POY 4.0 Tutorials: general commands

Andrés Varén Megan Cevasco

July 25, 2008

1 Using the Interactive Console

In this tutorial you will learn how to move comfortably in the interactive con-
sole of POY. To begin, open POY and from the Analyses menu select Run
Interactive Console.

1. A new terminal window should appear and POY should be running in it.
If you are using Mac OS X or Linux, resize it to your preference. If you
are in windows, unfortunately the terminal can not be resized.

2. Now click anywhere in the terminal, and type the command help (), then
press enter.

3. The interactive console is composed of four different frames. All the com-
mands you type will appear in the interactive console frame.

4. Now type the command, report (data). You will see new information
appearing in the output frame.

5. If during an interactive session, you would like to repeat a previous com-
mand, press the combination keys Control-p (which we will from now
and on represent as <C-p>). You will see that the last command report
(data) appears on screen. Using the arrows and the delete keys, modify
that command into report (treestats). Now press enter.

6. A lot of text will have appeared in the output window. In order to scroll
up, simply use the up and down arrow keys. The screen should move one
line at a time, letting you see the contents of that frame.

7. Scrolling line by line can take a long time, using the page-up and the
page-down keys, the program will scroll up and down, one page at a time,
in the output window.

8. First use the <C-p> combination to go back to the help () command.
Then go back to report (diagnosis) using <C-n>. <C-n> lets you go
forward in your command history. Once in the report (diagnosis) com-
mand, press enter.

2 LOADING AND USING SANKOFF CHARACTERS

9. Typing commands can take a long time, and typos will lurk in. To avoid
them, you can use the Tab key let POY autocomplete things for you. For
example, type the following (every occurrence of <TAB> means “press the
tab key”):

tra<TAB><TAB><TAB><TAB>(static_<TAB>)

You will see how POY auto-completes the commands, and cycles on all
possible matches when more than one possible command is found. The
program will also autocomplete filenames for you.

10. Finally, if in the following tutorials, you want to cancel a command that
is being executed, simply press <C-c> (Control-c). That will roll back the
program to the previous interactive state (i.e. the last time you pressed
the <ENTER>).

We are ready to work with actual data. You can get it from |[ftp://ftp.amnh.
org/pub/group/molecular/poy/P0Y4/docs/data/SampleData.zip.

2 Loading and using Sankoff characters

In this tutorial we will load some Sankoff (matrix) type characters, and introduce
the commands build, cd, pwd, read, report, select, transform, exit.

1. Before we read data, we will make sure that POY is working in the di-
rectory that containing the data files. The working directory tells the
application where to look for the files. In this way, whenever we tell POY
to read a file, we don’t need to specify where is it located in the file system,
we can simply use its name. To Change Directory we use the command
cd, as in

cd ("/Users/andres/Desktop/SampleData")

You will have to modify the path to match your particular computer or-
ganization.

2. Every command in POY is composed of a command name in lower case (in
this case cd), followed by its arguments in parentheses. In this example,
cd takes only one argument, which is a string enclosed in quotes: in POY,
very string enclosed in quotes represents a file or a directory. In the last
example, it is the directory SampleData.

3. To verify that POY is in the correct directory, we can Print the Working
Directory with the command

2

Use Control-p, Control-n, and Tab to avoid errors!

ftp://ftp.amnh.org/pub/group/molecular/poy/POY4/docs/data/SampleData.zip
ftp://ftp.amnh.org/pub/group/molecular/poy/POY4/docs/data/SampleData.zip

2 LOADING AND USING SANKOFF CHARACTERS

pwd ()

The program should now print (in the output frame) the correct path to
read the SampleData directory. If not, use the cd command again and
make sure that the program does not give you any error. Remember that
you can always use the <TAB> to autocomplete file and directory names.
This will help you to avoid many mistakes!.

. Once we are working in the desired directory, we can read input data us-
ing the command read. POY supports ASN.1, Clustal, FASTA, GBSeq,
Genbank, Hennig86, Newick, NewSeq, NEXUS, PHYLIP, POY3, Tiny-
Seq, and XML formats directly, and performs an automatic file format
recognition. In this tutorial we need to read the sample files 35.san and
1.fasta. Type:

read ("35.san", "1.fasta")

. read also accepts wild cards. For example, to read all the files with exten-
sion .fasta, it would be enough to use the command read ("*.fasta")
(do not run it now!).

