
POY 5.0 R.C.

Program Documentation
Version 5.0.Black Sabbath Development build 4818bc4e6323

Program and Documentation
Andrés Varón

Nicholas Lucaroni
Lin Hong

Ward C. Wheeler

Documentation
Louise M. Crowley

Megan Cevasco
John S. S. Denton

Previous Version POY 4

Program and Documentation
Andrés Varón
Le Sy Vinh
Illya Bomash
Ward C. Wheeler

Documentation
Ilya Tëmkin
Megan Cevasco
Kurt M. Pickett
Julián Faivovich
Taran Grant
William Leo Smith

3

Andrés Varón
Jane Street Capitol, 1 New York Plaza, New York, NY, U.S.A.
Louise M. Crowley, Lin Hong, Nicholas Lucaroni, Ward C. Wheeler
Division of Invertebrate Zoology, American Museum of Natural History, New York,
NY, U.S.A.
John S. S. Denton
Richard Gilder Graduate School and Department of Ichthyology, American
Museum of Natural History, New York, NY, U.S.A.
Megan Cevasco
Coastal Carolina University, Department of Biology, Conway, SC, U.S.A.

Illya Bomash
Department of Physiology and Biophysics, Weill Medical College of Cornell
University, New York, NY, U.S.A.
Julián Faivovich
División Herpetoloǵıa, Museo Argentino de Ciencias Naturales - CONICET,
Buenos Aires, Argentina.
Taran Grant
Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia,
Cidade Universitária, São Paulo, Brasil.
Kurt M. Pickett
Department of Biology, University of Vermont, Burlington, VT, U.S.A.
William Leo Smith
Department of Zoology, The Field Museum of Natural History, Chicago, IL, U.S.A.
Ilya Tëmkin
Northern Virginia Community College, Annandale Campus, VA, U.S.A.
Le Sy Vinh
College of Technology and Information Technology Institute, Vietnam National
University, Hanoi, Vietnam.

The American Museum of Natural History
c©2013 by The American Museum of Natural History,

All rights reserved. Published 2013.

Varón, A., N. Lucaroni, L. Hong, W. C. Wheeler. 2013. POY 5.0. Black Sabbath
Development build 4818bc4e6323 R.C. New York, American Museum of Natural
History. Documentation by L. M. Crowley, M. Cevasco, J. S. S. Denton.
http://research.amnh.org/scicomp/projects/poy.php

Available online at http://research.amnh.org/scicomp/projects/poy.php and
http://code.google.com/p/poy/
Comments or queries relating to the documentation should be sent to
crowley@amnh.org

http://research.amnh.org/scicomp/projects/poy.php
http://research.amnh.org/scicomp/projects/poy.php
http://code.google.com/p/poy/
mailto:crowley@amnh.org

4

Contents

1 What is POY5 9
1.1 The structure of POY5 documentation 9
1.2 What’s new in POY5 . 10

2 POY5 Quick Start 13
2.1 Requirements: software and hardware 13

2.1.1 Software . 13
2.1.2 Hardware . 13

2.2 Obtaining and installing POY5 13
2.2.1 Installing from the binaries 13
2.2.2 Compiling from the source 15

2.3 Executing a Script . 17
2.4 The Graphical User Interface 18

2.4.1 POY menu bar . 19
2.4.2 POY Launcher . 20
2.4.3 The Analyses menu 22
2.4.4 The View menu . 41

2.5 Using the Interactive Console 41
2.5.1 The interface . 42
2.5.2 Starting a POY5 session using the Interactive Console . 44
2.5.3 Entering commands 44
2.5.4 Browsing the output 46
2.5.5 Switching between the windows 46
2.5.6 Input of data . 46
2.5.7 Inspecting data . 49
2.5.8 Building the initial trees 51
2.5.9 Performing a local search 53
2.5.10 Selecting trees . 55
2.5.11 Visualizing the results 56

5

6 CONTENTS

2.5.12 Interrupting a process 58
2.5.13 Reporting errors . 58
2.5.14 Exiting . 58

2.6 Creating and running POY5 scripts 58
2.7 Obtaining help . 61
2.8 WWW resources . 63

3 POY5 Commands 65
3.1 POY5 command structure . 65

3.1.1 Brief description . 65
3.1.2 Grammar specification 66

3.2 Notation . 68
3.3 Command reference . 70

3.3.1 build . 70
3.3.2 calculate support . 73
3.3.3 clear memory . 77
3.3.4 cd . 78
3.3.5 echo . 79
3.3.6 exit . 80
3.3.7 fuse . 80
3.3.8 help . 82
3.3.9 inspect . 83
3.3.10 load . 84
3.3.11 perturb . 85
3.3.12 pwd . 88
3.3.13 quit . 88
3.3.14 read . 89
3.3.15 recover . 98
3.3.16 rediagnose . 99
3.3.17 redraw . 99
3.3.18 rename . 100
3.3.19 report . 102
3.3.20 run . 114
3.3.21 save . 115
3.3.22 search . 116
3.3.23 select . 119
3.3.24 set . 123
3.3.25 store . 128
3.3.26 swap . 128
3.3.27 transform . 135

CONTENTS 7

3.3.28 use . 157
3.3.29 version . 158
3.3.30 wipe . 158

4 POY5 Heuristics: A Practical Guide 161
4.1 Introduction . 161
4.2 Data treatment . 162
4.3 Character optimization . 163
4.4 Tree searching . 164
4.5 Transformation cost regimes 165
4.6 Likelihood Analyses . 166

5 POY5 Tutorials 169
5.1 Combining Search Strategies 170
5.2 Timed Search Analysis . 172
5.3 Iterative Pass Analysis . 175
5.4 Calculating supports: Bremer 176
5.5 Calculating supports: Jackknife 178
5.6 Calculating supports: Bootstrap 180
5.7 Sensitivity Analysis . 181
5.8 Chromosome Analysis: Unannotated Sequences 184
5.9 Chromosome Analysis: Annotated Sequences 187
5.10 Genome analysis: multiple chromosomes 189
5.11 Custom Alphabet Analysis 191
5.12 Maximum Likelihood Analysis: Static 192
5.13 Maximum Likelihood Analysis: Dynamic 194
5.14 ML Analysis: Partitions and Model Selection 198
Bibliography . 200
General Index . 208
POY 3.0 Commands Index . 209

8 CONTENTS

Chapter 1

What is POY5

POY5 is a flexible, multi-platform program for the phylogenetic analysis of
a diversity of data types under different optimality criteria — parsimony
and likelihood. An essential feature of POY5 is that it implements the
concept of dynamic homology [60, 61] allowing optimization of unaligned
sequences. POY5 offers flexibility for designing heuristic search strategies
and implements an array of algorithms including multiple random addition
sequence, swapping, tree fusing, tree drifting, and ratcheting. As output, POY5
generates a comprehensive character diagnosis, graphical representations of
cladograms and their user-specified consensus, support values and implied
alignments. In addition, POY5 can also output synteny block maps from the
analysis of both chromosomal and genomic data. POY5 provides a unified
approach to co-optimizing different types of data, such as morphological and
molecular sequence data. In addition, POY5 can analyze entire chromosomes
and genomes, taking into account large-scale genomic events (translocations,
inversions, and duplications).

1.1 The structure of POY5 documentation

Chapter 2, POY5 Quick Start, will get you started using POY5. The first few
sections are intended to provide detailed instructions on how to obtain and
install POY5, introduce the user to two of the program’s working environments,
the Graphical User Interface and the Interactive Console. These sections
also show how to initiate a POY5 session and point to the various resources
to obtain further assistance. Subsequent sections build on that knowledge
and give step-by-step examples on how to conduct a basic analysis and
visualize the results. The following chapter, POY5 Commands, describes

9

10 CHAPTER 1. WHAT IS POY5

POY5 commands and their valid syntax. It also includes examples of simple
operations for every command. Chapter 4 discusses the heuristic procedures
used in POY5. Their understanding helps creating building efficient search
strategies. More advanced operations are described in the fifth chapter, POY5
Tutorials.

1.2 What’s new in POY5

There are myriad new features and options in POY5. These are described
and documented in full in the pages that follow.

• New optimality criterion–likelihood:
– Maximum Average Likelihood (MAL) analysis can now be performed
on qualitative data of any alphabet size and aligned sequence data
(including gaps as missing, independent, or coupled in 5-state models).
– Most Parsimonious Likelihood (MPL) can also be employed on these
data types as well as unaligned sequences under an MPL-DO heuristic.
– Multiple models are available and different models can be assigned to
partitions within a combined analysis.
– Model selection (AIC, AICc and BIC) improved.

• The MAUVE genome aligner algorithm has been implemented as an
annotation option for unannotated chromosomal and genomic (multi-
chromosomal) data.

• The transform option level has been added to increase control and
heuristic effectiveness for amino acid and custom alphabet sequence
character types.

• Search-Based sequence optimization has been added through the trans-
form command.

• Additional median solvers implemented for rearrangement analysis in
break inv, chromosome, and genome sequence characters.

• XML-based output for easy parsing of diagnostic information.

• A change in the default indel cost from 2 to 1. After over 20 years
(MALIGN to POY), time for a change.

• New required packages for compilation to support likelihood and median
solvers.

1.2. WHAT’S NEW IN POY5 11

• A diversity of bug fixes and smaller enhancements.

12 CHAPTER 1. WHAT IS POY5

Chapter 2

POY5 Quick Start

2.1 Requirements: software and hardware

2.1.1 Software

POY5 is a platform-independent, open-source program that can be compiled
for many operating systems and hardware configurations, including Mac OSX,
Microsoft Windows and Linux. The intuitive Graphical User Interface of
POY5 provides the functionality for running analyses using pull-down menus
and field selections, as well as creating and running POY5 scripts. Some
utility programs (such as Notepad and Ghostscript for Windows, TextEdit
for Mac, or Nano for Linux), can help preparing POY5 scripts and formatting
data files, while others (such as Adobe Acrobat) can facilitate viewing the
graphical output in PDF (Portable Document Format).

2.1.2 Hardware

POY5 runs on a variety of computers from laptops and desktops to clusters
of various sizes and symmetric multiprocessing hardware. There are no
particular requirements for disk space, but XML and diagnosis report files
can be large.

2.2 Obtaining and installing POY5

2.2.1 Installing from the binaries

POY5 installers for Windows and Mac OSX, source code, and documenta-
tion in PDF format are available from the POY5 download website at the

13

14 CHAPTER 2. POY5 QUICK START

Computational Sciences site of the American Museum of Natural History:

http://research.amnh.org/scicomp/projects/poy.php

The latest source code can also be obtained from POY5 Google Group
website:

http://code.google.com/p/poy/source

The following detailed step-by-step instructions will guide you through
downloading and installing POY5 binaries for various platforms.

Windows

• Download the poy5 folder to the desktop by selecting the Windows
download link.

• Open the POY version.zip. You will need Administrator privileges to
install the application. Extract the zip file to install in the desired
location and execute the poy.exe file. If you have Windows XP SP2,
Windows Vista or Windows 7 and possess more than one core or
processor, you can take advantage of this processing power by
installing the parallel components MPICH2.

[Note: The POY5 developers encountered no problems when using
MPICH2 3.0.2.]

Mac OSX

• Download poy-buildXXXX.dmg disk image to the desktop. The
complete installation of the Mac OSX version of POY5 includes
MPICH2 1.4.1, which is used to communicate processes during parallel
execution.

• Drag the POY5 application from the disk poy5 and drop it into the
Applications folder on the hard drive.

[Note: During the first execution in parallel you may be asked by the
Firewall to unblock POY5 and MPICH. This is necessary for successful
execution of the program.]

Linux

• No binaries are available for the Linux operating system. The user
should compile POY5 directly from the source (see Section 2.2.2).

http://research.amnh.org/scicomp/projects/poy.php
http://code.google.com/p/poy/source
http://research.amnh.org/scicomp/projects/poy.php
http://www-unix.mcs.anl.gov/mpi/
http://research.amnh.org/scicomp/projects/poy.php

2.2. OBTAINING AND INSTALLING POY5 15

2.2.2 Compiling from the source

For the majority of users, downloading the binaries from the POY5 download
site will suffice. However, in some cases it may be desirable — user preference
for working in a command-line environment or running POY5 analyses in
parallel (in the case of Linux machines or on a cluster computer), or necessary
(in the case of Linux users) — to compile POY5 directly from the source code
(see Table 2.1 and 2.2). If the user chooses to compile, it is advisable to check
out the various configuration options that can be found in ./configure
--help of the src directory.

In order to compile POY5 the following tools are required:

1. The GNU Make 3.8 utility.

2. OCaml version 3.11.2. or later.

3. A C compiler, for example The GNU Compiler Collection.

4. The zlib compression library.

5. The Linear Algebra PACKage LAPACK must be installed in order to
use the likelihood option.

6. The ncurses library is necessary to compile the default interface, i.e.
ncurses or the Interactive Console. If this library is not available, the
flat interface will be compiled instead.

7. The Message Passing Interface MPICH2, which is used to communicate
processes during parallel execution.

Download, ungzip and untar the POY5 source code. In a terminal window,
change directories to the path of this uncompressed directory. In order to
compile under default setting, working in the source directory (src), type:

./configure
make
make install

To make install, it may be necessary to do this as the root user using
sudo. This script will compile the Interactive Console or ncurses interface
that will be found in /src/ build. Another configuration option includes
a readline interface. Similar to the ncurses interface, this allows for the

http://www.gnu.org/software/make/
http://www.ocaml.org
http://gcc.gnu.org/
http://www.zlib.net
http://www.netlib.org/lapack/
http://www.gnu.org/s/ncurses
http://www-unix.mcs.anl.gov/mpi/
http://research.amnh.org/scicomp/projects/poy.php

16 CHAPTER 2. POY5 QUICK START

use of arrow keys to modify commands and browse command history. A
flat interface is also available that supports the running of the program in
parallel, irrespective of the operating system. This version is run through
a terminal window and invoked in a script (see Section 2.3). In order to
run POY5 in parallel environments, Message Passing Interface (invoked by
mpiexec or mpirun, depending on your implementation) must be invoked.
More than likely, your system administrator already has one installed and
should be able to provide you with the proper paths to set your config file.
In order to compile this flat version with parallel support type:

./configure --enable-interface=flat --enable-mpi CC=mpicc
make
make install

[Note: CC=mpicc is not available for the Windows version of mpi, therefore
it is not necessary to include this component in the compiling script.]

Table 2.1 should be used as a guide as to the type of interface that should
be employed depending on the type of data (‘standard’ or ‘long’).

Table 2.1: Interface Guide. ‘Standard’ data equates to a molecular sequence
or single partition that is fewer than 16383 nucleotides in length or contain
fewer than 255 elements, while ‘long’ data partitions accomodate lengths
greater than these values. The field ‘config+’ indicates that the options
long-sequences and/or large-alphabets must be enabled during compilation
for these datatypes to be analyzed. A distinction is made between the
Interactive Console or ncurses that is downloaded as binaries (bins) from
the website and that which is compiled from the source (src). [Note: It is
not possible to analyze either long sequences or large alphabets using the
GUI or the Interactive Console when downloaded from the POY5 website.]

Data type GUI Interactive Console
(bins)

Interactive Console
(src)

Flat

Standard + + + +

Long – – config+ config+

http://www-unix.mcs.anl.gov/mpi/

2.3. EXECUTING A SCRIPT 17

2.3 Executing a Script

A number of startup options are available when executing a script through
the command line in a terminal window. The options below, can be viewed
by typing poy -help in a terminal window.

-w Run poy in the specified working directory
-e Exit upon error
-d Dump filename in case of error
-q Don’t wait for input other than the program argument script
-no-output-xml Do not generate the output.xml file
-plugin Load the selected plugins
-script Inlined script to be included in the analysis
-help Display this list of options
--help Display this list of options

The use of these options are appropriate any time the user chooses to
execute POY5 from the command line, when working with ncurses and flat
interfaces. These options are also useful when operating POY5 in a cluster
environment. For example typing

poy -w /Users/username/docs/poyfiles mol.poy

in a terminal window will invoke the program POY to run the script mol.poy
in the directory /Users/username/doc/poyfiles. This is the equivalent of
including

cd ("/Users/username/docs/poyfiles")

When attempting to run POY5 in parallel from the command line, the
programs MPI or Mpiexec must be used to initialize the parallel job from
within a PBS batch or interactive environment. For example typing

mpirun -np 8 ∼/POY bins/poy5a-mpi mol.poy

in the terminal window will invoke POY5 to run the script mol.poy, utilizing
8 processors (Figure 2.1). The file mol.poy resides in the directory POY -
analyses, which is found in the desktop of the home directory. This parallel
version of POY5 was compiled in the directory POY bins in the home directory.

http://www-unix.mcs.anl.gov/mpi/
https://www.osc.edu/~djohnson/mpiexec/

18 CHAPTER 2. POY5 QUICK START

Figure 2.1: POY5 flat interface displayed in a terminal window. The interface
indicates that the program has been compiled with ‘parallel on’. The program
is running the script mol.poy in parallel over 8 processors. In this case,
MPICH is used to communicate processes during parallel execution.

With the flat interface, it is not possible to run parallel jobs interactively,
therefore a script must be included in the command, so that it can be passed
to the application.

