cell i, j, . . . , k. In
his general case, the “w” set of transformation costs

would be based on the predetermined tree. The parsi-
moniously reconstructed (but not searched) length of
the a priori tree is used for the “w” costs.

If the tree of relationships were not known ahead of
time (the most likely case), the alignment procedure
could be repeated for each possible scheme of relation-
ships or phylogenetic searching could be performed for
each cell. Given that the number of cells in the align-
ment space is exponentially related to the number of
taxa, and the number of trees is combinatorially de-
pendent on the number of taxa, this type of approach,
though exact, would be intractable for all but the
smallest data sets.

HEURISTIC MULTIPLE ALIGNMENT

As a result of this combinatorial complexity, simul-
taneous alignment of all sequences is rarely attempted.
Instead, a series of pairwise alignments are performed
and these subalignments amalgamated into a multiple
alignment. The intermediate pairwise alignments are
added together following a tree-like pattern. The order
by which this is carried out is determined by a “guide
tree” (Feng and Doolittle, 1987). Each node of the tree
represents a separate pairwise alignment. Mindell
(1991) advocated using known phylogenies to guide
alignments but the required phylogenetic information
is often unavailable. In most evolutionary studies, the
object of performing a multiple alignment is to allow
phylogenetic analysis with a set of putative homologies
unbiased by initial assumptions of relationship. Pre-
conceived notions of relationships will bias the analy-
sis.

The phylogeny resultant from analysis of a multiple
alignment is obviously dependent on the order in which
the sequences are accreted. However, if gap assign-
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ogies will lead to the same phylogeny. Thus, the guide
tree topology is separate and distinct from the topology
of the phylogenetic tree derived from the alignment.

Several methods are currently in use to progres-
sively align sequences via pairwise accretion. The dif-
ferences among them center on two areas: (1) tech-
niques of establishing an alignment topology or
topologies (guide tree), and (2) how the aligned se-
quence positions at the nodes are combined to create
the complete multiple alignment. The guide tree can be
established using a pairwise distance-based approach
or by choosing from many guide trees in a parsimony
framework. The results of each pairwise alignment in
the guide tree can produce a consensus sequence which
is resolved later, or the character state can be resolved
as soon as possible within the alignment process. The
decision to choose one mode over another tends to be
based on computational effort, the methods that iterate
through multiple guide trees being the most consump-
tive of computational resources.

Distance-based guide trees. Initially, guide trees
were determined based on distance methods (Feng and
Doolittle, 1987, 1990; adapted by Higgins and Sharp,
1988, 1989; Higgins et al., 1992; Thompson et al.,
1994). Thompson et al. (1994) described the procedure
as follows. A similarity score is calculated from a pair-
wise alignment between every possible pair of se-
quences (Wilbur and Lipman, 1983). A distance matrix
composed of these scores is used to calculate a den-
dogram using the UPGMA method of Sneath and Sokal
(1973) as an alignment topology. This topology is used
to direct the alignment of the most similar sequences in
a N-W procedure. The CLUSTAL alignment program
(Thompson et al., 1994) (ftp://ftp-igbmc.u-strasbg.fr/
pub/) aligns the most similar sequences first. A consen-
sus sequence is substituted for the sequence pair. Con-
sensus sequences incorporate only bases present in all
sequences or use partial (75%) consensus. Gaps in-
serted in any alignments are preserved throughout the
alignment. Clustal progressively aligns the next most
similar sequence to the consensus of the growing clus-
ter or the next two most similar sequences to each
other (Fig. 7). Only a single multiple alignment is
constructed. However, an industrious user could spec-
ify various alignment topologies and run the program
repeatedly to explore the relationship between align-
ment topology and phylogenetic results.