. Another feature of this application is that input files add data to existing
data. For example, we could have used two separate read commands, and
we would have had the same effect:

read("35.san")
read("1.fasta")

. After the data has been read, the output frame contains information dis-
playing what type of files where loaded, and what their contents are. It
is advisable to verify if those files where properly parsed by checking the
characters and terminals POY has in memory. To do this, we use the
command

report (data)

. Using the arrows, PageUp, and PageDown keys, navigate the contents of
the output frame. You will see that two kinds of characters are currently
in memory: Sankoff and Molecular. Sankoff characters where loaded from
the 35.san file, and the one gene contained in the 1.fasta file is the
molecular character.

. We will now run a small (and weak) analysis for just four minutes. So
type the command:

Use Control-p, Control-n, and Tab to avoid errors!

2 LOADING AND USING SANKOFF CHARACTERS

10.

11.

12.

13.

14.

search (max_time:0:0:4)

Now we have to wait four minutes for the program to run a search that in-
cludes building trees, swapping them with TBR, using a ratchet procedure
to escape local optima, and tree fusing.

Once the search has finished, take a moment to see what the interactive
console displays: the best cost found, how many times it was found, and
how many trees are currently held in memory. We are only interested
in the best (shortest) trees found, so we can get rid of duplicated and
suboptimal trees with:

select ()

We now look at the trees using the command:
report (asciitrees)

Notice that POY colors the branches so that you can follow them easily
when scrolling up and down in the output frame.

Seeing the trees on screen is somewhat useful, but it would be better if
we could produce them in parenthetical notation to use in other programs
like TreeView. We can do this using the command:
report (trees)
This will generate trees in newick format. To store them in a file, we
simply write first the name of the output file that should contain them:
report ("trees.txt", trees)
How about publication quality trees directly from POY? The following
command will produce a postscript file that can be read in Adobe Illus-

trator or any vectorial image edition program:

report ("graphic_tree.ps", graphtrees)

Excellent! we have finished now, time to close the application:

exit O

4

Use Control-p, Control-n, and Tab to avoid errors!

4 LOADING AND USING ADDITIVE CHARACTERS

Loading and using Non-additive (Unordered,
Fitch) characters

. We will follow a similar procedure to the one used with Sankoff characters.
Follow steps 1, 2, and 3 of Section [2| to change to the exercises directory.

. In this tutorial we will not build new trees, we just want to show that the
same read command works to read both regular data and trees. To do
this, we read from separate files, one containing the character matrix of
non-additive characters, and the other containing the trees:

read ("1Fitch.ss", "1Fitch.tre")

. After reading, this time we will report the trees in memory to one file, and
the data that were analyzed together with the tree diagnosis in a second
one:

report ("Fitch_tree.txt", trees:(total))
report ("Fitch_results.txt", data, diagnosis)
. This is all we want for now, so close the application.

exit O

Explore the contents of the two files that were reported: Fitch tree.txt
and Fitch_results.txt.

Loading and using Additive characters

. Once more, we will repeat (more or less) what we did for Non-additive
characters with Additive (Ordered, Wagner) characters. To do this, open
the interactive console, and move to the exercises directory.

. This time we will input the data contained in the ’31’ files:

read ("31.ss", "31.ss.tree")

. Here, we will use report not only to create the contents as before, but
also output the trees in human readable format to the screen. To do this,
repeat these commands one by one, and observe the effect:

Use Control-p, Control-n, and Tab to avoid errors!

5 LOADING A DIRECT OPTIMIZATION SEQUENCE

report ("Wagner_results.txt", data, diagnosis)
report (trees:(total))

report (asciitrees)

exit O

Can you guess what the command would be to output the asciitrees in a
file?

From now and on we will not mention the need to change to the exercises
directory, but doing so will be required to perform the following exercises.

5 Loading a Direct Optimization Sequence

1. Again change to the exercises directory (Section , and read the files
3.fasta and 5.fasta. Both contain sequences in FASTA format:

read ("3.fasta", "5.fasta")

2. The cross_references argument of the report command is quite useful
in checking the completeness of data files relative to one another. In
addition to giving us an idea of our data completeness (to a level we
may not want to know!), producing a presence/absence table of terminals
versus files:

report (cross_references)

3. We will now construct 10 Wagner trees with the command build (the
default), then select the best unique trees resulting from the Wagner builds
and report the trees in parenthetical notation:

build O
select ()
report (trees:(total))

4. Another useful way to view the data is to report the implied alignment
of the molecular data currently loaded. Implied alignments can be used
to discover problems in your data, and unexpected results before running
the complete analysis:

report (ia)

Use Control-p, Control-n, and Tab to avoid errors!