2.4 The Graphical User Interface

Two of the working environments that POY5 provides are the Graphical User
Interface and the Interactive Console (also known as ncurses interface). The
Graphical User Interface has a user-friendly appearance like other native
stand-alone applications where different functions are accessible through
menus and windows. Thus, the entire analysis can be carried out by clicking

2.4. THE GRAPHICAL USER INTERFACE 19

on appropriate selections and, where necessary, typing specifications in
designated fields. Currently, the Graphical User Interface is appropriate
for the analysis of data with parsimony or likelihood (with minimal model
selection) as the optimality criterion. Unlike the Interactive Console, it is
not possible to specify all options with the Graphical User Interface. The
minimum screen size for the Graphical User Interface is 1024 x 768 pixels.

On the other hand, the Interactive Console requires a detailed knowledge
of POY5 commands, their arguments, and the conventions of POY5 scripting.
All these features are described in the POY Commands chapter (3.1.1).

Even though the Mac OSX version of the Graphical User Interface is
used for screen shots throughout this chapter, the Windows version contains
the same items and functionality, differing only in the generic window format
specific to the platform.

When POY5 is first opened, two items appear on the screen: the POY5
menu bar across the top and the POY Launcher window (Figure 2.2).

[Note: In Windows the menu bar is within the launcher window.]

Figure 2.2: The POY5 menu bar and the POY Launcher window. These
items appear when POY5 is opened.

2.4.1 POY menu bar

The menu bar contains the following drop-down menus:

POY (Mac OSX only) Contains generic items as with other Mac OSX
applications. This pull down menu allows selection of the About POY
window (Figure 2.3) that lists the current version of POY5, a copyright

20 CHAPTER 2. POY5 QUICK START

statement, and the address of the POY5 website. In addition, it includes
a Quit POY tab that closes the program.

Analyses Contains options for different types of tree searches, calculation
of support values, tree diagnosis, and their respective outputs. Other
items in this menu open the POY Launcher (Open Launcher) and the
Interactive Console.

Edit Contains standard tools for undoing, cutting, copying, pasting, deleting,
and selecting.

View opens the Output window to display the results (including warning
and error messages) and the current state of the analysis. This Output
window also contains an update tab. It also contains the About POY
menu item in Windows.

Help Opens the POY5 Manual in PDF format (requires a PDF viewer).

Figure 2.3: The About POY window.

2.4.2 POY Launcher

The POY Launcher is the only window that automatically opens upon
starting POY5. This allows the user to import a previously created script,
designate a working directory, specify the number of processors, and start
the analysis.

2.4. THE GRAPHICAL USER INTERFACE 21

Table 2.2: Parallelization Guide. The field ‘mpi+’ indicates that mpi must
be enabled during compiling. A distinction is made between the Interactive
Console or ncurses that is downloaded as binaries (bins) from the website
and that which is compiled from the source (src).

Operating System GUI Interactive Console
(bins)

Interactive Console
(src)

Flat

Mac OSX + – – mpi+

Windows + – – mpi+

Linux N/A – – mpi+

Select the script to run Allows the user to specify the location of a POY5
script.

Select the working directory The working directory is the directory that
contains the input data and output files. By default, the working
directory is set to be the same as the directory containing the selected
POY5 script.

Select the number of processors If more than one processor or core is
available, up to 8 can be designated for running the analysis. It is
important to note that once specified, the selection is applied to all
subsequent analyses in the current POY5 session. Table 2.2 is a guide to
the parallelization ability of POY5 depending on the operating system
and the POY5 interface being used. Observe that parallelization is
never supported in interactive sessions, see Section 2.5.

Run the analysis Clicking the Run button starts the execution of the
selected script. Once the script is initiated, the Run button becomes
the Cancel button that can be used to interrupt a POY5 session.

If the Run button is clicked without the selected script and working
directory, or the names of the scripts and working directory are entered
incorrectly, POY5 issues an error message in the upper part of the POY
Launcher window, such as POY finished with an error.

22 CHAPTER 2. POY5 QUICK START

2.4.3 The Analyses menu

The Analyses menu is the main toolbox of the POY5 GUI interface (Figure 2.4,
left). Selections are subdivided into four functional categories. The first
three deal with tree searching, support calculation, and tree diagnosis; the
fourth one is used for script management or interactive command execution
that bypasses the menu-driven script generation. Each of the menu items is
described below in the order it appears on the menu.

Most options are consistently applied through different kinds of analysis.
Therefore, all options are described in detail only for the Simple Search
analysis. The descriptions of other analyses are made with reference to the
the Simple Search and focus on unique options.

Tree searching options

A number of different tree searching options are available through the Graph-
ical User Interface. These include a Simple Search, Timed Search, Search
with Ratchet and Search with Perturb.

Simple Search

The Simple Search window permits the analysis of a number of different data
types, including a range of molecular characters (from DNA sequences to
complete genomes), custom alphabet characters, and qualitative characters,
under parsimony. It is also possible to carry out a likelihood analysis of DNA
sequence, morphological and qualitative data under a number of different
models. In the simplest sense, a typical search involves a series of steps. First,
initial trees are generated by random addition sequence from the imported
character data. These trees are then subjected to branch swapping, after
which trees are selected to report. The Simple Search window (Figure 2.4,
right) provides the most common and basic options for a standard tree search
in POY5 that must be selected by either clicking the appropriate buttons
or by typing. Note that all the empty fields must be filled in (even if that
means assigning a cost of 0 to all the Sequence Parameters), otherwise the
default values will be used. The window is subdivided into five sections:

Input Files Contains the list of files that are to be input into POY5. These
include character files in nucleotide, Hennig86, and Nexus formats, as
well as tree files. Continuous characters can be input into POY5 in a
Hennig86 format matrix (see read (Section 3.3.14)). Character data
in other formats can be input by specifying additional arguments in

2.4. THE GRAPHICAL USER INTERFACE 23

Figure 2.4: The Simple Search window. Selecting Simple Search from the
Analysis menu (left) opens the Simple Search window options (right).

24 CHAPTER 2. POY5 QUICK START

the script (see read (Section 3.3.14)). [Note: If a prealigned sequence
is imported via Nexus, a gap-opening cost cannot be specified, as gaps
are treated as independent in this file format.]

Search Parameters Holds one field to set the number of independent
random addition Wagner replicates to be generated.

Input Parameters Holds fields to specify the optimality criterion (parsi-
mony or likelihood). With Parsimony as the optimality criterion, it is
possible to select different datatypes (sequence, chromosome, genome,
custom alphabet, break inversion or qualitative) and allows the user to
select whether these data should be treated as prealigned (if possible).
Selection of different datatypes will invoke an additional subsection
(see below). Currently, it is only possible to analysis sequence and
qualitative data with the maximum likelihood criterion.

Parsimony Optimality Criterion The parameters in this section are
dependent on the data types selected in Input Parameters. More
detailed explanations of the different data types can be found below and
in the difference character types sections of both read (Section 3.3.14)
and transform (Section 3.3.26).

Sequence Parameters If sequences data types are chosen, the user
can specify the substitution, indel, and gap opening costs of sequences.
Enter 0 if no gap opening cost is desired. If the value of a parameter is
not specified, the default values are used. The default value for both
substitutions and insertion deletion events is 1 and that of gap-opening
is 0.

Chromosome and Mauve Parameters Chromosome characters are
multi-locus nucleotide sequences and can include nuclear chromosomes,
as well as, mitochondrial and viral genomes. It is possible to submit
either annotated (by selection of the Annotated box) or Unannotated
chromosomes. Within Annotated chromosomes, homologous regions,
such as loci, are separated with the pipe symbol (“|”). Unannotated
chromosomes are entirely without delimiters. For Unannotated chro-
mosomes, the Mauve Parameters, must be set by the user. These
parameters (Max. Match, Min. Match, Match Quality and Match Cov-
erage) are employed by the Mauve aligner to find regions of homology
or synteny blocks between chromosomes (see annotate (Section 3.3.14)
within the command read). Default values for these parameters are
provided in the GUI.

2.4. THE GRAPHICAL USER INTERFACE 25

Within this subsection it is necessary to specify both Locus Indel
and rearrangement (Locus Breakpoint or Locus Inversion) costs. The
cost of a Locus Indel is by default set to 10 plus 0.9 times the length
of the locus (see locus indel (Section 3.3.27) within the command
transform). Rearrangements of homologous regions (as defined by the
user in the case of Annotated chromosomes or as determined by the
Mauve aligner as in Unannotated chromosomes) are then optimized
using either Locus Breakpoint or Locus Inversion costs (see locus -
breakpoint (Section 3.3.27) and locus inversion (Section 3.3.27)
within the command transform). The default cost for both is set to
10. The user must also specify the Median solver for the optimization
of rearrangements. The default median solver is Caprara, but the user
can alternatively choose BBTSP, Coaletsp, Chainlk, Siepel, Simpllk
and Vinh (see median solver (Section 3.3.27) within the command
transform).

The user must also specify whether the chromosome is Circular
(true) or linear (false). It is not possible to submit pre-aligned data
files for either Annotated or Unannotated chromosomes.

NOTE

Locus definition. In the Sequence Parameters section for a
parsimony analysis, the user may be required to specify the
cost associated with a Locus Breakpoint, Locus Inversion or
Locus Indel, depending on the data type. In these cases, Locus
should not be taken to be the functional, biological unit in the
classical sense, but only as a homologous segment of a sequence.

Genome and Mauve Parameters Genome characters are multi-
locus, multi-chromosomal nucleotide sequences, wherein transforma-
tions (i.e. indels, substitutions, and rearrangements) are optimized at
the sequence, locus and chromosomal level. Within the genome data
file, individual chromosomes are separated by the at symbol (“@”) and
the individual chromosomes remain Unannotated.

As with Unannotated Chromosome characters, homologous regions
are determined using the Mauve parameters Max. Match, Min. Match,
Match Quality and Match Coverage. Default values for these parameters
are provided in the GUI. The Locus Indel and rearrangement (Locus
Breakpoint or Locus Inversion) costs are set by the user. By default, the

26 CHAPTER 2. POY5 QUICK START

cost of a Locus Indel is set to 10 plus 0.9 times the length of the locus
(see the argument locus indel (Section 3.3.27) within the Chromosome
and genome transformation methods of the command transform).
Rearrangements of homologous regions, as determined by the Mauve
aligner, are then optimized using either Locus Breakpoint or Locus
Inversion costs (see the arguments locus breakpoint (Section 3.3.27)
and locus inversion (Section 3.3.27) within the Chromosome and
genome transformation methods of the command transform). The
default cost for both is set to 10. A Median solver must also be specified
for the optimization of rearrangements. The default median solver
is Caprara, but the user can alternatively choose BBTSP, Coaletsp,
Chainlk, Siepel, Simpllk and Vinh (see the argument median solver
(Section 3.3.27) within the Chromosome and genome transformation
methods of the command transform).

Two other costs must be set for the analysis of this data type–
Translocation events and Chromosome Indel. The cost of the Translo-
cation of a region of one chromosome to another chromosome is set
to 10 by default. The cost of the insertion or deletion of an entire
chromosome is by default set to 10 plus 0.9 times the length of the
chromosome.

As with Chromosome characters, it is not possible to input pre-
aligned data files.

Custom Alphabet Parameters Custom Alphabet characters are
those that employ a user-specified alphabet. With this data type,
only insertion-deletion and substitution events are allowed. Custom
Alphabet characters can be input as prealigned. Within this subsection,
the user must specify the heuristic Level of the median sequence
calculation. Direct Optimization is employed in median sequence
calculation. Because calculating the median states between custom
alphabet strings becomes more computationally intensive (and time
consuming) as the number of elements in the alphabet increases, the
user should select a heuristic level of median calculation appropriate
for their data. The default level is 2.

In addition to the data file, the user is require to upload a Cost
Matrix that specifies the substitution and indel transformation costs
for alphabet elements. By selecting the Cost Matrix button within this
subsection, the user can upload a cost matrix that specifies these costs
for their custom alphabet data. For details on the format requirements

2.4. THE GRAPHICAL USER INTERFACE 27

for custom alphabet data files and their associated cost matrices see
the argument custom alphabet (Section 3.3.14) within the command
read.

Break Inversion Parameters Break Inversion characters are an en-
hancement of Custom Alphabet characters. In addition to allowing
substitution and insertion deletion events, element rearrangements, as
well as orientation information can also be optimized. The median
solvers provided restrict the analysis of prealigned data. The rearrange-
ment costs for Break Inversion characters can be optimized using either
Breakpoint or Locus Inversion approaches (see the arguments locus -
breakpoint (Section 3.3.27) and locus inversion (Section 3.3.27)
within the Chromosome and genome transformation methods of the
command transform). The default cost for both is set to 10. A Median
solver must also be specified for the optimization of rearrangements.
The default median solver is Caprara, but the user can alternatively
choose BBTSP, Coaletsp, Chainlk, Siepel, Simpllk and Vinh (see the
argument median solver (Section 3.3.27). The calculation of median
states between Break Inversion strings becomes more computationally
intensive (and time consuming) as the number of elements in the alpha-
bet increases, therefore a single heuristic level of median calculation
can only be employed for these character types–this default level is 1.

The requirements for Break Inversion character types are identical to
those for Custom Alphabet characters, with respect to substitution and
indel transformation costs. By selecting the Cost Matrix button within
this subsection, the user can upload a cost matrix to specify these costs.
The user should see the argument custom alphabet (Section 3.3.14)
within the command read for details on the format requirements for
these cost matrices, which are identical in form to those for Custom
Alphabet characters.

Qualitative Parameters Qualitative data are any non-sequence, pre-
aligned data type (e.g. morphology, behavior). These character types
are optimized as additive, non-additive or Sankoff characters and this
information must be included in the data file when using the Graphical
User Interface.

Likelihood Optimality Criterion Currently, it is only possible to perform
a likelihood analysis of DNA sequences (prealigned being permitted),
and qualitative character types. Using the GUI, these data can be

28 CHAPTER 2. POY5 QUICK START

analyzed with likelihood only (currently, transformation of the data
to elikelihood cannot be performed using the GUI). More detailed
explanations of these options can be found below and in the Likelihood
transformation methods section of transform (Section 3.3.26). In this
section the user can specify the likelihood model of character substitu-
tion under which the analysis will be performed. Available substitution
models include JC69/Neyman, F81, K2P/K80, F84, HKY85, TN93,
GTR, and NCM. Users can also perform phylogenetic model selection
using AIC, AICc and BIC. Within this section it is possible to specifies
the nature of among-site variation under Rate Distribution. Rate vari-
ation distributions allow multipliers to be applied to separate groups
of characters. These distributions can be set to Constant, Gamma (for
non-zero rate variation) or Theta (for parameterization of invariant
sites). These distribution values can be specified for all of the available
models. In addition, Rate Classes enables the user to specify the
number of rate classes for the discrete Gamma rate distribution. The
user can choose between 8 rate classes for either Gamma or Theta
models (the default is 4). Gap Treatment specifies the treatment of
indels. There are three options missing, character, and character plus
coupled. When gaps are treated as missing, they play no role in the
calculation of tree likelihoods. The character option treats the insertion
and deletion of A, C, G, and T each as different types of events that are
independently estimated (hence additional parameters over coupled).
When coupled is specified, all indel events are treated at the same
rate parameter. Cost specifies the form of likelihood employed. The
options for prealigned data (sequence and qualititative) are MAL for
maximum average likelihood and MPL for most parsimonious likelihood
[3]. Unaligned sequences can only be optimized using MPL. The prior
probabilities of the states are determined using Priors. The options
are equal, where each state prior is set to 1 divided by the number of
states, and estimated, where the priors are set by their frequency in
the data set. Priors for gaps are estimated by the maximum difference
in length between input sequences.

Output Files Designates the names and locations of files containing results
of the analysis. By default, all of these output options are generated
with default names applied. The names can then be changed in the
generated script or the option can be removed entirely. As implied
by their respective titles, the tree buttons output trees in both paren-
thetical (best and consensus trees) and postscript form (although this

2.4. THE GRAPHICAL USER INTERFACE 29

button only outputs a PDF file of the optimal trees found, a useful
commands that the user can include in the generated script is to output
a PDF file of the consensus tree (see the argument graphconsensus
(Section 3.3.19) within the command report)).

A diagnosis file provides information relating to the analysis. Infor-
mation in this file includes the cost of the tree, the rearrangement costs
(in the case of the analysis of chromosome, genome and break inversion
data types), as well as information about each resulting node in the
tree. At each node, the user is provided with a cost of the tree down
to that node, a rearrangement cost (if applicable), the “descendant
nodes” coming from this node and information concerning individual
characters at these nodes.

The Analyzed data information outputs a summary of the input data.
Specifically, the number of terminals to be analyzed, a list of included
terminals with numerical identifications, list of synonyms (if specified),
a list of excluded terminals, the number of included characters in each
character-type category (additive, non-additive, Sankoff and sequence)
with the corresponding cost regimes, a list of excluded characters, and
a list of input files.

The Outgroup field allows the the user to specify the outgroup taxon.
The name of the taxon should reflect the name as interpreted by POY5.
Therefore, the name should take into account synonymy files, and taxon
names that contain commented information via use of a $ sign (see the
argument rename (Section 3.3.18)).

Once all the parameters are selected, click the Make Script button and
another window–the Script Editor–containing the generated script, appears
on screen (Figure 2.5). The script can be edited by typing in the commands
directly in the Script Editor window, saved (by clicking the Save As button),
or replaced with another script (using the Open button). To start the
analysis, click the Run button in the Script Editor window. When the Run
button is clicked, POY5 will issue a request to save the script. Thus, not
only does POY5 execute the script but it also creates the record of the type
of analysis (including all user-defined specifications) that was performed.
Moreover, these scripts can later be executed manually in the ncurses or flat
interfaces, or selected as a script to run in the Graphical User Interface.