There are other methods based on sequence similar-
ity (Hein, 1989a,b, 1990; Konings et al., 1987). These
methods differ in how the distance tree is determined
and how the tree interacts with the actual alignment.
Hein (1989a,b, 1990) extended the process by adding a
parsimony step. In TREEALIGN (Hein, 1989a,b),
(ftp://ftp.ebi.ac.uk/pub/software/unix/treealign.tar.Z),
pairwise distances are used to construct an alignment
topology and an initial alignment with observed se-
quences at the edges of the tree. The alignment topol-
ogy is converted to a parsimony tree and used to direct
an alignment algorithm. During alignment, potential
ancestral sequences are created at each node in the
alignment topology using parsimony (Fig. 8). Although
a parsimony score is attached to the alignment topol-
ogy, no other trees are constructed for comparison. The
alignment topology is subjected to nearest neighbor
interchanges until all branches are swapped or a user-
defined number of swapping cycles is reached. Se-
quences are aligned along the resultant tree via a
graph comparison algorithm similar to that of Sankoff
and Cedergren (1983). Ancestral sequences are deter-
mined for each node via dynamic programming. Base
mismatches (e.g., A in sequence 1 and C in sequence 2)
are incorporated in the ancestral sequences by the
union of the bases (A 1 C). A choice between the
alternatives is postponed until evidence higher up in
the tree points to either A or C (Fig. 8). If nothing
favors A or C an arbitrary choice is made (J. Hein, pers.
commun.).

Parsimony-based alignment topologies. Any single
addition order can lead to a result that is not globally
optimal. This is one of the most severe problems of
nonexact solutions. In MALIGN (Wheeler and Glad-

FIG. 7. Tree-based depiction of multiple alignment strategy in
CLUSTAL. Let all base changes and gaps cost 1. A distance tree is
created by UPGMA. In the downpass terminal sequences are related
by a dendrogram. (A) A pairwise alignment of two most “closely
related” terminal sequences. An unknown residue X is used to place-

old any disagreement. Then a pairwise alignment is performed
etween the consensus produced at the previous node with next most
closely related” sequence. (B) In the up pass, progressive alignment
f the consensus sequences and terminal sequences is used to resolve
ny ambiguities and to introduce gaps.



ment cost. In the heuristic option termed “build,” align-

i
c
d
t
m
c

325REVIEW
stein, 1994) (ftp://ftp.amnh.org/pub/people/wheeler/
malign/), many alignment topologies are used to ex-
plore multiple alignments. Various alignment
topologies can be constructed via random addition of
sequences and branch-swapping. As sequences are ac-
creted alignment topologies (subtrees) are produced by
adding sequences to the branch that produces the least
costly alignment. Minimization occurs by searching for
the least costly path through a N-W matrix determined
by the sequences and costs associated with accepting
nucleotide mismatches or inserting gaps. Subtrees are
then combined to produce a complete multiple align-
ment.

Alignment cost can be improved through branch
swapping (Fig. 9). MALIGN performs branch swapping
by removing taxa and adding them back to all the other
possible addition points on the cladogram or alignment
hierarchy. The cost of the most parsimonious align-
ment topology is then assigned as the multiple align-

FIG. 8. Tree based depiction of the multiple alignment strategy
n TREEALIGN as described by Hein (1989b). A distance tree is
onstructed and subjected to nearest neighbor interchanges. In the
own pass terminal sequences are related by a parsimony guide tree
hat has the same topology as the distance tree. (A) Two subalign-
ents of AGT and AT and implicit ancestral sequences (IUPAC

oding used here for ambiguous nucleotides, K 5 G or T). (B) Selec-
tion of most parsimonious ancestral sequence by comparison to ATC.
Rearrangements are iterated on the parsimony guide tree to improve
the alignment cost. With a mismatch cost of 1 and a gap cost of 1 both
alignments are equivocal. TREEALIGN makes an arbitrary choice
between the two.
ments are constructed by adding taxa to an alignment
topology at each of the possible addition points and
alignment orders available. Sequences are stored at
subtrees as partial multiple alignments. As sequences
are accreted, alignment topologies (subtrees) are pro-
duced by adding sequences to the branch that produces
the least costly alignment. These procedures are anal-
ogous to heuristic cladogram construction algorithms
(e.g., Farris, 1970).