6 SEARCHING THE LOCAL NEIGHBORHOOD

. Implied alignments also show us where we have issues with variability
in sequence lengths as is the case with t16 (5.fasta). However, note that
sequence length is not problematic for t18 (5.fasta). In POY the characters
N and X are symbols used to represent any nucleotide base (as the [IUPAC
code specifies), while a question mark ’?’ represents any base or a gap.
However, for missing sequences, the implied alignment always show them
as gap-only sequences. This way your files will remain readable by other
programs.

. We are done for now with this tutorial. Close the interactive console:

exit O

Searching the local neighborhood

. In this section, we will use the command swap. This command performs a
local search using either SPR or TBR as the tree neighborhood. However,
as we learned in the previous sections, we must first read in data and build
a set of initial trees:

read ("course.fasta")
build O

. The importance of understanding the commands used to create an initial
set of trees for an analysis cannot be overemphasized. A search strategy
usually proceeds by building an initial set of trees, each of which is then
improved through a local heuristic search. Keeping this in mind it is easy
to imagine how a search on one initial tree is drastically inferior to a search
on 200 initial trees.

. Making 10 trees seems like a rather limited number of replicates. We can
request the program to build a larger number of trees by specifying an
integer as the build argument. So let us now build 20 trees:

build (20)

. Observe that a new build command eliminates the previous trees in mem-
ory. Every build will simply eliminate previous trees.

. Now we can store those trees in parenthetical notation for later use, using
the report command:

report ("built_trees.tree", trees)

Use Control-p, Control-n, and Tab to avoid errors!

6 SEARCHING THE LOCAL NEIGHBORHOOD

10.

11.

12.

To verify that we have successfully accomplished this task, we can read
the tree file back in POY:

read ("built_trees.tree")

Notice that reading an input tree file does not delete previous trees in
memory. This way it is possible to add new results to a set of current
results. This is always the behavior of the read command: adding either
data, or trees, to the current characters and trees available for analysis.

We should now verify that the input data were correctly loaded, as well
as the trees:

report (data)
report (treestats)

In this exercise, we want to compare the effect of different swap options.
In order to do this, we must always start from the very same trees and
original data. So, at this point, we will introduce the command wipe that
allow us to eliminate all the contents of the program’s memory. Let us
use that function, and verify that indeed there are neither data nor trees
currently loaded:

wipe ()
report (data)
report (treestats)

Observe that no data are now held in memory.

Now, we read the data again, the trees, and run the default swap ()
command. Then we check the cost of the trees found:

read ("course.fasta", "built_trees.tree")
swap ()
report (treestats)

Write down the tree cost for later comparison. Question: what kind of
neighborhood did POY use in this search? (TBR or SPR).

If we wanted to use a SPR or a TBR search, we can select it by passing
the corresponding argument to swap. Let’s give SPR a try now:

Use Control-p, Control-n, and Tab to avoid errors!

7 SEARCHING THE LOCAL NEIGHBORHOOD (AGAIN)

read ("course.fasta", "built_trees.tree")
swap (spr)
report (treestats)

13. Compare the results of the default neighborhood. What do you observe?
Does this match your expectations? Which worked better? which took
longer time?

Searching the local neighborhood (again)

1. Although wipe () seems like a handy command, in interactive tests it
would be desirable to have other means to store the state of the program
and continue from there later on. The store () and use () commands
serve this purpose.

2. store ("name") will store the current state of the program (that is all
the data, trees, and support values) under the name label. Conversely,
the command use ("name") sets the current state of the program to that
which was stored under the label name. For example:

(* These are comments in a POY script *)
wipe ()

read ("course.fasta", "built_trees.tree")
report (data, treestats)

(* At this point you can see that we

have loaded some molecular data as well as
initial trees. We will store it under the
label initial_data. *)

store ("initial_data")
select ()

(* We will now modify the data, using a
command that will be introduced later. *)
transform (static_approximation)

report (data, treestats)

(* Notice that now we are only analyzing
static homology characters. *)

store ("static_data")

use ("initial_data")

report (data, treestats)

(* See the characters are the same as the
originals? *)

Use Control-p, Control-n, and Tab to avoid errors!