30 CHAPTER 2. POY5 QUICK START

Figure 2.5: The Simple Search window with specified search parameters (left)
and the corresponding Script Editor window. Observe that the names of the
output files are left as the default output names.

2.4. THE GRAPHICAL USER INTERFACE 31

Figure 2.6: The Timed Search window. Selecting Timed Search from the
Analysis menu (left) and viewing the Timed Search window options (right).

Timed Search

Timed Search (Figure 2.6) implements a default search strategy that effec-
tively combines tree building with TBR branch swapping, parsimony ratchet,
and tree fusing. The Timed Search window has the same four parameter
groups described for the Simple Search. However, the Search Parameters
section (called Search and Perturb Parameters) contains four fields speci-
fying the search targets instead of the Repetitions field. These include the
following:

Maximum time The maximum total execution time for the search. The
time is specified as days:hours:minutes.

Minimum time The minimum total execution time for the search. The
time is specified as days:hours:minutes.

32 CHAPTER 2. POY5 QUICK START

Maximum memory The maximum amount of memory allocated for the
search.

Minimum hits The minimum number of times that the minimum cost
must be reached before terminating the search.

This heuristic search is a powerful tool for analyzing data. The number
of rounds of successive searching is limited only by the previously specified
search targets. Therefore, when performing a Timed Search, it is crucial to
set the maximum time such that the program has a reasonable amount of
time to perform a search. Thus, it is important to have some approximation
as to the length of time it would take to perform a single round of searching
(e.g. build (1), followed by TBR, ratchet and fusing in the case of a parsimony
analysis of DNA sequence data). Clearly, this is data and optimality criterion
dependent. With this information, the user can then estimate the amount of
time necessary to perform a thorough search (perhaps 10 times the amount of
time it took to perform this single round of build, swap, ratchet and fusing).
The user should also allow some time for the program to collate and write
the results to files. If the user has opted to run this analysis in parallel, this
can take some time.

Search with Ratchet

The parsimony ratchet is a heuristic strategy to escape local optima during
tree searching [36]. The ratchet reweights a given percentage of characters
for a specified number of iterations of a search. An analysis is then performed
and the resulting tree topology is evaluated using the original data matrix
with all characters (with original weights) to determine the length of the
tree. The Search with Ratchet (Figure 2.7) follows the same basic steps of
a simple search but includes the ratchet step after the swap. In addition
to the same sequence alignment and search parameters as described for the
Simple Search window, the Search Parameters section provides the following
ratchet parameters fields:

Ratchet iterations The number of iterations for the parsimony ratchet.

Severity The severity parameter of the ratchet (the weight change factor
for the selected characters).

Percentage The percentage of characters to be reweighted during ratchet-
ing.

2.4. THE GRAPHICAL USER INTERFACE 33

Figure 2.7: The Search with Ratchet window. Selecting Search with Ratchet
from the Analysis menu (left) and viewing the Search with Ratchet window
options (right).

34 CHAPTER 2. POY5 QUICK START

Figure 2.8: The Search with Perturb window. Selecting Search with Perturb
from the Analysis menu (left) and viewing the Search with Perturb window
options (right).

Search with Perturb

Search with Perturb (Figure 2.8) provides an alternative means to escape
local optima by changing the transformation cost matrix of the sequence
characters, a procedure similar in spirit to the parsimony ratchet. In addition
to the same sequence optimization and search parameters as described for the
Simple Search window, the Search with Perturb window provides three extra
fields with the parameters for the transformation cost matrix perturbation
as follows:

Perturb iterations Sets the number of perturb iterations to be performed.

Substitutions Specifies the cost of the perturbed substitutions.

Indels Specifies the cost of the perturbed indels.

2.4. THE GRAPHICAL USER INTERFACE 35

During this heuristic search, POY5 performs a parsimony ratchet search
during each iteration (default values are used, i.e. 25% probability, 2 severity).

Support calculation options

It is possible to calculate several support values using this interface. Two
of these measures, Bootstrap and Jackknife, involve resampling techniques,
while the third, Bremer support, is an optimality-based measure based on
the cost of the tree.

Although it is possible to calculate Jackknife and Bootstrap support values
for trees constructed using dynamic homology characters, it is recommended
against doing so as resampling of dynamic characters occurs at the fragment,
rather than nucleotide, level. Consequently, the bootstrap and jackknife
support values calculated for dynamic characters are not directly comparable
to those calculated based on static character matrices. If it is desired to
perform character sampling at the level of individual nucleotides, the dynamic
characters must be transformed into static characters using static approx
argument of the command transform (Section 3.3.26) prior to executing
calculate support. Of course, if the dataset of dynamic characters contains
a large number of fragments, this caveat may not be warranted.

For chromosome and genome character types, only the calculation of
Bremer support values is recommended.

None of the support calculation windows include functions for tree build-
ing and searching. Therefore, one of the input files must contain trees for
which support values are going to be calculated.

Bootstrap

As a resampling technique, the non-parametric Bootstrap resamples the
original data (with replacement), creating a simulated dataset equal to the
size of the original dataset. The Bootstrap window (Figure 2.9) specifies
parameters for estimating the Bootstrap support values. In addition to the
Simple Search window fields, it contains a field for the bootstrap parameters,
in this case a Pseudoreplicates field, to specify the number of bootstrap
pseudoreplicates.

Pseudoreplicates Specifies the number of resampling iterations.

36 CHAPTER 2. POY5 QUICK START

Figure 2.9: The Bootstrap window. Selecting Bootstrap from the Analysis
menu (left) and viewing the Bootstrap window options (right).

Jackknife

An alternative statistical measure of support is the Jackknife, wherein the
original data matrix is resampled, but in this case without replacement.
The Jackknife window (Figure 2.10) specifies parameters for estimating the
Jackknife support values. In addition to the Simple Search window fields,
Jackknife Parameters contains fields to specify the number of Jackknife
pseudoreplicates (Pseudoreplicates) and the number of characters to be
removed (Remove) during each pseudoreplicate.

Pseudoreplicates Specifies the number of resampling iterations.

Remove Specifies the percentage of characters being deleted during a pseu-
doreplicate.

Bremer

As an optimality-based measure of calculating tree support, Bremer values
are the number of extra steps required before a clade is lost in the most
parsimonious or strict consensus of the most parsimonious trees. Bremer
support under likelihood is equivalent to the log of the likelihood ratios
for each branch [66]. There are two ways to determine Bremer support

2.4. THE GRAPHICAL USER INTERFACE 37

Figure 2.10: The Jackknife window. Selecting Jackknife from the Analysis
menu (left) and viewing the Jackknife window options (right).

values in POY5. The first involves performing a series of searches, where each
group supported on the examined cladogram is constrained not to occur in
the result. The second does not involve constraining the tree but collects
information for all the clades not present in the set visited trees. Currently,
calculating support via ”visited” trees can only be done sequentially and not
parallel.

The Bremer option (Figure ??) is divided into two windows: the Search
for Bremer window, that specifies the Bremer support [6, 27] calculation
parameters, and the Report Bremer window to format the output of the
results (Figure 2.12).

Search for Bremer The script produced in this window collects trees
visited during a search for Bremer support calculations. This search can take
a long time, as the goal of this search strategy is to broadly sample variation
among trees, and guarantee that all clades have Bremer support values.

In addition to the standard four sections defined for the Simple Search
window, that one of the output files is the Temporary Trees file, which
contains all the information required to produce the Bremer support tree
results in the Report Bremer window. Make sure to choose a file name that
does not overwrite this output.

If the search does not finish within the time frame amenable to the user

38 CHAPTER 2. POY5 QUICK START

Figure 2.11: Selecting the Bremer windows from the Analysis menu.

Figure 2.12: Viewing the options of the Search for Bremer (left) and the
Report Bremer(right) windows.

2.4. THE GRAPHICAL USER INTERFACE 39

the search can be interrupted and the intermediate results remain stored in
the Temporary Trees file. As Bremer calculations are upper-bound values,
terminating the search prior to completion and, thus, storing a smaller pool
of visited trees may inflate support values relative to those generated by a
more exhaustive search. The trees from the Temporary Trees file can then
be reported using the Report Bremer window.

Report Bremer The script produced in this window takes the Temporary
Trees file generated in the Search for Bremer window in the File with trees
for Bremer calculation field.

Diagnosis

Diagnose Tree

The Diagnose Tree window (Figure 2.13) specifies parameters for reporting
a diagnosis of the input tree. This window lacks the Search Parameters
section because the diagnosis is performed on the trees resulted from prior
searches and no new trees are generated during the diagnosis procedure. It
is important to add both the input tree (or trees) in addition to the data file
in order to diagnose the tree.

Script editing and the Interactive Console

Open POY Launcher

Selecting Open POY Script (Figure 2.14) displays the POY Launcher window
(Figure 2.2), the function of which is described above.

Run Interactive Console

Selecting Run Interactive Console (Figure 2.15) opens the ncurses interface
that enables the user to run the analysis interactively by entering POY5
commands directly via the command-line interface of the Interactive Console
See Using the Interactive Console (Section 2.5).

Create Script

The Create Script selection opens a blank Script Editor window that allows
opening, creating, modifying, saving, and executing a customized script.

40 CHAPTER 2. POY5 QUICK START

Figure 2.13: The Diagnose window. Selecting Diagnose Tree from the
Analysis menu (left) and viewing the Diagnose window options (right).

Figure 2.14: The Open POY Launcher selection opens the POY Launcher
window.

2.5. USING THE INTERACTIVE CONSOLE 41

Figure 2.15: The Run Interactive Console selection (left) opens POY5 interac-
tive console in a new window. The Create Script selection opens the Script
Editor window (Figure 2.5).

2.4.4 The View menu

The View menu contains the Output window which is subdivided into two
fields: the upper Results and Errors and lower Status of Search (Figure 2.16).
These fields display, respectively, the results (including warning and error
messages) and the current state of the analysis. These fields are not updated
automatically and in order to display the current state of the analysis the
user must click the Update button. The View menu also contains the About
POY window in Windows.

2.5 Using the Interactive Console

This section will help you get started using the POY5 Interactive Console and
will prepare you for the more extensive, technical descriptions in the next
chapter, POY5 Commands. This section will illustrate how to input data files,
check the data you are analyzing, generate a set of initial trees, do basic
branch swapping to find a local optimum, and, finally, produce and visualize
the resultant trees, their strict consensus, and generate support values in a
command-line environment rather than using a Graphical User Interface.

For the purpose of this exercise, two data files are used available at

http://research.amnh.org/scicomp/projects/poy.php

http://research.amnh.org/scicomp/projects/poy.php

42 CHAPTER 2. POY5 QUICK START

Figure 2.16: Selecting the Output window (left) and viewing the Results and
Errors and Status of Search fields.

• 28s.fas contains unaligned DNA sequences (partial 28S ribosomal
RNA) in FASTA format. [37]

• morpho.ss contains a morphological data matrix in Hennig86 for-
mat. [11]

Once POY5 has been launched and the interface (Figure 2.17) had appeared
on the screen, the data can be input and the analysis can proceed. As you
follow the instructions, you are encouraged to consult the help file by using
the command help (see Section 2.7 to learn more about POY5 commands
and their arguments).

2.5.1 The interface

The Interactive Console provides a terminal environment with enhanced
ability to display the results and the state of the analysis. We recommend
the use of the console to explore and verify the data in the early steps of
the analysis, and to learn the scripting language. Using the console requires
familiarity with POY5 commands, their arguments, and the conventions of
POY5 scripting (which are discussed in the POY Commands chapter). It has
four windows: POY Output, Interactive Console, State of Stored Search, and
Current Job (Figure 2.17):

2.5. USING THE INTERACTIVE CONSOLE 43

Figure 2.17: POY5 interface displayed in the Terminal window prior to analysis.
Observe the cursor at the POY5 prompt in the Interactive Console and note
that the State of Stored Search and Current Job windows are empty.

44 CHAPTER 2. POY5 QUICK START

POY Output (Figure 2.17, upper box) displays the status of the
imported data, outputs the results of the phylogenetic analyses (such
as trees, character diagnoses, and implied alignments), reports errors,
and displays descriptions of POY5 commands.

Interactive Console (Figure 2.17, mid-left box) is used to issue the
commands interactively and to execute the commands by clicking the
Return key. (See Section 3.1.1 on the description of POY5 commands.)

State of Stored Search (Figure 2.17, mid-right box) displays the
time (in seconds) elapsed since the initiation of the current operation.
This window also reports the number of trees currently in memory and
displays the range of their costs.

Current Job (Figure 2.17, lower box) describes the currently running
operation. When the operation is completed, the box is blank.

2.5.2 Starting a POY5 session using the Interactive Console

Windows

• Start>All Programs>POY>Interactive Console

Mac OSX

• Double-click POY5 application icon to start the program.

• Select Run Interactive Console from the Analyses menu.

Linux

• Add /opt/poy5/Resources/ (or the location you plan to install) to
your PATH and run ncurses poy from a terminal.

2.5.3 Entering commands

Once this POY5 interface is opened, the cursor appears in the Interactive
Console portion of the window and is ready to accept commands. The
Interactive Console does not support using the mouse and, as is true for
most command-line applications, the cursor can be moved using the left
and right arrow keys, and the Backspace (in Windows) or Delete (in Mac)
keys are used to erase individual characters to the left of the current cursor

2.5. USING THE INTERACTIVE CONSOLE 45

Figure 2.18: POY5 Interactive Console during a process. The POY Output
window displays (by default) the information on the input data files. The
Interactive Console lists the commands that have been consecutively executed.
The Current Job window shows the state of the current operation and the
current tree score. The State of Stored Search shows the time elapsed since
the last command swap, was initiated.

46 CHAPTER 2. POY5 QUICK START

position. To eliminate the need of retyping commands anew during a POY5
session, keyboard shortcuts can be used: control-P (“previous”) and control-
N (“next”) will scroll through the commands previously entered during
the session. In addition, the Interactive Console is equipped with the
autocomplete feature: it involves POY5 predicting a command, an argument,
of file name that the user wants to type from the first letter(s) entered. Upon
typing the first letter or part of the phrase, repeatedly pressing the TAB key
scrolls through the list of command, argument, and file names that begin
with that letter or phrase. Autocomplete speeds up interaction with the
program.

2.5.4 Browsing the output

As output is reported in the POY Output window, only the most recent
reports will be seen in the window. Using the Up and Down keys allows the
user to scroll up and down the POY Output window to see the welcome line,
and previously printed reports and help descriptions. Pressing Up and Down
keys automatically places the cursor in the lower left corner of the POY
Output window indicating that you are interacting with that window. Only
1000 lines are stored in the memory and the output that was reported before
that will not be accessible by scrolling. The number of lines, however, can be
modified by the user using the command set(), see history (Section 3.3.24).
If the user desires to keep the entire output or specific items in the output, a
log can be created using the command set(), see log (Section 3.3.24)) or
specific outputs can be redirected to files (see report (Section 3.3.19)). The
user should be aware that outputting a log file can slow down the program
due to IO (input/output) delay.

2.5.5 Switching between the windows

To return to the Interactive Console, start typing and the cursor will au-
tomatically be placed back at the POY5 prompt. When an operation is in
progress (shown in the Current Job window), the cursor stays in the upper
left corner of the State of Current Search window, and switching between the
Interactive Console and the POY Output window is disabled. There are no
user interactions in the Current Job or State of the State of Current Search.

2.5.6 Input of data

The basic command to input data in POY5 is read(), which includes the list of
files (in quotation marks and separated by commas) enclosed in parentheses.

2.5. USING THE INTERACTIVE CONSOLE 47

Figure 2.19: Importing data files using the Interactive Console. Two consec-
utive read commands specify both the morphological data file in Hennig86
format (morpho.ss), and the molecular data file in FASTA format (28s.fas).
Observe that POY5 automatically reports in the POY Output window the
names and types of files that have been imported.

Suppose that we would like to simultaneously analyze morphological and
molecular datasets, contained in separate data files, morpho.ss and 28s.fas,
respectively. We can issue a pair of read() commands (Figure 2.19):

read("morpho.ss")
read("28s.fas")

The syntax of read, like every command in POY5, contains two elements:
the name of the command, in this case read, followed by an optional list of
arguments separated by commas and enclosed in parentheses. All filenames
read into POY5 should include the appropriate suffix for the file type (e.g.
.fas, .ss, .aln, .tre etc:). Typically, the arguments of the command read()
are names of data files, each being enclosed in double quotes (as shown in
the example above). Even though there might be only one argument or none
in some commands, parentheses (e.g. pwd()) always follow the command
name. An exhaustive discussion of POY5 command structure and detailed
descriptions of all commands with examples of their usage are provided in
the POY Commands chapter (3.1.1).

In order to import data by entering the names of the files, the directory
containing these files must be identified. This can be established in two
ways–by using the command cd to redirect the path to the directory where

48 CHAPTER 2. POY5 QUICK START

the data is found and then reading in the data file:

cd ("/Users/username/docs/poyfiles")
read ("28s.fas")

or by including the full path in the argument of read:

read("/Users/username/docs/poyfiles/28s.fas")

Most of the time users are interested in importing multiple data files to
analyze an entire dataset. In this case, multiple data files can be specified
as arguments for a single command. For example, importing both files,
morpho.ss and 28s.fas, can be written more succinctly:

read("morpho.ss", "28s.fas")

or if the full path is included in the argument of read as:

read("/Users/username/docs/poyfiles/morpho.ss",
"/Users/username/docs/poyfiles/28s.fas")

This is equivalent to sequentially importing each file as shown in (Figures
2.19 and 2.20).