MAXIMUM LIKELIHOOD ALIGNMENT

The criterion of maximum likelihood (ML) can also
be used to create multiple alignments via a route anal-
ogous to parsimony/minimization approaches. In the
simple pairwise case, the same sort of N-W dynamic
programming matrix is created and costs assigned to
each cell in the matrix. Those costs, however, would be
calculated in a slightly different manner. In the place
of the relatively simple substitution-indel costs (even if
more complex base substitution costs are specified) of
the basic N-W, a more complex evolutionary model is
used to assign the relative likelihoods of different sorts
of base substitutions and indels. Unlike minimization
procedures, where the minimum path to a cell (see Fig.
2) is chosen and dependent cells are updated based on
that single minimum cost path, all paths are included
in the likelihood calculations. That is, all possible
paths to a given cell contribute to the likelihood value
(Bishop and Thompson, 1986).

Other than this rather trivial difference, the similar-
ity in process may continue through tree-based multi-
ple alignment. Mitchison and Durbin (1995) suggest
using ML trees to asses the quality of (i.e., optimize)
multiple alignments. ML alignment procedures, how-
ever, are not widely used even by the proponents of
likelihood in phylogeny reconstruction. We presume
that this is due only to the computational costs in-
volved in analyzing real data and not any reservation
about evolutionary models. The methodologies are
clear; the procedures can be made seamless from align-
ment through phylogeny estimation. The only barrier
is implementation (see Thorne, Kishino, and Felsen-
stein, 1992).

Like all other forms of analysis, ML results are de-
pendent on assumptions. These assumptions are en-
capsulated in the evolutionary models employed. The
models specify not only aspects such as transition–
transversion ratios and gap models, but also the shape
and rates of sequence evolution. In the same way that
parsimony based analysis can be subjected to variation
in parameter assumptions, likelihood results should be
examined for their behavior under variation of as-
sumptions. With the likelihood value as an optimality
criterion (like minimum length), different combina-
tions of parameter and evolutionary model can be
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tested to maximize the criterion of choice. These oper-
ations would be identical to those for minimization/
parsimony, but with a different criterion of optimality.

PARAMETER SENSITIVITY

The phylogenetic analysis of nucleic acid sequences,
as with other data, is unavoidably based on explicit
and implicit assumptions. Results of multiple align-
ment and phylogenetic analysis, no matter the algo-
rithms, are sensitive to choice of evolutionary model.
At the fore are character transformation models. For
example, various weights must be assigned to param-
eters such as transitions, transversions, and insertion–
deletion events. There are no known means of deter-
mining, a priori, which alignment parameters are
appropriate for recovering evolutionary relationships.

Simple homogeneous weighting does not avoid the
issue of arbitrary, yet crucial, assumptions. As an ex-
ample, transversion–transition ratio and gap costs are

FIG. 9. Tree based depiction of an example multiple alignment st
build” step, terminal sequences are related by a cladogram that res
here are three possible guide trees, A, B, and C. After the tree sear
o potentially improve optimization of character changes. The alignm
xample alignment topology A and C produce the same optimal alig
generally not directly measurable. These values are
statements of process and they can be inferred appro-
priately only from a predetermined phylogenetic pat-
tern. The interaction between the specification of val-
ues a priori and their inference a posteriori is a general
and central problem in molecular phylogenetic analy-
sis.

One of the benefits of likelihood techniques is that
the method can estimate the values of its own param-
eters by simultaneously varying parameters until
global maximum likelihood is achieved. In the case of
alignment, the likelihood of an alignment based on one
set of parameters (e.g., indel cost, transversion ratio)
can be compared to that based on another. Unlike the
numerical values derived from parsimony analyses, a
likelihood of 0.1 for an alignment with a gap cost of
twice that of base changes is superior to a likelihood of
0.01 based on gaps costing four times base changes.
Continuing this logic, the maximum likelihood align-
ment over all (or some heuristic subset) of analysis

egy in MALIGN. Let all base changes 5 1 and gaps cost 5 2. In each
s from a random or user-specified addition sequence. For these taxa
is conducted, each alignment is then subjected to branch swapping
that produces the shortest tree is the best alignment. In this simple
ent.
rat
ult
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ent
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parameters gives both the alignment and the maxi- space with each of the N parameters defining an axis
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mum likelihood estimate of each of the components of
the model. The costs of alignments based on weighted
parsimony are not comparable in this way. A cost (or
derived cladogram length) of two is not necessarily
superior to a length of four. Each solution is most
parsimonious for its own set of parameters and not
comparable from parsimonious solution to parsimoni-
ous solution.