8 TREES ARGUMENT

use ("static_data")
report (data, treestats)
(* Is it what you expected? *)

3. We can now do things more efficiently. Lets compare SPR and TBR again:

wipe ()

read ("course.fasta", "built_trees.tree")
store ("initial")

swap (tbr)

report (treestats)

use ("initial")

swap (spr)

report (treestats)

4. Finally make sure that the best trees that we found are saved for future
use (we will need them later).

report ("swap_course.tree")
exit ()

Trees argument

1. By default, from every starting tree, POY will only store one resulting
tree. That is, if you do:

build (1)
swap ()

You are guaranteed to end with one tree in memory. What about other
trees of the same cost that could be found during the search? In order to
increase the number of trees held in memory, after swap, you can use the
trees argument:

use ("initial")
select (best:1)
report (treestats)
swap (trees:10)

Did you get more than one tree at the end?

10

Use Control-p, Control-n, and Tab to avoid errors!

8 TREES ARGUMENT

2. We can also keep suboptimal trees in memory by using the threshold
argument. This allow us to find trees that are at most some number of
steps longer than the current optimum. For example, try the following:

use ("initial")

select (best:1)

swap (threshold:20, trees:10)
report (treestats)

How many trees did you get? What are the minimum and maximum
lengths?

3. Now we will use the argument timeout. We are preparing a talk that
starts in 5 minutes, and only have 3 minutes to run the analysis, and then
only 2 to prepare the slides! So we decide to build 3 trees, and then swap
for 60 seconds each, here is how we would do it:

use ("initial")

select (best:3)

swap (timeout:60)

report (treestats)

select (O

report ("graphic_trees.ps", graphtrees)

The argument timeout will stop the search on each tree after 60 seconds,
and the result will be the best tree found in that short amount of search.
Finally we have the best tree in a file to prepare the slide.

4. Let’s continue with the same scenario. This time you decide to let it run
for as long as it can, and stop it manually. For this case, the recover
argument is useful:

use ("initial")
select (best:3)
report (treestats)
swap (recover)

(* Now let it swap for a little bit so
that POY finds some better trees. Then
interrupt it with <C-c>. %)

recover ()
report (treestats)
select (O

11

Use Control-p, Control-n, and Tab to avoid errors!

8 TREES ARGUMENT

5. Same scenario again. This time, you find that your initial trees are not
that bad, and you would like to swap only on those trees that resolve the
strict consensus produced by the best three trees. To do this we use the
constraint argument:

use ("initial")
select (best:3)
swap (constraint)

6. You can also provide a constraint file from an input file. Let’s try that
setup. First create the consensus file:

use ("initial")
select (best:3)
report ("constraint.txt", consensus)

Now open the constraint.txt file and delete the title at the beginning.
We are ready to proceed with the swap:

swap (constraint:("constraint.txt"), timeout:10)

Notice that this time we have also added a timeout of 10 minutes. The
main difference between using the constraint file in this way with the
automated constraint in the previous item is that the reported consensus
tree collapse zero length branches.

7. Same scenario, but this time ... ehm ... POY is crashing. You don’t know
what could be the problem, and Andrés has not been able to fix it soon
enough. There is a nice argument called trajectory which allows swap
to print every better tree found during the search. You can now give it a
try:

use ("initial")
swap (trajectory)
8. OK, printing on the screen is useful, but the program is crashing! So I

still loose the results! No problem, just output the trees in a file:

use ("initial")
swap (trajectory:"trees_of_swap.txt")

(* Let it run for few minutes and then
cancel with <C-c> %)

12

Use Control-p, Control-n, and Tab to avoid errors!

9 MODIFYING YOUR CHARACTERS WITH TRANSFORM

9.

10.

read ("trees_of_swap.txt")

report (treestats)

(* We have all the trees of the trajectory
plus the initial trees before the swap *)

select ()

Trajectory only reports a tree if its better than the current best. How
about all the trees that have been evaluated? This is a useful com-
mand for Bremer support calculations (which we will learn later). Let’s
give that argument a try. We will ask POY to print the trees in the
visited_trees.txt file:

use ("initial")
swap (visited)

(* Wow! many trees on screen!
Cancel it with <C-c> *)
swap (visited:"visited_trees.txt")

(* Let it run for few _seconds_ and then
cancel it with <C-c> *)

read ("visited_trees.txt")

report (treestats)

Observe that we have lots of trees in memory now. visited collect every
tested tree during the search. This is a lot! If you let it run long enough,
visited will produce file of several Gigabytes. So beware, don’t try to
read one of those files directly into POY, either it will take a long time to
finish, or it will just run out of memory and it is not really the program’s
fault.