Figures 2.19 and 2.20 also illustrate an important feature that makes
POY5 different from many other phylogenetic analysis programs: every time
a file is imported during a POY5 session, the input data are added to the
current data in memory and do not replace them. This allows additional
analytical flexibility. For example, if only morphological data are read and
trees are built based on these data alone, a subsequently imported molecular
character dataset will be used in conjunction with the previously imported
morphological data, despite the fact that current trees in memory were
generated only from morphological data (Figure 2.20):

read("morpho.ss")
build()
read("28s.fas")
rediagnose()
swap()

2.5. USING THE INTERACTIVE CONSOLE 49

It must be noted that if the numbers of terminals differ among data
files, only the data that correspond to the terminals used to generate the
trees (in this case, the morphological data file) are used. The rest of the
character data are ignored, unless the trees are built again with the data files
containing the expanded number of terminals. Also, because POY5 appends
trees and data in memory, it is a good practice when starting a new analysis
to empty the memory using use the command wipe().

Valid input files include nucleotide and amino acid sequence files in many
formats, and morphological data in Hennig86 and Nexus formats. (For
information on specific formats supported by POY5 and other types of input
files see read (Section 3.3.14).)

2.5.7 Inspecting data

Once a dataset (or multiple datasets) is imported, POY5 automatically reports
a brief description of contents for each loaded file in the POY Output (Figure
2.19). However, it may be desirable to inspect the imported data in greater
detail to ensure that the format and contents of the files have been interpreted
correctly. This practice helps avoid common errors, such as inconsistently
spelled terminal names, which may result in bogus results, produce error
messages, and aborted jobs.

The basic command for outputting information is report(). One of its
arguments, data, outputs a set of tables showing the list of terminals, the
number and types of characters, and the lists of terminals and characters
excluded from the analysis. To produce a report of the data files that were
used in the previous example (morpho.ss and 28s.fas), we import the data
and execute report(data):

read("morpho.ss", "28s.fas")
report(data)

This will generate an extensive, detailed output, partial views of which are
shown in Figure 2.21. Obviously, the entire report will not be visible in the
POY Output window. Therefore, the Up and Down arrow keys and Page
Up and Page Down keys can be used to scroll. By default, POY5 reports
the results of executed commands to the POY Output window. However,
the same output can be redirected to a file simply by adding the name of
the output file in the list of argument of the command report() before the
argument specifying the type of the requested report (in this case data, see
the command report (Section 3.3.19)). For instance, to output the data
into the file "data analyzed.txt’’ we would enter:

50 CHAPTER 2. POY5 QUICK START

Figure 2.20: Building trees with morphological data only but continuing
analysis using combined morphological and molecular data. This example
shows how we can add data to the analysis incrementally by loading files at
different points in the search. First, the morphological data are imported
from morpho.ss file using read() the and trees are built based on these data.
Then molecular data from the 28s.fas file are loaded into memory in addition
to previously imported morphological data. Finally, subsequent analyses,
rediagnose() and swap(), are conducted using the data in memory, that is
the trees based on morphological data, and both morphological and molecular
character sets.

2.5. USING THE INTERACTIVE CONSOLE 51

Figure 2.21: Inspecting imported data. The figure shows segments of a data
report generated by report(data). The left and right panels demonstrate a
typical table output the character and terminal data respectively.

read("morpho.ss", "28s.fas")
report("data analyzed.txt", data)

In this example, all the imported data are analyzed and, therefore, the
report fields that list excluded data will appear empty. One can, however,
exclude specific characters or terminals from the analysis using additional
commands (see the command report (Section 3.3.19)).

Another useful argument of report is cross references. This argument
displays whether character data are present or absent for each terminal in
each one of the imported data files. This provides a comprehensive visual
overview of missing data. Building on the previous example, such output
can be generated by the following sequence of commands:

read("morpho.ss", "28s.fas")
report("cross refs.txt", cross references)

A typical output of cross references command is shown in Figure
2.22. This argument is a very useful tool for visual representation of missing
data. Moreover, reporting all the data to a cross references file can also
highlight inconsistencies in the spelling of taxon names in different data files.

2.5.8 Building the initial trees

The command to build trees is build() (already mentioned in Section 2.5.6).
After importing morpho.ss and 28s.fas, executing the command build()
without specifying any arguments (default settings) generates 10 Wagner
trees by random addition sequence.

Many POY5 commands operate under default settings when executed
without arguments. To learn what the default settings are for a particular

52 CHAPTER 2. POY5 QUICK START

Figure 2.22: Visualizing missing data. The command cross references
displays a table showing whether a given terminal (in the left column) is
present (“+”) or absent (“–”) in each data file. In this example, 28s.fas is
missing for Amblypygid and morpho.ss for Hypochilus.

2.5. USING THE INTERACTIVE CONSOLE 53

command use either help() command with the command name of interest
inserted in parentheses or consult the POY Commands chapter (3.1.1).

If the user would like to specify a number of tree building replicates
different from the default value of 10, the argument trees followed by a colon
(“:”) and an integer specifying the number of trees must be included in the
argument list of the build command: build(trees:100). This command
has a shortcut that omits the argument trees. Thus, build(trees:100)
is equivalent to build(100). As defaults, the shortcuts are fully described
in Section 3.1.1. The entire sequence of commands minimally required to
import the data and build 100 trees is the following:

read("morpho.ss","28s.fas")
build(100)

As the tree building advances, the Current Job window displays the
current status of the operation (Figure 2.23). This window shows how many
Wagner builds have been performed out of the total number requested, the
number of terminals added in the current build, the cost of the current tree
(recalculated after each terminal addition), and the estimated time for the
completion of all the builds. When all the trees are generated, the State of
Stored Search window displays the range of tree costs (the best and worst
costs), the number of trees stored in memory, and the number of trees with
the best cost (Figure 2.23).

2.5.9 Performing a local search

Now that the trees have been generated and stored in memory, a local
search can be performed to refine and improve the initial trees by examining
additional topologies of potentially better cost. The command swap() im-
plements an efficient strategy by performing SPR and TBR branch swapping
alternately. As with other commands, the arguments of swap() allow the
customization of the swap algorithm. In the following example, branch
swapping is performed under the default settings on each of the 100 trees
build in the previous step:

read("morpho.ss","28s.fas")
build(100)
swap()

Branch swapping is performed sequentially on all trees stored in memory.
During swapping, the Current Job window reports the number of the tree

54 CHAPTER 2. POY5 QUICK START

Figure 2.23: Generating Wagner trees. During the process of tree building
(left panel), the Current Job window displays how many builds have been
performed so far (57 of 100), the number of terminals added in the current
build (13 of 17), the cost of a current tree recalculated after each terminal
addition (362), and the estimated time (in seconds) for the completion of
the operation (4 s). Because the process is not complete, the State of Stored
Search window contains no trees. Once tree building is complete, the State
of Stored Search window displays the best (451) and worst (472) costs, the
number of trees stored in memory (100), and the number of trees with the
best cost (2).

that is currently being analyzed, the method of branch swapping, the specific
routine being currently performed, and the cost of the current tree (Fig-
ure 2.24). When the process is complete, the State of Stored Search window
displays the range of tree costs (the best and worst costs), the number of trees
stored in memory, and the number of trees with the best cost (Figure 2.24).
Notice that the local search had reduced the costs of the initial best (from
451 to 446) and narrowed the range of tree costs.

Using different combinations of swap() arguments allow the designation
of a large number of search strategies with different levels of complexity.
Some simple options allow the choice between SPR and TBR. More complex
strategies allow keeping a specific number of best trees per single initial
tree (generated during the building step). For example, the command
swap(trees:10) will keep up to 10 best trees generated during branch
swapping on a single initial tree. Consequently, if 100 trees were built
initially, this command will produce up to 1,000 trees. The argument
threshold allows the retention of suboptimal trees within a specified percent
of cost difference from the current best tree. For example, swap(trees:20,
threshold:10) will execute a swap considering trees within a ten percent
cost difference of the current best tree and retain the 20 minimal length
swapped trees for each initial build. Other options provide the means to
sample trees as they are evaluated, timeout after certain number of seconds,
transform the cost regime, and other functions in conjunction with many

2.5. USING THE INTERACTIVE CONSOLE 55

Figure 2.24: Performing a local search. When searching (left panel), the
Current Job window reports the number of the tree that is currently being
analyzed (73 of 100), a method of branch swapping (Alternate), a function
being currently performed (SPR search), and a cost of the current tree
(456). When the searching is finished (right panel), the State of Stored
Search window displays the best (446) and worst (463) costs, the number
of trees stored in memory (100), and the number of trees of the best cost
(9) recovered from independent tree builds. Notice that these trees may not
necessarily have unique topologies.

POY5 commands.

2.5.10 Selecting trees

Having performed the basic steps of importing character data, building initial
trees, and conducting a simple local search, we obtained a set of local-optima
trees in memory. Generally, a user would like to select only those trees
that are both optimal and topologically unique. The default setting of the
select() does exactly that. Adding select() to our example of command
sequence for the basic analysis

read("morpho.ss","28s.fas")
build(100)
swap()
select()

selects only unique trees of best cost. The remaining trees are deleted from
memory. The State of Stored Search window reports the number and the
cost of the best tree(s) (Figure 2.25).

As an alternative, the user may choose to select topologically unique trees,
regardless of the cost, using select(unique). This may ensure that a larger
tree space is explored. If this is used as an option during the search, the user
should remember to select() at the end of the run, prior to reporting the
results.

56 CHAPTER 2. POY5 QUICK START

Figure 2.25: Selecting unique best trees. Executing select() keeps only
unique trees of best cost. The State of Stored Search window reports that
there is only one unique tree of best cost (446).

The command select(), is another multifunctional command the argu-
ments of which are also used to select (include or exclude) specific terminals,
characters, and trees.) Comparing the output reported in the State of Stored
Search before (Figure 2.24) and after (Figure 2.25) executing select() shows
that swapping on 9 of 100 initial trees produced the trees of best cost (446),
but these trees are identical, because only one was retained when filtered
using select().

2.5.11 Visualizing the results

There are several options for visualizing results in POY5 (see report (Sec-
tion 3.3.19)). The command report("my first tree", graphtrees) out-
puts a cladogram in PDF format (Figure 2.26), which can be displayed, edited,
and printed using graphics software (such as Adobe Illustrator or Corel Draw).
POY5 also appends the “pdf” extension when generating graphic output to
a file. A quick way to see the tree(s) on screen is to use the command
report(asciitrees) that draws a cladogram in the POY Output window
(Figure 2.26). The ascii tree(s) can also be reported to a file, if an out-
put file name is specified within the command (report("my first trees",
asciitrees)). These trees will be saved to a text file.

The command report("my first trees.txt", trees) reports the trees
in memory in parenthetical notation to the file my first trees that can
be imported in other programs. Other supported tree output formats in-
clude Newick and Hennig86. report() can also generate consensus trees in
the graphical and parenthetical formats when appropriate arguments are
specified (for example, report("strict consensus", graphconsensus)).

2.5. USING THE INTERACTIVE CONSOLE 57

Figure 2.26: Visualizing trees. An ascii tree (left) is generated using the
command report(asciitrees). The same tree is reported to a file in a PDF
format (right) using report("my first tree", graphtrees). Observe that
both representations of trees are preceded by their costs.

58 CHAPTER 2. POY5 QUICK START

2.5.12 Interrupting a process

To interrupt a process, press Control-C. By default, an error, Error:
Interrupted, is reported in the POY Output window. The program does
not close, however, and a new command can be entered. Interrupting the
analysis cancels the execution of the last command requested by the user
and restores the data and trees in memory before that last command. For
example, the following two session are equivalent:

read("morpho.ss") <ENTER>

and

read("morpho.ss") <ENTER>
read("28s.fas") <CONTROL-C>

In both of these sessions, only the morphological dataset ‘‘morpho.ss’’
is read into POY5.

2.5.13 Reporting errors

If there is an error pertaining to incorrect syntax (such as a typo in a
command name), POY5 will indicate the location of the error by underlining
the problematic part of the input with a hat symbol (“^”) in the Interactive
Console (Figure 2.27). The description of the corresponding command, its
syntax, and examples of its usage from the help file are automatically printed
in the POY Output window. As noted above, the Up and Down keys can
be used to scroll through the output and determine the source of the error.
Certain types of errors are reported explicitly (Figure 2.27).

2.5.14 Exiting

To finish a POY5 session, enter the command exit() (Figure 2.28) or quit().
This will close the POY5 interface and resume the Terminal window (Mac
OSX) or the Command Prompt window (Windows).

2.6 Creating and running POY5 scripts

So far, we have communicated with POY5 interactively through the Graphical
User Interface or by executing commands from the Interactive Console.

2.6. CREATING AND RUNNING POY5 SCRIPTS 59

Figure 2.27: Displaying errors. POY5 displays error messages in several
ways. In the example in the left panel, the command build was entered
without parentheses, which is required for a valid POY5 command syntax; the
exact place of the error is marked by “^”, in this case following the build
commands. Examples of the proper usage of the command are automatically
displayed in the POY Output. In other cases (right panel), error messages
are explicitly reported in the POY Output window. The first and second
error messages indicate that the data file SSU.seq is not present, which could
have been caused either by a mistake in the name of the file, missing file, or
the location of the file in a directory, other than the one specified prior to
starting the POY5 session. The third error message indicates that the valid
syntax of exit requires the parentheses following the command name (also
shown by “^” in the Interactive Console).

60 CHAPTER 2. POY5 QUICK START

Figure 2.28: Exiting POY5

Another way of conducting an analysis is to run a script, a simple text file
containing a list of commands to be performed (Figure 2.29).

Running analyses using scripts has many advantages: not only does it
allow for the entire analysis to proceed from the beginning to the end at one
click of a button, but it also provides means to examine the logical dependency
of the commands and optimize memory consumption (see the description of
script analysis argument of the command report in the POY Commands
chapter). Submitting jobs using scripts may produce results faster because
POY5 automatically optimizes the workflow of the entire analysis by taking
into account the functional relationships among various tasks and efficiently
distributing the jobs and resources (such as memory and multiple processors).

Another advantage of using scripts is that they may contain comments
that are ignored by POY5 but can be helpful to describe the contents of
the files and provide other annotations. The comments are enclosed in
parenthesis and asterisks, e.g. (* this is a comment *). Comments can
be of any length and span multiple lines. Comments can also be entered
interactively from the Interactive Console.

Obviously, using scripts requires the user to design the workflow of the
process prior to conducting the analysis. POY5 scripts can be created and
saved using the Script Editor window of the POY5 Graphical User Interface
or any conventional text editor (such as TextPad, TextWrangler, BBEdit,
Emacs, or NotePad).

POY5 scripts are extremely useful in cases when operations may take a
long time to complete, eliminating the need to wait for a part of the analysis

2.7. OBTAINING HELP 61

Figure 2.29: Using POY5 scripts. The list of commands executed interactively
using the Interactive Console (left) and a script containing the same list
of commands (right). Observe that the header of the script is a comment,
enclosed in “(* *)”, that is ignored by POY5. Also note that commands can
either be listed in a row or in a column (compare build() and swap() in the
console and in the script) and different arguments of the same command can
either be specified separately or combined in a single argument list (compare
report() in the console and in the script). (Both conventions are valid for
interactive command submission and for scripts.)

to finish in order to proceed to the next step.
There are two ways to import and run a script:

• using the POY Launcher in the Graphical User Interface;

• using the command run() of the Interactive Console; for example,
run("script.txt"), where script.txt is the name of the file con-
taining the script.

It it critical to include the command exit() at the end of the script.
Otherwise POY5 will be waiting for further instructions to be entered after
executing the script’s contents.

2.7 Obtaining help

Instructions to run POY5, command descriptions, and the theory behind POY5
can be obtained from a variety of sources.

POY5.0 Program Documentation (this manual) is a comprehensive and
detailed manual on all the aspects of using POY5, from installation to
output and visualization of results. Included are Quick Start, POY5 com-
mand reference, practical guides and tutorials that make the program

62 CHAPTER 2. POY5 QUICK START

immediately accessible for beginners and provide in-depth informa-
tion for experienced users. The documentation in PDF format can
be accessed from the Help menu of the graphical user interface or
downloaded separately from POY5 web site at

http://research.amnh.org/scicomp/projects/poy.php

POY interactive help can be obtained by entering help() at the POY5
Interactive Console. To obtain help on a particular command, the name
of the command must be specified in the parentheses following help().
For example, to learn about the command exit, type help(exit).
(Figure 2.28.)

POY5 Mail Group is an Internet-based forum for discussing all issues
related to POY5 and provides the best way to communicate with POY5
developers on specific issues (see WWW resources below). The website
is located at http://groups.google.com/group/poy5.

POY Book (Wheeler et al., 2006 Dynamic Homology and Phylogenetic
Systematics: A Unified Approach Using POY [68]) provides a review
of the theory behind POY4 and by extension POY5, and contains formal
descriptions of many algorithms implemented in the program and the
descriptions of commands of the earlier version, POY3.

POY Paper (Varón et al., 2010. POY version 4: Phylogenetic analysis
using dynamic homologies [53] provides a description of the overall
goals, implementation and philosophy of POY.

Figure 2.30: The POY Book.

http://research.amnh.org/scicomp/projects/poy.php
http://groups.google.com/group/poy5

2.8. WWW RESOURCES 63

2.8 WWW resources

POY5 is an ongoing project and new versions are being continuously developed
to include new procedures, improve performance, and eliminate reported
bugs. Therefore, it is imperative to keep up with the program’s development
and check regularly for updates. There are several Internet-based resources
that offer this information.