Alignment space and congruence. In order to esti-
mate the multiple alignment parameters, both a model
and a space are posited. The model determines the
general means of calculating likelihoods based on both
the form of the model and the assumed values of its
parameters. To perform the likelihood estimates, the
likelihood is calculated for each point in the parameter
space. The point with the maximum value gives the
likelihood estimate of the alignment, and the points
along each axis give the parameter values.

If several sources of information are to be used, each
data set may require a unique model. It is unclear how
to assess the ensemble phylogenetic conclusions. The
use of external criteria offers a way of accommodating
such results. If an external criterion can be defined, the
behavior of each solution can be calculated and com-
pared to those of other solutions. One such external
criterion is congruence. As used by Wheeler (1995),
congruence measures can be posited and all solutions
assayed. The set of analysis parameters which maxi-
mizes (or minimizes) this value is then optimal. The
potential problem with this approach is that different
optimality criteria may be used within and among
models. Those solutions, which are optimal by one cri-
terion, may not be with another.

Sensitivity analysis. Even though the basic align-
ment parameters of transversion–transition and gap–
change cost ratios are unmeasurable in the absence of
a predetermined phylogeny, it is possible to estimate
their values through appeal to an external optimality
criterion. The most reasonable for phylogenetic analy-
sis must be congruence (whether taxonomic [Nelson,
1979] or character based [Mickevich and Farris, 1981],
but see Miyamoto [1981, 1985]). Without any way of
objectively measuring the accuracy of reconstruction,
only the agreement among data can be used to arbi-
trate among competing hypotheses.

In order to estimate the sensitivity of an analysis to
variation in parameter values, the range of each of the
parameters must be determined. This establishes the
“analysis space” of the problem. In this space, all pos-
sible combinations of parameter values are present;
hence all analytical conclusions are implied. These
combinations of values are sampled and their analyti-
cal consequences determined (see Fitch and Smith,
1983; and Vingron and Waterman, 1994). This would,
in the most general case, involve an N-dimensional
bounded by the parameter ranges. The two parameters
of insertion–deletion cost and transversion–transition
ratio would constitute the axes of a simple analysis
space (Fig. 10). A sampling regime would consist of
taking parameter pairs (transversion–transition ratio,
gap–change cost ratio) from this space, aligning the
sequences, erecting hypotheses of relationship based
on these values, and assaying congruence with an ex-
ternal data set.

Even with only two parameters, the available anal-
ysis universe is infinite. Each of the parameters can, at
least numerically, achieve any positive real value. Re-
alistic sampling of such a space may be difficult. These
values are not boundless and may be constrained by
the logic of the triangle inequality as formulated for
character analysis (Wheeler, 1995).

Within these theoretical limits, a residuum of possi-
ble values exists for the analysis parameters. With two
parameters, a plane bounded on two adjacent sides is
defined (Fig. 10). Since any and all combinations of
parameter values which fall in this plane are possible
at least logically, they must all be examined (or at least
some sample). To accomplish this sampling, alignment
and phylogeny reconstruction must be performed with
sufficient combinations of possible values to represent
the behavior of the entire space. This is a relatively
straightforward procedure (if time-consuming). For
each point (a combination of transversion–transition
and gap–change value ratios) to be sampled, the se-
quences are aligned and phylogeny reconstructed. Both
alignment and phylogeny reconstruction are per-
formed using the same combination of parameter val-
ues. At each of these points, some measure of congru-
ence is calculated with respect to some external data
set, the variation of which can be used to assay both the
most appropriate values for the unmeasurable param-
eters and the effects of variation in these parameter
values on the overall conclusions of the analysis.

If some congruence measure is plotted with respect
to the parameter values, a “congruence surface” is gen-
erated, the relief in this surface denoting the areas of
relative congruence and incongruence. This surface
can be used to estimate the values of the analytical
parameters. As with statistical inference, two types of
decision (estimate of parameter values) can be made—
“best” and “robust.” A “best” decision is made by choos-
ing the set (or sets) of parameter values at which the
optimality criterion is maximized. According to this
type of decision, the set of values for transversion–
transition ratio and gap–change ratio that maximize
congruence would be chosen. On the other hand, a
“robust” decision selects a range of parameter values
rather than settling on a single set. This range defines
a subset of the analysis space in which some statement
is supported. For example, an area might be specified
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in which some particular group was monophyletic, but
this clade was not supported generally.