To finalize this tutorial, complete the TBR swap on your initial 20 trees
and store the resulting trees in the file tbr_trees.tree.

Modifying your characters with transform

. Your input characters can be modified in many ways, for example to use

a particular cost or weighting scheme, as well as to modify the type of
character being analyzed. To begin this series of exercises, let’s start with
our typical data set:

read ("course.fasta")

13

Use Control-p, Control-n, and Tab to avoid errors!

9 MODIFYING YOUR CHARACTERS WITH TRANSFORM

2. Now we will report the cost matrix being used in the loaded characters:

report (data)

3. You can see that by default POY will give cost 2 to each indel, and 1 to
every substitution (that’s what the tem: (1,2) means). We can modify
all the characters with the command transform, as follows:

transform (tcm:(1,1))

This will change will the characters for which a transformation cost matrix
for an alignment is applicable. tcm: (1,1) will assign cost 1 to every
substitution and 1 to every indel. Let’s verify its effect:

report (data)

4. We can also assign a particular cost to opening a gap block. Not surpris-
ingly the argument is gap_opening;:

transform (tcm:(3,1), gap_opening:3)
report (data)

Can you see the effect in the data report? It is time now to see the effect
of the different parameters in the implied alignment.

5. First read again your input data and build a tree:
wipe ()

read ("course.fasta")
build (1)

6. Now we write down the cost of the tree, and output the implied alignment
in a file:
report (treestats, "1_2_ia.txt", implied_alignments)
7. Next we modify the cost regime to substitutions 1, indels 1, and report
the new cost as well as the implied alignment:

transform (tcm:(1,1))
report (treestats, "1_1_ia.txt", implied_alignments)

14

Use Control-p, Control-n, and Tab to avoid errors!

9 MODIFYING YOUR CHARACTERS WITH TRANSFORM

8.

10.

11.

12.

13.

14.

Finally we will do the same operations using a cost of 3 for substitutions,
1 for an individual gap, and 3 for gap opening:

transform (tcm:(3,1), gap_opening:3)

report (treestats, "3_1_3_ia.txt", implied_alignments)

wipe ()

Compare the costs and the implied alignments. What do you expect?
what do you observe? Are the transformation cost matrices metric? Are
your characters metric?

You can fix a particular scheme of indels using the command transform
(static_approx), which stands for “static approximation”. A static ap-
proximation fixes a particular implied alignment for the best tree in mem-
ory, and creates a set of characters that match that particular alignment
and resembles as much as possible the cost regime of choice. Here is
example of this:

read ("course.fasta")
build (1)

transform (tcm:(1,1))
report (data)

We see that there are 8 molecular characters currently in memory. Before
we continue, as we will play around with this initial set of characters and
tree, we should store this initial state of the program:

store ("initial")

We can now check the implied alignment:

report (ia)

Yes, ia and implied_alignment are equivalent.

This alignment can now be fixed to use the resulting matrix as the char-
acters:

transform (static_approx)

report (data)

Observe that after the transform there are no molecular characters left.
Instead, there are a number of non-additive characters.

15

Use Control-p, Control-n, and Tab to avoid errors!

9 MODIFYING YOUR CHARACTERS WITH TRANSFORM

15.

16.

17.

18.

What happens if we have the default cost regime? Let’s roll back to the
characters stored in “initial” and give this a try:

use ("initial")
transform (tcm: (1,2))
transform (static_approx)
report (data)

What can you observe?

Finally, let’s check how the static approximation behaves if you have a
gap opening parameter:

use ("initial")

transform (tcm:(3,1), gap_opening:3)
transform (static_approx)

report (data)

What is the main difference the you observe? How are indel blocks being
treated?

Now we will learn how to transform specific characters. Suppose that we
would like to assign tcm: (2,1) to the first fragment in course.fasta. We
first check the name of the fragment:

use ("initial")
report (data)

You can see that the name of the first fragment is course.fasta:0 (the
precise name may vary slightly in your computer). We can specify in
the transform command which characters should be transformed in which
way:

transform ((names: ("couse.fasta:0"), tcm:(2,1)))

try to visually match the parenthesis and understand their effect. Here is
another example, aimed at up-weighting static homology characters only:

transform ((static, weight:2))

In this case instead of specifying characters by name, we do it by type.
This command probably makes the syntax easier to understand. If you
had troubles with the first one, try to understand the weight example and
go back to the tcm: (2,1) case again.

16

Use Control-p, Control-n, and Tab to avoid errors!