POY5 Web Site Has downloadable compressed files of POY5 binaries, source
code, and documentation in PDF format. It also provides a links to
the POY Mail Group. The website is hosted by AMNH Computational
Sciences at

http://research.amnh.org/scicomp/projects/poy.php

POY5 source code repository Contains has downloadable POY5 source
code. The site is powered by Google at

http://code.google.com/p/poy/source

POY5 Mail Group Informs registered users via email of new develop-
ments, such as new versions and updates. It also provides additional
resources for obtaining help and a way for reporting bugs and other
problems with POY5 and its documentation. In addition, it allows users
to receive and respond to each other’s questions thus providing an open
forum to discuss the methods and applications of POY5. The users who
choose not to register, have access to the archives of the postings but
will not be able to either submit or receive emails from other users and
POY5 developers. The POY5 Mail Group is hosted by Google at

http://groups.google.com/group/poy

http://research.amnh.org/scicomp/projects/poy.php
http://code.google.com/p/poy/source
http://groups.google.com/group/poy

64 CHAPTER 2. POY5 QUICK START

Chapter 3

POY5 Commands

3.1 POY5 command structure

3.1.1 Brief description

POY5 interprets and executes scripts issued by the end user. These can come
from the Graphical User Interface and the command line in the Interactive
Console of the program, or from an input file. A script is a list of commands,
separated by any number of whitespace characters (spaces, tabs, or newlines).
Each command consists of a name in lower case (LIDENT), followed by a list
of arguments separated by commas and enclosed in parentheses. Most of the
arguments are optional, in which case POY5 has default values.

In POY5, we recognize four types of command arguments: primitive values,
labeled values, commands, and lists of arguments.

Primitive values can be either an integer (INTEGER), a real number
(FLOAT), a string (STRING), or a boolean (BOOL).

Labeled values are lowercase identifiers (which are referred to as label),
and an argument, separated by the colon character (“:”).

List of arguments are several arguments enclosed in parenthesis and
separated by commas (“,”).

Commands are standard commands that can affect the behavior of another
command when included in its list of arguments.

65

66 CHAPTER 3. POY5 COMMANDS

Thus, certain commands can function as arguments of other commands.
Moreover, some commands share arguments. Although such compositional
use of commands might seem complex, this structure provides much more
intuitive control and greater flexibility. The fact that the same logical
operation that functions in different contexts maintains the same name
(typically suggestive of its function), substantially reduces the number of
commands without limiting the number of operations. Using a linguistic
analogy, POY5 specifies a large number of procedures by a more complex
grammar (specific combinations of commands and arguments), rather than by
increasing the vocabulary (the number of specific commands and arguments).
For example, the command swap specifies the method of branch swapping.
This command is used to conduct a local search on a set of trees. In addition,
swap functions as an argument for calculate support to specify the branch
swapping method used in each pseudoreplicate during Jackknife or Bootstrap
resampling. swap can also be used to set the parameters for local tree search
based on perturbed (resampled or partly weighted) data as an argument of
the command perturb. Therefore, to take the maximum advantage of POY5
functionality, it is essential to get acquainted with the grammar of POY5.

3.1.2 Grammar specification

The following is the formal specification of the valid grammar of a script in
POY5:

script: = | command
| command script

command: = LIDENT "(" argument list ")"

argument list: = |
| arguments

arguments: = |
| argument
| argument "," arguments

argument: = | primitive
| LIDENT
| LIDENT ":" argument
| command

3.1. POY5 COMMAND STRUCTURE 67

| "(" argument list ")"

primitive: = | INTEGER
| FLOAT
| BOOLEAN
| STRING

LIDENT: = [a-z_][a-zA-Z0-9_]*

INTEGER: = [0-9]+

FLOAT: = | INTEGER
| [0-9]+ "." [0-9]*

STRING: = """ [^"]* """

The following examples graphically show a typical structure of valid POY5
commands formally defined above. The Figure 3.1 illustrates the syntax of
the command swap. The name of the command, swap, is followed by a list
of two arguments, tbr and trees:2, enclosed in parentheses and separated
by a comma. Note that trees:2 is a labeled-value argument that contains a
label (trees) and a value (2) separated by a colon.

Figure 3.1: The structure of a simple POY5 command. The entire command
(highlighted in blue), consists of a command name followed by a list of
arguments (enclosed in red box). See text for details.

68 CHAPTER 3. POY5 COMMANDS

Figure 3.2 shows a more complex command structure, using the command
perturb as an example. This is a compound command because the list of
its arguments contains another command, swap. This means that executing
perturb performs a set of specified operations that contains a nested set
of operations specified by swap. Note also, that in contrast to the first
labeled-values argument iterations, the second labeled-values argument
ratchet has multiple values (a float and an integer). When multiple values
are specified, they must be enclosed in parentheses and separated by a
comma. The third argument is a command (swap), therefore it is syntactically
distinguished from other arguments, labeled and unlabeled alike, by having
parentheses following the command name. It must be emphasized that the
parentheses always follow the command name even if no arguments are
specified. If no arguments are specified, a command is executed under its
default settings provided it has default settings. If a command has no default
settings e.g. transform, then typing transform () does nothing.

Figure 3.2: A structure of a compound POY5 command. Note that the list of
arguments (enclosed in red box) includes a command (highlighted in blue).
Also, note that ratchet accepts multiple values, a float and an integer, that
are inclosed int parentheses and separated by a comma. See text for details.

3.2 Notation

Some arguments are obligatory, whereas others are not; some commands
accept an empty list of arguments, but others do not; some argument labels
have obligatory values, some have optional values. The POY5 commands and
arguments are listed alphabetically in the next section. In the descriptions
of POY5 commands below, the elements of POY5 grammar are defined in the
text using the following conventions:

• A command that could be included in a POY5 script (that is can be
entered in the interactive console or included in an input file) is shown
in terminal typeface.

• Optional items are inclosed in [square brackets].

3.2. NOTATION 69

• Primitive values are shown in UPPERCASE.

Each command description entry contains the following sections:

• The name of the command.

• The valid syntax for the command.

• A brief description of the command’s function.

• The list of descriptions of valid arguments.

• Description of default settings.

• Examples of the command’s usage.

• Cross references to related commands.

NOTE

Default syntax. The default syntax for all commands is the same:
it includes the command name followed by empty parentheses, e.g.
swap(). However, within the descriptions of each command the de-
fault settings include the entire argument list for illustrative purposes
only (i.e. in the case of swap() the entire argument list appears as
swap(trees:1, alternate, threshold:0, bfs)).

NOTE

Command order. The effect of the order of arguments in a com-
mand depends on the context. If arguments are not logically inter-
connected, their order is not important. For example, the commands
build(10,randomized) and build(randomized,10) are equivalent.
However, executing the commands transform(tcm:(1,1),gap -
opening:4) and transform(gap opening:4,tcm:(1,1)) will pro-
duce different results because gap opening modifies the values set
by tcm, while tcm overrides the values set by gap opening.

NOTE

Output files. When an output file is specified, the file name (in
double quotes and followed by a comma) must precede the argument,
e.g. report("first trees", trees).

70 CHAPTER 3. POY5 COMMANDS

3.3 Command reference

3.3.1 build

Syntax

build([argument list])

Description

Builds Wagner trees [10]. Building multiple trees with a randomized addition
of terminals allows for the evaluation of many more possible tree topologies
and generates a diversity of trees for subsequent analysis. The arguments
of the command build specify the number of trees to be generated and the
order in which terminals are added during a single tree building procedure.
During tree building, POY5 reports in the Current Job window of the ncurses
interface which of the terminal addition strategies (e.g. as is or randomized)
is currently used.

By default POY5 replaces the trees stored in memory with those gener-
ated in a subsequent build. For example, executing build(10) followed by
build(20) will replace the 10 trees generated during the first build with
20 new trees. However, it might be desirable to generate a large number of
trees by appending trees from multiple separate builds. To keep trees from
consecutive builds, a tree output file must be specified using the command
report (Section 3.3.19) that must precede the build command. This will
produce a file containing the trees appended from all builds. If the same file
name is used for reporting trees for other analysis, the new trees are going
to be appended. Alternatively, trees from different builds can be redirected
to separate files if different file names are specified.

The command build is also used as an argument for the command
calculate support.

Arguments

all[:INTEGER] Turns off all preference strategies for adding branches and
simply tries all possible addition positions for all terminals. By default
ten trees are built but the number of trees can be specified by the
integer or by the argument trees.

as is Indicates that in one of the trees to be built, the terminals are added
in the order in which they appear in the imported data files, and all
others are built using a random addition sequence.

3.3. COMMAND REFERENCE 71

branch and bound[:FLOAT] Calculates the exact solution using the Branch
and Bound algorithm [24]. By default only one optimal tree is kept
but the number of optimal trees to be retained can be specified by the
argument trees. The optional float value specifies the bound (either
tree cost or likelihood score).

constraint[:STRING] Builds trees using the set of constraints specified by
a consensus tree input file. If no input file is provided, the constraint
is calculated as the strict consensus of the trees in memory. Every
tree built using this method is subjected to the same randomization as
Wagner builds within each constraint.

INTEGER The integer argument specifies the number of independent, individ-
ual Wagner tree builds. This is a shortcut of the argument trees.

lookahead:INTEGER The number of trees that can be kept at each build
step. If the lookahead argument specifies a number n, and the best tree
found has cost c, then the best n trees with cost at most c+ threshold
as specified by the threshold (Section 3.3.1) command are held for
the next build step. If no threshold command is specified, then it is
set to 0.

of file:STRING Imports a tree file included in the file path of the argument.
This command is useful for importing starting trees for calculating
bremer (Section 3.3.2) support. In other contexts the command read
(Section 3.3.14) can be used with the same effect.

optimize(model [:LIDENT], branch[:LIDENT]) Specifies when we op-
timize the likelihood model and how we optimize the branches. These
options are also available in the fuse and swap commands. In all cases
a complete round of optimization will occur after the completion of a
build.

model:never Do not optimize the model during the build.

model:always Optimize the model after every additional taxon is
added (default).

model:max count:INTEGER Optimize the model after every defined
number (INTEGER) of taxa are added to the tree.

branch:never Do not optimize the branches during the build pro-
cess. We use an estimate based on the proportion of sites that
transform.

72 CHAPTER 3. POY5 COMMANDS

branch:all branches Optimize all branch lengths after each taxon
is added (default).

branch:join region Optimize a maximum of three branches; the
edge connecting the new taxa to the tree, and the two sides of
that joined edge.

nj Creates a tree using the Neighbor Joining algorithm [42]. If more than
one tree is requested, all the trees will be the same (the algorithm
implementation is deterministic).

random Generates a tree at random. All possible trees have equal probabil-
ity.

randomized Indicates that terminals are added in random order on every
Wagner tree built. This is a default tree-building strategy.

STRING This is a shortcut of the argument of file.

threshold:FLOAT The numerical value specifies the extra cost over the
current best tree that makes another tree acceptable for the lookahead
list. This parameter is only useful if lookahead (Section 3.3.1) is
used.

trees:INTEGER The integer value specifies the number of independent,
individual Wagner tree builds. The label trees is optional: it is
sufficient to specify only the integer value. Therefore, build(5) is
equivalent to build(trees:5). Note that trees is also used as an
argument of the command swap (Section 3.3.26) but with different
meaning.

The value 0 generates no trees but it retains all trees in memory. This
is useful, for example, in the bremer (Section 3.3.2) support calculation,
where instead of generating new trees per each node, the searches are
performed on the trees in the neighborhood of the current trees in
memory.

Defaults

build(trees:10, randomized, lookahead:1, threshold:0) By default,
POY5 will build 10 trees using a random addition sequence for each of them.

3.3. COMMAND REFERENCE 73

Examples

• build(20)
Builds 20 Wagner trees randomizing the order of terminal addition
(note that because the argument randomized is specified by default, it
can be omitted).

• build(trees:20, randomized)
A more verbose version of the previous example. By default a build
is randomized, but in this case the addition sequence is explicitly set.
For the total number of trees, rather than simply specifying 20, the
label trees is used. The verbose version might be desirable to improve
the readability of the script.

• build(15, as is)
Builds the first Wagner tree using the order of terminals in the first
imported data file and generates the remaining 14 trees using random
addition sequences.

• build(branch and bound, trees:5)
Builds trees using branch and bound method and keeps up to 5 optimal
trees in memory.

• build(trees:100,optimize(model:max count:5,branch:
all branches))
Builds 100 trees and optimizes the likelihood model after every 5 taxa
are added to the tree. All branch lengths are optimized after the
addition of each taxon to the tree.

3.3.2 calculate support

Syntax

calculate support([argument list])

Description

Calculates the requested support values. POY5 implements support estimation
based on resampling methods (Jackknife [13] and Bootstrap [16]) and Bremer
support [6, 27]. The Jackknife and Bootstrap support values are computed
as frequencies of clades recovered in strict consensus trees built in each
resampling iteration. The consensus trees are based on best trees recovered
in each replicate with zero-length branches collapsed. All the arguments of

74 CHAPTER 3. POY5 COMMANDS

calculate support command are optional and their order is arbitrary. For
examples of scripts implementing support measures see tutorials 5.4, 5.5
and 5.6.

The calculate support command does not output support values by
default. The output of support values must be requested using the com-
mand report (Section 3.3.19). This is particularly important for Jackknife
and Bootstrap support values, as these sampling techniques do not require
the presence of trees in memory. Therefore, it is possible to perform the
sampling for support values before the tree of interest has been found.

NOTE

In the context of dynamic homology, the characters being sampled
during pseudoreplicates are entire sequence fragments, not individual
nucleotides. Consequently, the bootstrap and jackknife support values
calculated for dynamic characters are not directly comparable to
those calculated based on static character matrices. If it is desired to
perform character sampling at the level of individual nucleotides, the
dynamic characters must be transformed into static characters using
static approx argument of the command transform (Section 3.3.26)
prior to executing calculate support. Alternatively, an output
file in the Hennig86 format can be generated based on an implied
alignment using phastwinclad (Section 3.3.19) that can subsequently
be analyzed using other programs.

Of course, if the dataset of dynamic characters contains a large
number of fragments, this caveat may not be warranted.

It is important to remember that the local optimum for the dy-
namic homology characters can differ from that for the static homo-
logy characters based on the same sequence data. Therefore, it is
recommended to perform an extra round of swapping on the trans-
formed data to reach the local maximum for the static homology
characters prior to calculating support values.

NOTE

The placement of the root affects calculation of Bremer support
values. Therefore, it is critical to specify the root prior to execut-
ing calculate support. See the description of the command set
(Section 3.3.24) on how to specify the root.

3.3. COMMAND REFERENCE 75

Arguments

Support calculation methods The following commands allow selection
among several methods for calculating support.

bootstrap[:INTEGER] Calculates Bootstrap support [16]. The integer
value specifies the number of resampling iterations (pseudoreplicates).
If the value is omitted, 5 pseudoreplicates are performed by default.

bremer Calculates Bremer support values [6, 27] for each tree in memory
by performing independent constrained searches for each node. The
parameters for the searches can be modified using arguments described
under Search strategy.

jackknife[:([argument list])] Calculates Jackknife support [13] using
the sampling parameters specified by the arguments. The arguments
of jackknife are optional and their order is arbitrary. If both values
are omitted, the default values of each argument is used.

remove:FLOAT The value of the argument remove specifies the per-
centage of characters being deleted during a pseudoreplicate. The
default of remove is 36 percent.

resample:INTEGER The value of the argument resample specifies
the number of resampling pseudoreplicates. The default of
resample is 5.

Search strategy The calculation of the support values requires a local
search, that is performed under the default settings unless the values of the
following arguments are specified.

build For calculating Bremer support, the integer value of build speci-
fies the number of independent Wagner tree builds per node. The
integer value 0 (build:0) specifies that Bremer support values are
calculated on the starting trees currently in memory, rather than on
newly generated trees. The initial trees for calculating Bremer support
can also be imported using the argument of file of the command
build (Section 3.3.1).

For calculating Jackknife and Bootstrap supports, build specifies the
number of Wagner tree builds per pseudoreplicate. Single best trees
from all pseudoreplicates are used to calculate the support values. If
multiple best trees are recovered in a pseudoreplicate, one is selected.

76 CHAPTER 3. POY5 COMMANDS

If build is omitted from the argument list of calculate support, a
single random addition Wagner tree per pseudoreplicate is built by
default. This is equivalent to build(trees:1, randomized). See
build (Section 3.3.1) for a detailed discussion of arguments of the
command build.

swap Specifies the method and parameters for local tree search. If search
parameters are not specified, the search is performed under the default
settings of swap (Section 3.3.26).

Defaults

calculate support(bremer,build(trees:1,randomized),swap(trees:1))
By default POY5 will calculate the Bremer support for each tree in memory
node by node. However, if no trees are stored in memory, executing the
command calculate support() does not have any effect.

Examples

• calculate support(bremer)
Calculates Bremer support values by performing independent searches
for every node for every tree in memory. This is equivalent to executing
calculate support(), the default setting.

• calculate support(bremer, build(trees:0), swap(trees:2))
Calculates Bremer support values by performing swapping on each tree
in memory for every node and keeping up to two best trees per search
round.

• calculate support(bremer, build(of file:"new trees"),
swap(tbr, trees:2))
Calculates Bremer support values by performing TBR swapping on
each tree in the file new trees located in the current working directory
for every node and keeping up to two best trees per search round.