The Mickevich and Farris (1981) measure of congru-
ence seeks to assess the degree of character conflict
among multiple data sets. The statistic of Mickevich
and Farris (1981) quantifies the degree of character
conflict by measuring the number of extra steps forced
upon the individual data sets when they are combined.
In this way, the additional conflict created by the com-
bination of the data is assessed separately from that
derived from internal character conflict. The value gen-
erated is simply the length of the most parsimonious
cladogram(s) derived from the combined data minus
the sum of the lengths of the cladograms from the
constituent data sets. This number of steps is normal-
ized through division by the length of the combined
data. A value of zero implies complete character con-
gruence, while higher values denote increasing degrees
of character conflict between the data sets. No topology
statement is implied or required. In fact, data sets,
which have zero taxonomic congruence, can have 100%
character congruence. This can occur if one data set

FIG. 10. Graphical representation of an alignment parameter sen
B genes from 35 carnivore taxa. The incongruence length difference
datasets from the treelength of the combined data set and dividing th
combined 2 treelength 12S 2 treelength 16S 2 treelength cytB)/tree
gap costs including 1, 2, 4, 8, and 16, and transition/transversion ra
yielded the least internal data conflict were gap cost of 2 and a tran
yields an unresolved bush and the second yields one of
its many potential resolutions.

CONCLUSIONS

In many ways, alignment is where phylogenetic
analysis was 20 years ago. Many investigators still
advocate creating alignments “by hand,” asserting that
the human brain is better at determining homology,
that computer analysis is not “biological.” Computer
programs for performing alignments are in their in-
fancy and users are often unfamiliar with the numer-
ical and methodological assumptions made. Presenta-
tions at conferences may cite alignment software, but
leave crucial information such as gap costs or search
algorithms undescribed. Clearly, an increase in analyt-
ical sophistication and clarity is warranted in this pri-
mary stage of phylogenetic analysis.

We advocate three aspects of phylogenetic align-
ment-reconstruction: (1) the definition of an optimality
criterion for alignment, (2) the consistent use of anal-
ysis assumptions in both alignment and phylogeny re-

ivity analysis of a data set consisting of the 12S, 16S and cytochrome
D) was calculated by subtracting the treelengths of the individual

value by the treelength of the combined data set {ILD 5 (treelength
gth combined}. The alignment parameters explored were a range of
s of 1, 2, 4, 8, and transitions only. The alignment parameters that
ion/transversion ratio of 1 with an ILD of 0.02569.
sit
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tions through sensitivity analysis to examine the
robustness of conclusions.

Since alignment seeks to minimize nonhomology,
parsimony seems the most logical of optimality criteria
for alignment. That alignment which implies a cla-
dogram of minimal length will, by definition, minimize
nonhomology. This is not, of course, the only criterion,
maximum likelihood being another. Whatever is cho-
sen, though, that logic must be followed through the
entire process from alignment to phylogenetic recon-
struction. Whatever cost regime (indels and base sub-
stitutions), however defined, must be applied consis-
tently. Without this connection, alignments might well
imply other cladograms than the analyses generate, or
conversely, resultant cladograms might imply different
alignments. The final point, that of testing assump-
tions through sensitivity analysis, is based on and re-
quires the first two. If analysis parameters are applied
objectively and consistently, assumptions can be
tested. By “tested,” we mean that the effects variations
in these assumptions have on phylogenetic conclusions
can be assayed. It may be that a result is entirely
dependent on specific values of indels cost or transi-
tion–transversion ratio. Only by varying these values
and examining their perturbations can we assay the
robustness of our conclusions.

These points are not specific to parsimony-based
methods. Although we favor this approach, likelihood
methods could equally well meet these three require-
ments. Our arguments are more for consistency, re-
peatability, and transparency in analysis than for any
particular optimality criterion or epistemological
creed.
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