10 EXECUTING SCRIPTS

19. To finish this section, we leave you a task: fix the alignment of the third

10

and fourth fragments of the file course.fasta using cost 1 for substitutions
and cost 1 for indels. Every other character should have the default cost
regime of substitutions 1 and indels 2.

Executing scripts

. POY optimizes the execution of a script to reduce memory consumption.

To illustrate this, let’s look at the following very simple search:

read ("course.fasta")
build (3)

swap ()

select ()

If we run it interactively, line by line, then POY would:

e build 3 trees using a random addition sequence.
e swap those three trees using TBR.

e select the best, unique trees from those stored in memory at the end
of the swap.

At the peak of memory consumption, the program should have 3 trees in
memory. Imagine that the script now looks as follows:

read ("course.fasta")
build (500)

swap ()

select ()

Then we would need to have enough memory capacity to hold 500 trees!
This might not be possible.

However, this script can be executed differently:

e 500 times:
— build 1 tree
— swap it
— compare with previous trees and select the best unique trees.

This would require, with high probability, only two trees in memory at
the peak. This is exactly how POY will execute it. To test it, run the
first script of item 1 in a single line. See how the program behaves slightly
differently.

17

Use Control-p, Control-n, and Tab to avoid errors!

10 EXECUTING SCRIPTS

3. Notice that POY reports pipelines instead of simple builds, swaps, and
search statements, and the estimated time does not correspond to each
of these steps, but complete pipelines. A pipeline here includes both the
build and swap steps.

4. Now test the following two scripts and see what effect they have:

. wipe ()
read ("course.fasta")
build (3)
swap ()
report (treestats)
select ()

° wipe O
read ("course.fasta")
build (3)
swap (constraint)
select ()

° wipe ()
read ("course.fasta")
build (3)
swap O
perturb (transform (static_approx))
select ()

° wipe ()
read ("course.fasta")
build (3)
swap ()
transform (static_approx)
perturb ()
select ()

5. In order to execute a script in the interactive console, write the commands
in a file using notepad (or text edit), save it as a plain text file, and then
use the command:

run ("script.txt")
You can include the run command in other scripts to call, for example,

routines for searches or for support value calculations. Write a simple
script and try to execute it in this way.

18

Use Control-p, Control-n, and Tab to avoid errors!

12 PERTURBING TREES FOR IMPROVED SEARCHES

11

Tree Fusing

1. The fuse command implements tree fusing, in which pairs of trees and

12

compared, and all pairs of subtrees that have different resolution but the
same terminals are exchanged, in an attempt to find better combinations.
We will first run a default fuse Q:

wipe ()

read ("course.fasta", "swap_course.tree")
report (treestats)

fuse ()

report (treestats)

How many iterations happened?

During an iteration, the program picks two trees at random, a source, and
a destination, to compare. When a better tree than the destination is
found, fuse replaces it with the better tree.

Note that by default the fuse command does not swap. However, like
many other commands in POY, fuse accepts a swap argument. Let’s now
run a fuse with a swap:

wipe ()
read ("course.fasta", "swap_course.tree")
report (treestats)
fuse (swap (tbr))
report (treestats)
This time save the trees found for later use:
report ("fuse_course.tree")

Now try to construct a fuse step which lasts for at most 20 seconds. (Use
the command documentation section about swap for help.)

Perturbing trees for improved searches

. Perturbing the search space is a powerful search strategy. The fundamen-

tal concept is to modify the cost of the trees in such a way that we can
find even better trees from already good ones, that is, from trees that are
local optima. The perturb command in POY implements this kind of
search strategy.

19

Use Control-p, Control-n, and Tab to avoid errors!

12 PERTURBING TREES FOR IMPROVED SEARCHES

. perturb works in the following way: for n iterations, POY perturbs the
characters using the arguments and options that we specify, searches for
optimal trees in the altered character landscape, and finally searches the
current best tree using the original characters.

. The parsimony Ratchet is a classic powerful perturbation strategy in phy-
logenetic research. In POY, the ratchet argument within the perturb
command works by up-weighting a percentage of characters. The default
settings of perturb () performs a ratchet in which 25% of the characters
are up-weighted by a factor of 2.

. Let us now perturb our data with the ratchet. First, we will read the data,
and the trees stored in the fuse tutorial, to perturb them:

read ("course.fasta", "fuse_course.tree")
perturb ()

. How many iterations are performed by default? How many characters do
you have in your analysis?