• calculate support(bootstrap)
Calculates Bootstrap support values under default settings. This
command is equivalent to calculate support(bootstrap:5,
build(trees:1, randomized), swap(trees:1)).

• calculate support(bootstrap:100, build(trees:5),
swap(trees:1))

3.3. COMMAND REFERENCE 77

Calculates Bootstrap support values performing one random resampling
with replacement, followed by 5 Wagner tree builds (by random addition
sequence) and swapping these trees under the default settings of the
command swap, and keeping one minimum-cost tree. The procedure is
repeated 100 times.

• calculate support(jackknife)
Calculates Jackknife support values under default settings. This com-
mand is equivalent to calculate support(jackknife:(resample:5,
remove:36), build(trees:1, randomized), swap(trees:1)).

• calculate support(jackknife:(resample:1000, remove:25),
build(100), swap(tbr,trees:5))
Calculates Jackknife support values randomly removing 25 percent of
the characters, building 100 Wagner trees by random addition sequence,
swapping these trees using tbr, and keeping up to 5 minimum-cost
tree in the final swap per swap (totaling up to 500 stored trees per
replicate). The procedure is repeated 1000 times.

See also

• report (Section 3.3.19)

• supports (Section 3.3.19)

• graphsupports (Section 3.3.19)

3.3.3 clear memory

Syntax

clear memory([argument list])

Description

Frees unused memory. Rarely needed, this is a useful command when the
resources of the computer are limited. The arguments are optional and their
order is arbitrary.

Arguments

m Includes the alignment matrices in the freed memory.

s Includes the unused pool of sequences in the freed memory.

78 CHAPTER 3. POY5 COMMANDS

Defaults

clear memory() By default POY5 clears all memory except for the pool of
unused sequences and the matrices used for the alignments.

Examples

• clear memory(s)
This command frees memory including all alignment matrices but
keeping unused pool of sequences.

See also

• wipe (Section 3.3.30)

3.3.4 cd

Syntax

cd(STRING)

Description

Changes the working directory of the program. This command is useful
when data files are contained in different directories. It also eliminates
the need to navigate into the working directory before beginning a POY5
session. To display the path of the current directory, use the command pwd
(Section 3.3.12).

Arguments

STRING The value specifies a path to a directory.

Examples

• cd ("/Users/username/docs/poyfiles")
Changes the current directory to the directory poyfiles in a Mac OSX
environment (when using a PC, the forward slashes should be replaced
with backslashes).

See also

• pwd (Section 3.3.12)

3.3. COMMAND REFERENCE 79

3.3.5 echo

Syntax

echo(STRING, output class)

Description

Prints the content of the string argument into a specified type of output.
Several types of output are generated by POY5 which are specified by the
“output class” of arguments (see below). If no output-class arguments are
specified, the command does not generate any output.

Arguments

Output class

error Outputs the specified string as an error message (stderr in the flat
interface).

info Outputs the specified string as an information message (stderr in the
flat interface).

output[:STRING] Reports a specified string (stdout in the flat interface)
to screen or file, if the filename string (enclosed in parentheses) is
specified following output and separated from it by a colon, “:”.

Examples

• echo("Building with indel cost 1", info)
Prints to the output window in the ncurses interface and to the standard
error in the flat interface the message Building with indel cost 1.

• echo("Final trees", output:"trees.txt")
Prints the string Final trees to the file trees.txt.

• echo("Initial trees", output)
Prints the string Initial trees to the output window in the ncurses
interface, and to the standard output (stdout in the flat interface).

See also

• report (Section 3.3.19)

80 CHAPTER 3. POY5 COMMANDS

3.3.6 exit

Syntax

exit()

Description

Exits a POY5 session. This command does not accept any argument. exit is
equivalent to the command quit.

NOTE

To interrupt a process without quitting a POY5 session, use Control-C.
It aborts a currently running operation but keeps all the previously
accumulated data in memory. It does not abort the current session
permitting the entry of new commands and continuing the session.

Examples

• exit()
Quits the program.

See also

• quit (Section 3.3.13)

3.3.7 fuse

Syntax

fuse([argument list])

Description

Performs Tree Fusing [19] on the trees in memory. Tree Fusing can be used
to escape local optima by exchanging clades with identical composition of
terminals, differing in arrangement between pairs of trees. Only one pair of
trees is evaluated during a single iteration.

3.3. COMMAND REFERENCE 81

Arguments

iterations:INTEGER Specifies the number of iterations of tree fusing to
be performed. The number of iterations is effectively the number of
pairwise clade exchanges. The default number of iterations is four
times the number of retained trees (as specified by keep).

keep:INTEGER Specifies the maximum number of trees to keep between
iterations. By default, the number of trees retained is the same as the
number of starting trees.

optimize(model [:LIDENT], branch [:LIDENT]) Specifies when the like-
lihood model and how the branches are optimized during the fuse
routine. These options are also available in the build() and swap()
commands. In all cases a complete round of optimization will occur
after the completion of a build.

model:never Do not optimize the model during the fuse.

model:always Optimize the model after every join (default).

branch:never Do not optimize the branches during the fuse process.
Estimates are made based on the proportion of sites that would
undergo a transformation.

branch:all branches Optimize all branch lengths on each join.

branch:join region Optimize a maximum of five branches; the new
edge, and the two edges on either side.

replace:LIDENT Specifies the method for tree selection. Acceptable argu-
ments are:

best Keeps a set of trees of the best cost regardless of their origin.

better Replaces parent trees with trees of better cost produced during
a fusing iteration.

The default is best.

swap Specifies tree swapping strategy to follow each iteration of tree fusing.
No swapping is performed under default settings. See the description
of the command swap (Section 3.3.26).

82 CHAPTER 3. POY5 COMMANDS

Defaults

fuse(replace:best) By default POY5 performs fusing, keeping the same
number of trees per iterations as the number of the starting trees. The
number of iterations is four times the number of starting trees. During
this procedure, only the best trees are retained. No swapping is performed
subsequent to tree fusing.

Examples

• fuse(iterations:10, replace:best, keep:100, swap())
This command executes the following sequence of operations. In the first
iteration, clades of the same composition of terminals are exchanged
between two trees from the pool of the trees in memory. The cost of
the resulting trees is compared to that of the trees in memory and a
subset of the trees containing up to 100 trees of best cost is retained
in memory. These trees are subjected to swapping under the default
settings of swap. The entire procedure is repeated nine more times.

• fuse(optimize:(model:never, branch:join region))
This command performs tree fusing, specifying that the likelihood model
is never optimized after each round of fusing , but that a maximum of
five branches are optimized each round.

• fuse(swap(constraint))
This command performs tree fusing with modified settings for swapping
that follows each iteration. Once a given iteration is completed, a
consensus tree of the files in memory is computed and used as constraint
file for subsequent rounds of swapping (see the argument constraint
(Section 3.3.26) of the command swap).

See also

• swap (Section 3.3.7)

3.3.8 help

Syntax

help([argument])

3.3. COMMAND REFERENCE 83

Description

Reports the requested contents of the help file on screen.

Arguments

LIDENT Reports the description of the command, the name of which is
specified by the LIDENT value.

STRING Reports every occurrence in the help file of the expression specified
by the string value.

Defaults

help() By default POY5 displays the entire content of the help file on screen.

Examples

• help(swap)
Prints the description of the command swap in the POY Output window
of the ncurses interface or to the standard error in the flat interface.

• help("log")
Finds every command with text containing the substring log and prints
them in the POY Output window of the ncurses interface or to the
standard error in the flat interface.

3.3.9 inspect

Syntax

inspect(STRING)

Description

Retrieves the description of a POY5 file produced by the command save
(Section 3.3.21). If the description were not specified by the user, inspect
reports that the description is not available. If the file is not a proper POY5
file format, a message is printed in the POY Output window of the ncurses
interface or to the standard error of the flat interface.

POY5 files are not intended for permanent storage. They are recommended
for temporary storage of a POY5 session, checkpointing the current state of
the search (to avoid losing data in case the computer or the program fails),

84 CHAPTER 3. POY5 COMMANDS

or reporting bugs. POY5 also automatically generates POY5 files in cases of
terminating errors (important exceptions are out-of-memory errors).

Examples

• inspect("initial search.poy")
Prints the description of the POY5 file initial search.poy located
in the current working directory in the POY Output window of the
ncurses interface or to the standard error in the flat interface. If,
for example, the file was saved using the command save ("initial -
search.poy", "Results of Total Analysis"), then the output mes-
sage is: Results of Total Analysis.

See also

• save (Section 3.3.21)

• load (Section 3.3.10)

• cd (Section 3.3.4)

• pwd (Section 3.3.12)

3.3.10 load

Syntax

load(STRING)

Description

Imports and inputs POY5 files created by the command save. The name of
the file to be loaded is included in the string argument. All the information
of the current POY5 session will be replaced with the contents of the POY5
file. If the file is not in proper POY5 file format, an error message is printed
in the POY Output window of the ncurses interface, or the standard error in
the flat interface. See the description of the command save (Section 3.3.21)
on the POY5 file and its usage.

POY5 files are not intended for permanent storage: they are recommended
for temporary storage of a POY5 session, checkpointing the current state of
the search (to avoid losing data in case the computer or the program fails),
or reporting bugs. POY5 also automatically generates POY5 files in cases of
terminating errors (an important exception is out-of-memory error).

3.3. COMMAND REFERENCE 85

Examples

• load("initial search.poy")
Reads and imports the contents of the POY5 file initial search.poy,
located in the current working directory.

See also

• save (Section 3.3.21)

• inspect (Section 3.3.9)

• cd (Section 3.3.4)

• pwd (Section 3.3.12)

3.3.11 perturb

Syntax

perturb([argument list])

Description

Performs branch swapping on the trees currently in memory using temporarily
modified (“perturbed”) characters. Once a local optimum is found for the
perturbed characters, a new round of swapping using the original (non-
modified) characters is performed. Subsequently, the costs of the initial
and final trees are compared and the best trees are selected. If there are n
trees in memory prior to searching using perturb, then the n best trees are
selected at the end. For example, if there are 20 trees currently in memory,
20 individual perturb procedures will be performed (each procedure starting
with one of the 20 initial trees), and 20 final trees are produced.

This command allows for movement from a local search optimum in the
tree space by perturbing the character space (hence the name). The arguments
specify the type of perturbation (ratchet, resample, and transform), the
parameters of the subsequent search (swap), and the number of iterations of
the perturb operation (iterations).

No new Wagner trees are generated following the perturbation of the data;
the search is performed by local branch swapping (specified by swap). If
perturb is executed with no trees in memory, an error message is generated.
The arguments of perturb are optional and their order is arbitrary.

86 CHAPTER 3. POY5 COMMANDS

Arguments

iterations:INTEGER Repeats (iterates) the perturb procedure for the
number of times specified by the integer value. The number of iterations
is reported in the Current Job window of the ncurses interface and to
the standard error in the flat interface.

ratchet[:(FLOAT, INTEGER)] Perturbs the data by implementing a vari-
ant of the parsimony ratchet [36] by reweighting characters listed in
report(data). For unaligned data, the ratchet randomly selects and
reweights a fraction of sequence fragments (not individual nucleotides)
specified by the float (decimal) value, upweighted by a factor specified
by the integer value (severity). Thus, the number of sequence frag-
ments into which the data is partitioned will impact the effectiveness of
using the ratchet on dynamic character matrices. For static matrices,
such as those obtained using the command transform (Section 3.3.27),
ratchet randomly selects and reweights individual nucleotide positions
(column vectors), as in Nixon’s original implementation [36]. Under de-
fault settings, ratchet selects 25 percent of characters and upweights
them by a factor of 2. Unless ratchet is performed under default
settings (that does not require the specification of the fraction of data
to be reweighted and the severity value), both values must be specified
in the proper order and separated by a comma. This argument is only
used as an argument for perturb.

resample:INTEGER Resamples the characters in random order with replace-
ment. The INTEGER specifies the number of characters to be resampled.
No default settings are available for resample. This command is only
used as an argument of perturb.

swap Specifies the method of branch swapping for a local tree search based
on perturbed data. If the argument swap is omitted, the search is per-
formed under default settings of the command swap (Section 3.3.26).

transform Specifies a type of character transformation to be performed
before executing a perturb procedure. See the command transform
(Section 3.3.27) for the description of the methods of character type
transformations and character selection.

3.3. COMMAND REFERENCE 87

Defaults

perturb(ratchet:(0.25,2), iterations:1, swap (trees:1)) When no
arguments specified, POY5 performs the ratchet procedure under default set-
tings.

Examples

• perturb(resample:50, iterations:10)
Performs 10 successive repetitions of random resampling of 50 charac-
ters with replacement. Branch swapping is performed using alternating
SPR and TBR, and and keeping one minimum-cost tree (the default
of swap).

• perturb(iterations:20, ratchet:(0.18,3))
Performs 20 successive repetitions of a variant of the ratchet (see above)
by randomly selecting 18 percent of the characters (sequence fragments)
and upweighting them by a factor of 3. Branch swapping is performed
using alternating SPR and TBR, and keeping one optimal tree (the
default of swap).

• perturb(iterations:1, transform (tcm:(4,3)))
Transforms the cost regime of all applicable characters (i.e. molecular
sequence data) to the new cost regime specified by transform (cost
of substitution 4 and cost of indel 3). Subsequently a single round of
branch swapping is performed using alternating SPR and TBR, and
and keeping one optimal tree (the default of swap).

• perturb(ratchet:(0.2,5), iterations:25, swap(tbr, trees:5))
Performs 25 successive repetitions of a variant of the ratchet (see above)
by randomly selecting 20 percent of the characters (sequence fragments)
and upweighting them by a factor of 5. Branch swapping is performed
using TBR and keeping up to 5 optimal trees in each iteration.

• perturb(transform(static approx), ratchet:(0.2,5), iterat-
ions:25, swap(tbr, trees:5))
Transforms all applicable (i.e. dynamic homology sequence characters)
using transform into static characters. Therefore, the subsequent
ratchet is performed at the level of individual nucleotides (as in the
original implementation), not sequence fragments. Thus, ratchet is per-
formed by selecting 20 percent of the characters (individual nucleotides)
and upweighting them by a factor of 5. Branch swapping is performed

88 CHAPTER 3. POY5 COMMANDS

using TBR and keeping up to 5 optimal trees in each iteration as in
the example above.

See also

• swap (Section 3.3.26)

• transform (Section 3.3.27)

3.3.12 pwd

Syntax

pwd()

Description

Prints the current working directory in the POY Output window of the
ncurses interface and the standard error (stderr) of the flat interface. The
command pwd does not have arguments. The default working directory is
the shell’s directory when POY5 started.

Examples

• pwd()
This command generates the following message: “The current working
directory is /Users/username/datafiles/”. The actual reported
directory will vary depending on the directory of the shell when POY5
started, or if it has been changed using the command cd().

See also

• cd (Section 3.3.4)

3.3.13 quit

Syntax

quit()

3.3. COMMAND REFERENCE 89

Description

Exits POY5 session. This command does not have any arguments quit is
equivalent to the command exit.

NOTE

To interrupt a process without quitting a POY5 session, use Control-C.
It aborts a currently running operation but keeps all the previously
accumulated data in memory. It does not abort the current session,
thereby permitting the entry of new commands and continuing the
session.

Examples

• quit()
Quits the program.

See also

• exit (Section 3.3.6)

3.3.14 read

Syntax

read([argument list])

Description

Imports data files and tree files. Supported formats include ASN1, Clustal,
FASTA, GBSeq, Genbank, Hennig86, Newick, NewSeq, Nexus, PHYLIP,
POY3, TinySeq, and XML. Filenames must be enclosed in quotes and, if
multiple filenames are specified, they must be separated by commas. All
filenames read into POY5 must include the appropriate suffix (e.g. .aln, .fas,
.fasta, .ss, .tre). The exclusion of these suffixes will result in an error such as
“Sys error (“No such file or directory”)”. read automatically detects the type
of the input file. This command can also use wildcard expressions (such as
) to refer to multiple files in a single step. For example, read(".fas*")
imports all files of the FASTA format in the current directory (in this case this
will include files that end in both .fas and .fasta. Moreover, importing all
files that begin with the filename BAP is achieved by typing read("BAP.*").
Specifying a filename(s) is obligatory: an empty argument string, read(),

90 CHAPTER 3. POY5 COMMANDS

results in no data being read by POY5. The list of imported files and their
content can be reported on screen or to a file using report(data).

If a file were to be loaded twice, POY5 issues an error message but this
will not interfere with subsequent file loading and execution of commands.

POY5 automatically reports in the POY Output window of the ncurses
interface or to the standard error in the flat interface the names of the
imported files, their file type, and a brief description of their contents. A
more comprehensive report on the contents of the imported files can be
requested (either on screen or to a file) using the argument data of the
command report (Section 3.3.19).

Arguments

Data file types To import data files, individual data file names must be
included in the list of read arguments, enclosed in quotes, and separated
by commas. If no data file types are specified, the types of the imported
files are recognized automatically. To specify the data type, an additional
argument explicitly denoting the data type, is included; it is followed by a
colon (“:”) and the list of data file names (enclosed in parentheses), separated
by commas and enclosed in quotes. This format prevents any ambiguity
in importing multiple data file types simultaneously (i.e. included in an
argument list of a single read) command.

NOTE

Although POY5 recognizes multiple data file formats, it does not
interpret all of their contents. Instead, it will recognize and import
only character data and ignore other content (such as blocks of
commands, etc.). For certain data file formats, POY5 will interpret
additional information as detailed for each file type below. It is
important, however, to verify that the data was interpreted properly
(using the command report).