. As you saw in the previous command, one problem we have is that the
ratchet works on characters, and this data set has few of them: only 8.
Our experience is that an excellent strategy is to apply the ratchet on
the characters produced by the implied alignment, that is, on the static
approximation.

. To do this, we use the transform command as an argument of the perturb
command:

perturb (transform (static_approx))

which executes the following algorithm:

e For 5 iterations

— Run the parsimony ratchet

Transform back to the original dynamic homology characters

Run a new search in the resulting tree

If the new tree is better, replace the original.

. Now lets perform a ratchet with SPR and static approximation:

perturb (transform (static_approx), swap (spr))

. Alternatively, we can try to escape the local optima by perturbing the
cost of the matrix employed by the dynamic homology characters:

20

Use Control-p, Control-n, and Tab to avoid errors!

13 USING SEARCH

13

perturb (transform (tcm:(1,1)))

Can you describe what this command does? An important observation is
that running five iterations of this command does not help at all. Can you
see why?

Using Search

. The search command runs a mixture of:

e Randomized wagner builds

TBR swapping
e Nixon’s ratchet
Exhaustive DO
Tree fusing

2. search should be the first analysis option for both new and expert users.

Let’s start with a very small data set, so that we can get some meaningful
results with a very small amount of time:

wipe ()

read ("18s.fasta")

search (max_time:0:0:1)

(* This will run a search for exactly 1
minute *)

After this command finishes, you should see a message on screen telling
you how many trees where built, how many fusing generations where per-
formed, how many times the best tree was found, and what its score is.

. We can constraint the search some more. Suppose that we have, from

previous searches, the impression that the best tree that we could find has
cost 385, hen we can tell POY that this should be the target cost for an
expected number of hits:

wipe ()
read ("18s.fasta")
search (max_time:0:1:0, hits:5, target_cost:385)

This command will now run for one hour or until it has found 5 trees with
cost 385 or less, whichever happens first.

21

Use Control-p, Control-n, and Tab to avoid errors!

14 CALCULATING SUPPORTS: JACKKNIFE

14

If we have limited memory resources, we can now execute this search with
a memory constraint, so that POY will only store as many trees as it can
fit in 256 MB or RAM, not more.

read ("18s.fasta")
search (max_time:0:1:0, hits:5, target_cost:385,
memory :mb:256)

So lets run a regular search for half an hour on the 18s data set, and see
what results you get. We will store the resulting trees in the file 18s.tree:

read ("18s.fasta")

search (max_time:0:0:30, memory:mb:256)
select ()

report ("search_18s.tree", trees)

Calculating Supports: Jackknife

. The command calculate_support (jackknife) performs n pseudorepli-

cates independently, in each once a percentage of characters in selected at
random, without replacement. The frequency of occurrence of a clade is
its jackknife support value.

Open the program documentation (in the help menu of the Graphic User
Interface Window). Go to the command reference chapter and find the
calculate_support command. Find the jackknife argument, and read its
description and default values, and how to specify the number of pseu-
doreplicates inside calculate_support. Then write a command to do just
50 pseudorplicates, using the default values of jackknife.

An important detail is that jackknife resamples the characters. What you
define as a characters is a biological question that you must resolve before
running your analyses. POY does not calculate jackknife supports in any
special way, it is just the case that the characters that you are using are not
necessarily just the bases of your sequences, but the sequences themselves!

A common procedure used by many biologists is to fix an alignment and
compute support values resampling the bases of that alignment. Let us
use this strategy and compare the support values for a pair of different
alignments on the same tree. To do this we will use a new report argument:

read ("course.fasta")
transform (tcm:(1,1))
store ("initial")

22

Use Control-p, Control-n, and Tab to avoid errors!

14 CALCULATING SUPPORTS: JACKKNIFE

search (max_time:0:0:1)
select ()

5. We store the tree in a file so that then we can report support values for
it:

report ("tree_for_support_values.tre", trees)
transform (static_approx)

report ("good_alignment.ss", phastwinclad)

(* This commands output a NONA file that can
be read in many programs, most notably POY *)

6. Now we will produce a different alignment and store it

use ("initial")

build (1)

transform (static_approx)

report ("regular_alignment.ss", phastwinclad)

7. We have just produced our two data sets that we will use to calculate
supports. The second data set is currently held in memory.

calculate_support (jackknife: (resample:1000))
read ("tree_for_support_values.tre")
calculate_support (jackknife: (resample:1000))
read ("tree_for_support_values.tre")

(*We just stored the tree in a file to

compare the results later *)

8. Now we will compute the support values using the first alignment

wipe ()

read ("good_alignment.ss")

calculate_support (jackknife: (resample:1000)

read ("tree_for_support_values.tre")

report ("good_alignment_supports.ps",
graphsupports:jackknife)

Compare the two trees (using an image edition program, nothing special
is needed for Mac OS X, Linux, or Unix, but Windows computers may
need Ghostview or Adobe Ilustrator):

23

Use Control-p, Control-n, and Tab to avoid errors!

15 CALCULATING SUPPORTS: BREMER

15

e good_alignment_supports.ps.

e regular_alignment_supports.ps.

What did you notice? Where do you get better supports? Which would
be a reasonable alignment from which to compute your support values?

. To calculate bootstrap support values, find the bootstrap argument in the

calculate_support command documentation, and repeat the previous
(Calculating Supports: Jackknife) excercise using good_alignment.ss and
regular_alignment.ss files to generate bootstrap supports for the tree in
tree_for_support_values.tre, in eactly the same way.

Calculating Supports: Bremer

. One way to do a search for Bremer supports is to constrain the search so

that a particular clade is never allowed in the tree that is being visited.
This is exactly what calculate_supports (bremer) does.

To test this command, first read the best tree that you could find from
all the searches (e.g. after fusing and ratcheting). We will first generate a
good tree for the bremer supports:

read ("course.fasta")

search (max_time:0:0:3)

select ()

(*Store the tree in a file for the
next tutorial *)

report ("tree_for_bremer.tre", trees)
(*We have the tree from which bremer
is to be calculated*)

select (best:1)

calculate_support (bremer)

Notice that this command is slow, as it performs a very intense search.
Ten trees are built and swapped on each branch. If your original search
was not powerful enough, this command may find shorter trees than your
initial search.

When this command is finished, we are ready to report the support values
for this tree.

report (supports:bremer)
Another way to calculate Bremer supports is to not constrain the search

at all, and from the trees visited, collect the information for the clades not
present. To do this we can use the visited argument within swap.

24

Use Control-p, Control-n, and Tab to avoid errors!

15 CALCULATING SUPPORTS: BREMER

build (100)

swap (cisited:"for_bremer.txt")

select (best:1)

read ("tree_for_bremer.tre")

report (supports:bremer:"for_bremer.txt")

This strategy has several advantages. First and foremost, it tends to yield
tighter support values (lower). Secondly, it is more efficient in the sense
that the default technique has to repeat the search for every clade to collect
the necessary information, while this strategy collects all the clades from
the same strategy. Finally, you can calculate Bremer support with your
search strategy of choice. You may cancel this Bremer search at any time
and the necessary information will remain stored in the file and the best
tree found in your overall search, which means that you will never recover
negative Bremer support values.

25

Use Control-p, Control-n, and Tab to avoid errors!

Index

1.fasta, select,
3.fasta, [0] store (), 9]
35.san, [3] store (name), [9]
5.fasta, [0 swap, [7} 8 [L0} [T2] [T8} [T9]
swap (),
bootstrap, 24]
build, [2} [6] [1§] tbr_trees.tree,
tem:(1,1),
calculate_support, tem:(1,2),
calculate_support (jackknife), tem:(2,1),
calculate_supports (bremer), threshold,
cd, timeout, [T]]
constraint, 2 trajectory, [I2]
constraint.txt, [[2] transform, [2} [14} [I6] 20]
course.fasta:0, transform (static_approx),
cross_references, [0] trees, [I0]
data, use (), El
use (name),
exit, [2] (-0
visited, [13] [24]
fuse, visited_trees.txt,
fuse (),
) weight, [16]
gap-opening, [[4] wipe,
help (),] wipe (), 9
ia, [I5]

implied_alignment, [T5]

perturb,
perturb (),
pwd,

ratchet,

read, 2} 3]
read (*.fasta),

recover, [I]

report, [2} [6] [7]
report (data),
report (diagnosis),
report (treestats),

search, [21]

26

	Using the Interactive Console
	Loading and using Sankoff characters
	Loading and using Non-additive (Unordered, Fitch) characters
	Loading and using Additive characters
	Loading a Direct Optimization Sequence
	Searching the local neighborhood
	Searching the local neighborhood (again)
	Trees argument
	Modifying your characters with transform
	Executing scripts
	Tree Fusing
	Perturbing trees for improved searches
	Using Search
	Calculating Supports: Jackknife
	Calculating Supports: Bremer