3.3. COMMAND REFERENCE 91

NOTE

Unlike many phylogenetic programs, POY5 does not clear the memory
upon reading a second file. Instead, any subsequently read files will
be added to the total data being analyzed. If a new taxon appears
in a file, then it is be assigned missing data for all previously loaded
characters. If a taxon does not appear in a file, missing data are
assigned for the characters that appearing in it.

To eliminate the imported data and then to input a new data the
wipe() command must be issued first.

NOTE

If one of the terminal names in an imported data file contains a
space, “ ”, POY5 issues a warning. It is therefore advisable to format
taxon names in the data files, such that any space is replaced by an
underscore, e.g. Rhacodactylus ciliatus. A warning is also issued
if a taxon name appears to match a nucleotide sequence. If one of the
terminal names in an imported molecular file contains a percentage
(”%”) or an at (”@”) symbol, the file will not be loaded because it
may cause the program to crash when reporting results.

Basic data types This set of arguments covers the importing of all data
files (except chromosome, genome, custom alphabet and breakinv), as well
as tree files in parenthetical notation.

aminoacids:(STRING list) Specifies that the data listed in the string ar-
gument are amino acid sequences in FASTA format.

NOTE

Currently, IUPAC ambiguity codes for amino acids are not
supported other than for X and inputing files that contain
amino acid data with ambiguities results in an error message.

nucleotides:(STRING list) Specifies that the data in the list of files hold
nucleotide sequences in FASTA format. The sequences can be divided
in smaller fragments using a pound sign (”#”), and each fragment is
visible as an individual character.

92 CHAPTER 3. POY5 COMMANDS

NOTE

POY5 recognizes the characters x and n as representing any
nucleotide base (a, c, g, or t). The ? symbol inserted in
sequence data signifies missing data, a gap, or any nucleotide
base may occur in that matrix position. For prealigned data
sequence gaps are recognized by dashes.

NOTE

Continuous characters can be treated as such by assigning
the lower and upper bounds of the range as polymorphic
additive character states [20]. Although they will be opti-
mized simultaneously with all other characters, continuous
characters must be scored in a separate Hennig86 format ma-
trix with the heading "nstates cont" — an example of
this file format (ccm.ss) is available at http://research.
amnh.org/scicomp/projects/poy.php. Consider a contin-
uous character winglength, the states of which are ranges
of measurements in hundredth of a millimeter, for example
2.53-3.68 mm for a given terminal. A corresponding charac-
ter state in the additive character matrix (in Hennig86 for-
mat) is [253,368]. Because additive characters are integers,
such characters need to be re-scaled using the weightfactor
argument of transform. To scale the values, a transfor-
mation is applied to the character winglength as follows:
transform(names:("winglength"),(weightfactor:0.01)).

STRING Reads the file specified in the path included in the string argument.
A path can be absolute or relative to the current working directory (as
printed by pwd()). The file type is recognized automatically. Molecular
files are assumed to contain nucleotide sequences. Valid files to read
using this command are: tree files using parenthetical notation (Newick,
POY5 trees), Hennig86 files, Nona files, Sankoff character files as used
in POY 3, FASTA files (and virtually any file generated by Genbank),
and Nexus files. Only taxon names, trees, characters, and cost regimes
will be imported from each one of this files, no other commands are
currently recognized.

http://research.amnh.org/scicomp/projects/poy.php
http://research.amnh.org/scicomp/projects/poy.php

3.3. COMMAND REFERENCE 93

Chromosome and genome type characters This set of arguments gov-
ern characters that are either multi-locus nucleotides sequences (chromosome)
or multi-locus, multi-chromosomal nucleotide sequences (genome). Chromo-
some sequences can be annotate or unannotated.

annotate:(STRING list) Specifies that the data listed in the string argu-
ment are chromosomal sequences with pipes (“ ”) separating individual
loci. This data type allows for locus-level rearrangements specified
by the command transform (Section 3.3.27). Locus homologies are
determined dynamically, but based on annotated regions [56]. (For a
sample script using this data type see tutorial 5.9.

chromosome:(STRING list) Specifies that the data in the files listed in
the string argument are chromosomal sequences without predefined
locus boundaries. Specifying that imported sequences are chromo-
some type data enables the application of parameter options that
optimize chromosome-level events such as rearrangements, inversions,
and large-scale insertions and deletions (including duplications). These
parameter options (e.g. inversion cost) are specified using the com-
mand transform (Section 3.3.27). Unlike when using annotated data
type, both locus-level and nucleotide-level homologies are determined
dynamically [9, 55] (see tutorial 5.8). If chromosome sequences were
imported as nucleotide type data, they can be converted to chro-
mosome type data using the seq to chrom argument of transform
(Section 3.3.27).

genome:(STRING list) Specifies that the data listed in the string argu-
ment are multi-chromosomal nucleotide sequences with an at sign
(“@”) separating individual chromosomes. This data type allows for
chromosome-level rearrangements which are specified by the command
transform (Section 3.3.27). Chromosome homologies are determined
using the Mauve aligner [9] within the command transform (Sec-
tion 3.3.27). [Note: for genome character types, it is only possible
to separate the individual chromosomes and not the loci within these
chromosomes. A sample script using this data type can be found in
tutorial 5.10.)

Custom alphabet type characters This set of arguments are for charac-
ters are those that employ a user-specified alphabet. These include characters
of the custom alphabet, as well as break inversion type.

94 CHAPTER 3. POY5 COMMANDS

breakinv:(STRING list, tcm :(STRING),[LIDENT list]) An enhance-
ment
of the data file type custom alphabet, allowing rearrangement events.
Syntactically, breakinv data type is identical to the custom alphabet
data type. Four optional arguments are possible (LIDENT list): level;
init3d; tiebreaker; and orientation. level, init3d, and tiebreaker
can be used in conjunction with both breakinv and custom alphabet
character types (see the argument custom alphabet (Section 3.3.14)
below), while orientation can be applied to breakinv characters only.
Specifying that imported sequences are breakinv type data enables
the application to calculate either locus breakpoint or locus inversion
costs to these data. These parameter options are specified using the
command transform (Section 3.3.27).

orientation:BOOL This argument requires an obligatory boolean value,
namely true or false. It allows the user to specify the orientation
of custom-defined alphabet characters. The tilde (“∼”) symbol
preceding an alphabet character indicates the negative orientation.
The default option is true.

custom alphabet(:STRING list, tcm :(STRING),[LIDENT list]) Reads
the data in the user-defined alphabet format. The first string argument
is the name of a data file(s) that contains custom-alphabet sequences
in FASTA format. The characters can be (but are not required to be)
separated by spaces.

The tcm refers to the custom-alphabet matrix that contains two
parts: an alphabet itself, where the alphabet elements are separated
by spaces, and a transformation cost matrix. The elements in an
alphabet can be letters, digits, or both, as long as one element is not
a prefix of another (“prefix-free”). For example, the following pairs
of custom-alphabet elements are not valid because the first is a prefix
of the second (which would prevent the proper parsing of an input
file): AB and ABBA or 122 and 122X. The transformation cost matrix
contains the rows and columns in which the positions from left to
right and top to bottom correspond to the sequence of the elements
as they are listed in the alphabet. An extra rightmost column and
lowermost row correspond to a gap. It is important that the cost matrix
be symmetrical. An example of a valid custom alphabet input file is
provided below:

3.3. COMMAND REFERENCE 95

alpha beta gamma delta
0 2 1 2 5
2 0 2 1 5
1 2 0 2 5
2 1 2 0 5
5 5 5 5 0

In this example, the cost of transformation of alpha into beta is 2,
and cost of a deletion or insertion of any of the four elements costs 5.

An example of a corresponding input file:

>Taxon1
alphabetagammadelta
>Taxon2
alphabetabetagammadelta
>Taxon3
alphabetabetadelta

Three optional arguments of custom alphabet are possible ([LIDENT
list]): level; init3d; and tiebreaker.

level:(INTEGER, LIDENT) This argument determines the heuristic
level of the median sequence calculation. The user must define
both the level itself, as specified by the INTEGER, and the keep
method, as specified by the LIDENT (first, last, or at random.
If the LIDENT is first, ties are broken (if the number of equally
costly states is greater than the level number) by choosing the
first median state examined; if last, the last state, and if at -
random then uniformly at random. The default level is 2 and
keep method is first.

init3d:BOOL This argument requires an obligatory boolean value,
namely true or false. init3d initiates a 3D matrix, but the
user should be aware that this option can consume a great deal
of memory.

tiebreaker:LIDENT This argument determines how ties among me-
dian states are chosen: first, last, and at random. If first is
chosen, then the ties are broken (if the number of equally costly
states is greater than the level number) by choosing the first
median state examined; if last, the last state, and if at random
then uniformly at random. The default choice method is first.

96 CHAPTER 3. POY5 COMMANDS

NOTE

As a rule, transformation cost matrices are employed at the
transform stage of the analysis. With prealigned and custom -
alphabet characters however, the cost matrix (tcm) need to be read
in along with the data files.

Prealigned data This set of arguments specifies how certain characters,
namely sequences, amino acids and custom alphabet characters, are read as
prealigned.

prealigned:(LIDENT:(STRING list)[,tcm:STRING,gap opening:INTEGER])
Specifies that the data indicated in the STRING, of the type identified
by the LIDENT (i.e. aminoacid(s), custom alphabet or nucleotides)
are prealigned. A transformation cost matrix, as defined in the tcm
STRING argument and a gap opening cost can be specified. If these
are not specified, the default cost of tcm(1,1) and gap opening cost 0
are assigned. (See the argument tcm (Section 3.3.27) of the command
transform.)

NOTE

By default, upon importing prealigned sequence data, all the
gaps are removed and the sequences are treated as dynamic
homology characters. To preserve the alignment the data must
be imported using the prealigned argument of the command
read.

prealigned:(LIDENT:(STRING list)[,tcm:(INT, INT),gap opening:INT])
Specifies that the input sequences are prealigned and should be assigned
substitution and indel costs as defined by the tcm integers (INT, INT)
and gapopening integer. (See the argument tcm (Section 3.3.27) of
the command transform.)

Defaults

read() If no data files are specified, POY5 does nothing. If however, data files
are listed but character type is not indicated, POY5 automatically detects
data file types and interprets sequence files as nucleotides-type data.

3.3. COMMAND REFERENCE 97

Examples

• read("/Users/andres/data/test.txt")
Reads the file test.txt located in the path “/Users/andres/data/”.

• read("28s.fas", "initial trees.txt")
Reads the file 28s.fas and loads the trees in parenthetical notation of
the file initial trees.txt.

• read("SSU*", "*.txt")
Reads all the files the names of which start with SSU, and all the files
with the extension .txt. The types of the data files are determined
automatically.

• read(nucleotides:("chel.FASTA", "chel2.FASTA"))
Reads the files chel.FASTA and chel2.FASTA, containing nucleotide
sequences.

• read(aminoacids:("a.FASTA", "b.FASTA", "c.FASTA"))
Reads the amino acid sequence files a.FASTA, b.FASTA, and c.FASTA.

• read("hennig1.ss", "chel2.FASTA", aminoacids:("a.FASTA"))
Reads the Hennig86 file hennig1.ss, the FASTA file chel2.FASTA
containing nucleotide sequences, and the amino acid sequence file
a.FASTA.

• read(custom alphabet:("my data",tcm:("alphabet"),tiebreaker:
last, orientation:false))
Reads the first file, my data, containing data in the format of a custom
alphabet, which is defined in the tcm file, alphabet.

• read(annotated:("filea.txt", "fileb.txt"), chromosome:
("filec.txt"))
Reads three files containing chromosome-type sequence data. The
sequences in two files, filea.txt and fileb.txt, contain pipes (“ ”)
separating individual loci, whereas the sequences in the third, are
without predefined boundaries.

• read(genome:("mt genomes", "nu genomes"))
Reads two files containing genomic (multi-chromosomal) sequence data.

• read(prealigned:("18s.aln", tcm:(1,2)))
Reads the prealigned data file 18s.aln generated from the nucleotide

98 CHAPTER 3. POY5 COMMANDS

file 18s.FASTA using the the transformation costs 1 for substitutions
and 2 for indels.

• read(prealigned:(nucleotides:("*.nex"), tcm:("matrix1")))
Reads character data from all the Nexus files as prealigned data using
the the transformation cost matrix from the file matrix1.

See also

• report (Section 3.3.19)

3.3.15 recover

Syntax

recover()

Description

Recovers the best trees found during swapping, even if the swap were cancelled.
This command functions only if the argument recover (Section 3.3.26) were
included in a previously executed (in the current POY5 session) command
swap. Otherwise, it has no effect.

The trees imported by recover are appended to those currently stored
in memory.

Note that using recovered trees is not intended for temporary storage of
trees. It is useful only as an intermediary operation in a given part of a POY5
session. When other commands that require clearing memory are executed
(such as build, calculate support, or another swap), the trees stored by
recover can no longer be retrieved.

Examples

• recover()
If the command swap (executed earlier in the current POY5 session)
contained the argument recover, for example, swap(tbr,recover),
this command will restore the best trees recovered during swapping.

See also

• swap (Section 3.3.26)

3.3. COMMAND REFERENCE 99

3.3.16 rediagnose

Syntax

rediagnose()

Description

Performs a re-optimization of the trees currently in memory. This function
is useful for sanity checks of the consistency of the data. Its main usage is
for the POY5 developers. This command does not have arguments.

Arguments

clear Specific for likelihood characters, this rediagnoses the tree, clear-
ing the optimized model parameters and branch lengths. Additional
optimizations are performed after diagnosis.

preserve Performed during a likelihood search, this rediagnoses the tree,
keeping the current model parameters and branch lengths. Additional
optimizations are performed after diagnosis.

Examples

• rediagnose()
See the description of the command.

3.3.17 redraw

Syntax

redraw()

Description

Redraws the screen of the terminal. This command is only used in the
ncurses interface, other interfaces ignore it. redraw clears the contents of the
Interactive Console window but retains the contents of the other windows.
It does not affect the state of the search and the data currently in memory.

Examples

• redraw()
See the description of the command.

100 CHAPTER 3. POY5 COMMANDS

3.3.18 rename

Syntax

rename([argument list])

Description

Replaces the name(s) of specified item(s) (characters or terminals). This
command allows for substituting taxon names and helps merging multiple
datasets without modifying the original data files. More specifically, it can
be used, for example, (1) for housekeeping purposes, when it is desirable to
maintain long verbose taxon names (such as catalog or GenBank accession
numbers) associated with the original data files but avoid reporting these
names on the trees; (2) to provide a single name for a terminal in cases where
the corresponding data are stored in different files under different terminal
names; and (3) to change an outdated or invalid terminal name.

The command consists of a terminal or character identifier followed by a
comma and then by either a string containing a synonymy file or a pair (or
pairs) of strings containing the names of items being renamed.

NOTE

In order to change taxon names, the command rename must be
executed before importing the data files (see read (Section 3.3.14))
that contain the taxa that are to be renamed. This can be achieved
by importing a synonymy file.

NOTE

Once the command rename is applied, subsequent commands must
refer to the terminals using the new, substitute names. This is
critical, for example, when importing a terminals file using the
command select (Section 3.3.23) or specifying a root using the
command set (Section 3.3.24).

NOTE

POY5 has a useful option that allows the commenting out of portions
of a taxon name in the imported data file. This is achieved by
inserting a dollar sign (“$”) sign before the region of text that the
user wishes to comment out. For instance, the name Ablepharus -
budaki$ AY561421 16S will be read as Ablepharus budaki by the
program.

3.3. COMMAND REFERENCE 101

Arguments

Identifiers The identifiers specify whether terminals or characters are
being renamed. An identifier must precede the subsequent arguments.

characters Specifies that the subsequently items to be renamed are char-
acters.

terminals Specifies that the subsequently items to be renamed are termi-
nals.

Specifying items to be renamed These arguments allow the user to
specify the items to be renamed either individually (by using a pair of string
arguments) or in a group (by importing a synonymy file). The latter is useful
when there are multiple items to be renamed and/or when it is desirable to
substitute a single name for multiple ones.

STRING Specifies the name of the file (a synonymy file) that contains the
list of terminals or characters to be renamed. The synonymy file has
the following structure: each line contains a list of synonyms (two or
more) separated by spaces. The name of the item listed first is going
to be substituted for all the subsequently listed names. Consider, for
example, a two-line synonymy file below:

alpha beta gamma
delta 1

When this file is imported, the items beta and gamma will be renamed
as alpha and the item 1 will be renamed as delta in all subsequently
imported data files.

(STRING, STRING) Specifies the names of individual items to be renamed.
The first item is renamed as the second item: specifying ("alpha",
"beta") renames the character or taxon alpha to beta. To specify
multiple pairwise name substitution, several name pairs can be listed:
("alpha","beta"),("gamma","delta").

NOTE

Note that when rename is applied by specifying pairs of syn-
onyms in the command’s argument, the substitute name is
listed second. However, the substitute name appears first in a
synonymy file, followed by one or more synonyms.

102 CHAPTER 3. POY5 COMMANDS

Examples

• rename(terminals,"synfile")
This command renames terminal names contained in the synonymy file
synfile in all subsequently imported data files.

• rename(terminals,("Mytilus sp","Mytilus edulis"))
This command renames the terminal taxon Mytilus sp as Mytilus -
edulis in all subsequently imported data files.

3.3.19 report

Syntax

report([argument list])

Description

Outputs the results of current analysis or loaded data in the POY Output
window of the ncurses interface, the standard output of the flat interface, or
to a file. To redirect the output to a file, the file name in quotes and followed
by a comma must be included in the argument list of report. All arguments
for report are optional. This command allows the user to output information
concerning the characters and terminals, diagnosis, exporting static homology
data, implied alignments, trees, as well as other miscellaneous arguments.

Arguments

Reporting to files

new:STRING Specifies the name of the file to which all the specific types of
report outputs, designated by additional arguments, are printed. If no
additional arguments are specified, the data, trees, and diagnosis are
reported to that file by default. In this case, a new file is created or
the previously existing file of the same name is overwritten.

STRING Specifies the name of the file to which all the specific types of
report outputs, designated by additional arguments, are printed. If no
additional arguments are specified, the data, trees, and diagnosis are
reported to that file by default. By default files are appended to the
report, rather than overwritten.

A string (text in quotes) argument is interpreted as a filename. There-
fore, "/Users/andres/results1.tre" represents the file results1.tre

3.3. COMMAND REFERENCE 103

in the directory /Users/andres. If no path is given, the path is relative
to the current working directory as printed by pwd().

Characters and terminals This set of arguments reports the current
status of terminals and characters from the imported data files.

cross references[:identifiers[:STRING]] Reports a table with termi-
nals being analyzed in rows, and the data files in columns. A plus
sign (“+”) indicates that data for a given terminal is present in the
corresponding file; a minus sign (“–”) indicates that it is not. This
argument is a very useful tool for visual representation of missing data.
Moreover, reporting all the data to a cross references file can also
highlight inconsistencies in the spelling of taxon names in different
data files.

Under default settings, cross-references are reported for all imported
data files. To report cross-references for some of the fragments within
a given file, a single character, or a subset of characters, optional
arguments (identifiers) must be specified. A combination of a
character identifier (see command select (Section 3.3.23)) and the file
names (specified in the the string value) is used to select specific data
files to be cross-referenced. For example, to only report information for
file1 is achieved by typing cross references:names:("file1").

The argument cross references:all generates a table that shows
presence and absence of fragments contained within each file. If each
data file contains a single fragment, executing cross references:all
is equivalent to executing cross references.

By default, the cross-reference table is printed on screen or to an
output file, if specified. The reported cross references file is output
as a plaintext text document, which can then be imported into a
spreadsheet application such as Microsoft Excel or Apple Numbers for
easier viewing.

data Outputs a summary of the input data. More specifically, POY5 will
report the number of terminals to be analyzed, a list of included
terminals with numerical identification numbers, list of synonyms (if
specified), a list of excluded terminals, a number of included characters
in each character-type category (i.e. additive, non-additive, Sankoff,
and molecular) with the corresponding cost regimes, a list of excluded
characters, and a list of input files. If the report is directed to a file

104 CHAPTER 3. POY5 COMMANDS

with extension “nex” or “nexus” then the output is suitable for a nexus
file (including the NEXUS header). Hennig format is produced if the
report is directed to a file with extension “ss” or “hen” or “hennig”.

lkmodel Reports the likelihood model, costs, and tree length for the charac-
ters in memory in a style similar to that of PHYLIP.

searchstats Outputs a summary of the results of the last search command,
including the number of builds, fuses, ratchets, and the costs of the
trees found.

seq stats:identifiers Outputs a summary of the sequences specified in
the argument value, for all taxa. The summary includes the maximum,
minimum, and average length and distance for all terminals. In this
case, identifiers include file names, characters, codes etc:

terminals Reports a list and number of terminals included and excluded
per input file. Use the command select (Section 3.3.23) for including
and excluding terminals.

treestats Reports the number of trees in memory for each cost.

treecosts Reports the cost of each tree separated by colons.

Diagnosis This argument will output the diagnosis.

diagnosis Outputs the diagnosis of each tree on screen or redirects it to a
file, if specified. If the extension .xml is appended to the name of the
output file, the diagnosis is reported in XML format, rather than in
simple text format.

Exporting static homology data The following commands export the
static homology characters currently in memory.

nexus Produces a file in the Nexus format that contains all the characters
currently in memory. In order to export an implied alignment as a Nexus
file, the characters must first be transformed into static characters using
the transform command (see the Hennig86 example in tutorial 5.3):

transform (all, (static approx))
report ("report.nexus", nexus, trees:(nexus))

3.3. COMMAND REFERENCE 105

NOTE

To generate a file that contains implied alignments only for
a subset of fragments, an identifier must be included in the
argument list of transform. For example,

transform (names:("fragment 1", "fragment 2"),
(static approx))
report ("myfile.ss", phastwinclad)

will produce Hennig86 files only for fragment 1 and fragment -
2. The resulting file can be imported into other programs, such
as WinClada. This is equivalent to the phastwincladfile
command in POY3.

phastwinclad Produces a file in the Hennig86 format that contains the
additive and nonadditive characters currently in memory. In order to
export an implied alignment as a Hennig86 file, the characters must first
be transformed into static characters using the transform command
(see example in tutorial 5.3):

transform (all, (static approx))
report ("report.ss", phastwinclad)

Implied alignments This set of arguments outputs implied alignments [63].

fasta:identifiers The same as implied alignments (Section 3.3.19) but
no additional headers are added, producing a valid FASTA file. In-
tended for easy automation, by producing a file that other programs
can read immediately.

ia[:identifiers] Synonym of implied alignments.

implied alignments[:identifiers] Outputs the implied alignments of
the specified set of characters in FASTA format. The optional value of
the argument specifies the characters included in the output, using the
same identifiers described for the character specification in the entry for
the command select (Section 3.3.23). If no characters are specified,
then the implied alignment of all the sequence characters is generated.
The output is reported on screen unless a name of an output file (in
parentheses) is specified, preceding the command name and separated
from it by a comma. This argument is synonymous with the argument
ia.

106 CHAPTER 3. POY5 COMMANDS

Trees This set of arguments outputs tree representations in parenthetical,
ascii (simple text), or PDF formats. The arguments specify the types of tree
outputs. They include actual trees resulting from current searches, or trees
imported from files, their consensus trees, or trees displaying support values.

To select the root terminal in the tree representation, the command set
(Section 3.3.24) is used.

Most analyses produce more than a single tree and it is often desirable
to report only some of them. To report particular trees (for instance all
optimal trees, randomly-selected trees, or all unique trees, etc.), first the
command select (Section 3.3.23) must be applied to specify (select) the
desired trees from all those stored in memory.

all roots In a tree with n vertices (and therefore n− 1 edges), calculates
the cost of the n− 1 rooted trees as implied by a root located in the
subdivision vertex at each edge in the unrooted tree in memory.

asciitrees[:collapse [:BOOL]] Draws ascii character representations of
trees stored in memory. The argument collapse collapses the zero
length branches if the boolean value is true (the default); if the boolean
value is false, the zero length branches are not collapsed.

clades Output a set of Hennig86 files. Each file, named file.hen, where
“file” is whatever string you pass to this function contains information
on each clade for one of the trees currently stored. This is similar to
the utility jack2hen of POY3.

consensus[:INTEGER] Reports the consensus of trees in memory in paren-
thetical notation. If no integer value is specified, a strict consensus is
calculated [41]; if an integer value is specified, a majority rule consensus
is computed, collapsing nodes with occurrence frequencies less than the
specified integer [32]. If a value less than 51 is specified, POY5 reports
an error.

graphconsensus[:INTEGER] Same as consensus except for consensus trees
are reported in graphical format, either in the ascii format on screen
or in the PDF format if redirected to a file.

graphdiagnosis Output the diagnosis in PDF format. The PDF is com-
pressed, and contains the trees and links to see the diagnosis of each
vertex in the tree.

3.3. COMMAND REFERENCE 107

graphsupports[:argument] This command outputs a tree with support
values that have been previously calculated using the calculate -
support (Section 3.3.2) either on screen in ascii format, or, if specified,
to a file in PDF format. The argument values are the same as for
supports (i.e. bremer, jackknife, and bootstrap).

supports[:argument] Outputs a newick format representation of a tree
with the support values has previously been calculated using the com-
mand calculate support (Section 3.3.2), either to the screen or to
a file (if specified). If no argument is given, all calculated support
values are printed. The arguments bremer, jackknife, and bootstrap
specify which type of support tree to report.

To print the Bremer supports of the trees in memory, using as
reference trees that are stored in a file, bremer accepts an optional
string argument (as in report(supports:bremer:("file1.txt",
"file2.txt")). The argument’s value specifies the files containing
lists of trees and costs (as those generated by visited (Section 3.3.26)),
that should be used with their annotated cost to assign the Bremer
support values.

To print the Bremer supports of a tree that does not exists in
memory (or a consensus tree) stored in a file, bremer will accept the
value of file:(STRING, INTEGER, files), where the first argument
value (STRING) is the file containing the tree for which Bremer supports
should be computed, the second argument (INTEGER) is the cost of the
tree, and the files is that described in the previous paragraph.

If no input file is given, or if bootstrap or jackknife are requested,
then the necessary information must have been calculated using the
argument calculate support (Section 3.3.2).

The arguments jackknife and bootstrap accept an optional argu-
ment with two possible values: individual, consensus, or a STRING.

The argument individual reports the support value for each tree
held in memory: if there are a hundred trees stored in memory, for each
one, the support values for each tree are reported. consensus generates
a “consensus” tree, with the clades that have support higher than 50
percent. STRING labels the branches in the input trees contained in
the input file located in the path of the STRING (e.g. to assign support
values to the branches of a consensus tree). The default behavior, when
no individual or consensus value is provided, is individual.

108 CHAPTER 3. POY5 COMMANDS

trees:(argument list) Outputs the trees in memory in parenthetical nota-
tion. The argument trees receives an optional list of values specifying
the format of the tree that has to be generated. Unless hennig is
specified in the list of values, trees uses newick format in the tree
output. The valid optional arguments are:

branches report tree with likelihood branch lengths included.
collapse[:BOOL] If true, zero length branches are collapsed (the

default), but if false, no branches are collapsed. By default, no
branches are collapsed.

hennig Prepends the tread command to the list of trees and separates
them with a star; this format is suitable for Hennig86, NONA,
and TNT files.

margin:INTEGER Sets the margin width of the generated trees.
newick Outputs the trees in the Newick format, with the terminals

separated with commas, and trees separated with semicolons.
nexus Outputs the trees in the Nexus format, inside a TREE block.

NOTE

The hennig and newick arguments are mutually exclusive.

nomargin Outputs the trees in a single line. This is useful for some
programs (such as TreeView) that cannot read trees broken in
several lines.

total Includes the total cost of a tree in square brackets after each
tree.

If the report is directed to a file with extension “nex” or “nexus” then
the output is suitable for a nexus file (trees inside a TREES block).
Hennig format is produced if the report is directed to a file with
extension “ss” or “hen” or “hennig”. In these two cases, all other
formatting options are ignored.

Other arguments

ci Calculates the ensemble consistency index (CI [12, 30]) for additive,
and nonadditive characters. Dynamic homology characters are ignored
in calculating the CI, therefore, the dynamic homology characters
must be converted to static homology characters using the argument
static approx of the command transform (Section 3.3.27).

3.3. COMMAND REFERENCE 109

memory Reports on screen, the statistics of the garbage collector. For a
precise description of each memory parameter, see the Objective Caml
documentation.

ri Calculates the ensemble retention index (RI; [12]) for additive, and
nonadditive characters. Dynamic homology characters are ignored
in calculating the RI, therefore, the dynamic homology characters
must be converted to static homology characters using the argument
static approx of the command transform (Section 3.3.27).

script analysis:STRING Reports the order in which commands listed
of the imported script (specified by the string argument) are going
to be executed. Unlike executing individual commands interactively,
when commands are submitted in a script, POY5 determines the logical
interdependency of operations and processes the commands in the
order that yields the same results as if they were executed sequen-
tially. This substantially optimizes parallelization and reduces memory
consumption.

The colored output in the POY Output window of the ncurses in-
terface facilitates reading the output of script analysis: red lines
mark hard constraints that allow neither parallelization nor memory
optimizations, blue lines mark constraints that allow the program to
pipeline commands in parallel, and green lines mark fully parallelizable
commands. When POY5 is compiled with parallel off, all the operations
are sequential, therefore, each potentially parallel operation is done as
sequential repetitions of the subscripts described in the output of the
command, reducing memory consumption.

110 CHAPTER 3. POY5 COMMANDS

NOTE

To gauge the amount of time it takes POY5 to perform a com-
mand, setting a timer between commands is useful:

read("Biv.fas")
report(timer:"Load Time")
build(1)
report(timer:"Build Time")

the output will look something like:

Information: Reading file Biv.fas of type input
sequences
Information: The file Biv.fas contains sequences
of 5 taxa, each sequence holding 1 fragment.
Status: Loading Trees Finished
Load Time: 0.0128080844879
Status: Wagner: 2 of 5 -- Wagner tree with cost
54.
Status: Wagner: 3 of 5 -- Wagner tree with cost
77.
Status: Wagner: 4 of 5 -- Wagner tree with cost
82.
Status: Wagner Finished
Status: Building Wagner Tree Finished
Status: Running Pipeline: 1 of 1 -- Estimated
finish in 0 s
Status: Running Pipeline Finished
Build Time: 0.14551615715.

In this example, the timer outputs information relating to the
time it took POY5 to load the data file and also the time taken
to build one tree.

timer:STRING Reports the value and the user time (in seconds) elapsed
between two consecutive timer reports. The string value provides a
label (typically a textual description) that precedes the time report in
the output produced. The first timer report displays the time elapsed
since the beginning of the POY5 session. This command is useful for
monitoring the execution time of specific tasks.

3.3. COMMAND REFERENCE 111

xslt:(STRING, STRING) Applies a user-defined xslt stylesheet to the XML
output. The first string is the filename of the output, the second string
is the name of the stylesheet requested to generate it.

NOTE

Extensible Stylesheet Language Transformations (XSLT) are
used for the transformation of XML output into other formats.
Because the XML output contains all the information regard-
ing data and trees, using XSLT stylesheets greatly expand
the capabilities of POY5 to use and display results. Examples
of potential applications includes graphical display of trees
with proportional branch lengths, integration of tree topologies
with geographical coordinate data for spatial mapping, and
generating input files for other programs.

Defaults

report(data, diagnosis, trees) By default, POY5 will print on screen
the following items: the tree(s) in parenthetical notation with corresponding
tree cost(s), diagnosis of each tree, and a graphical representation on the
tree(s) in ascii format. This output can be re-directed to a file by specifying
a file name enclosed in quotation marks, for example: report("filename").

Examples

• report("script analysis", script analysis:"/Users/runs/
script1.poy")
This command produces the file script analysis that lists the com-
mands from the input script file script1.poy in the order that opti-
mizes parallelization and memory consumption. In this example the
complete path (/users/datafiles/script1.poy) is provided, which
is not necessary if the directory containing the file script1.poy has
already been assigned using the command cd (Section 3.3.4) in the
same POY5 session.

• report("my results")
This commands outputs the data, diagnosis and trees (the default) to
the file my results. Because no path is specified, the file is located in
the current working directory.

112 CHAPTER 3. POY5 COMMANDS

• report(data)
This command displays on screen a list of included and excluded
terminals, their names and codes, gene fragments, synonyms, file
names, and other relevant data.

• report("Bivalve data.txt", data)
This command performs the same operation as mentioned in the previ-
ous example, but rather than reporting the data to the screen of the
output window, the data is saved in the file "Bivalve data.txt" in
the current working directory.

• report(treestats)
This example displays on screen the costs of all trees in memory and
the number of trees for each cost.

• report("filename", treestats)
This commands outputs the costs of all trees in memory and the number
of trees for each cost to a file filename.

• report("filename cr.txt", cross references)
This command outputs the file filename cr.txt, which indicates the
presence and absence of all the data contained in all the input files.

• report(cross references:names("file1", "file3"))
This command produces a table showing presence (”+”) and absence
(”–”) of data corresponding to all terminals contained in files file1 and
file3. Because an output file is not specified, the table is displayed
on screen.

• report("taxa", terminals)
This command generates a file taxa that contains the lists and numbers
of excluded and included terminals for each of the previously imported
data files.

• report(trees)
This command displays (on screen) the trees in memory in parenthetical
notation with terminals separated by commas. By default, zero-length
branches are not collapsed.

• report(trees:(total))
This command produces the same output as the example above but
also includes the total tree cost in square brackets following each tree.

3.3. COMMAND REFERENCE 113

• report("filename", trees:(collapse:false, newick))
This command produces a file filename that contains all trees in
Newick format with zero-length branches not collapsed.

• report("filename", graphtrees)
This command saves all trees in memory in PDF format to the file
filename.pdf.

• report(asciitrees,"file1",trees:(newick, nomargin),"file2",
graphtrees)
This command displays a tree in ascii format on screen and outputs to
file1 trees with zero-length branches collapsed in Newick format in a
single line (using no margin, the format compatible with TreeView). It
also writes to file2.pdf the graphical representation of these trees in
PDF format.

• report("hennig.ss", phastwinclad, trees:(hennig, total))
This command outputs all the static homology characters, including
their cost regime, in the file hennig.ss; then append to the same file
the trees currently in memory using the Hennig format, including the
total cost of each tree in square brackets. The generated hennig.ss is
compatible with NONA, TNT, and Hennig86.

• report("results", data, diagnosis, consensus:75, consensus,
"consensus", graphconsensus)
This command reports the requested types of outputs (i.e. reports
on the data, diagnosis, and 75 percent majority-rule consensus trees
and strict consensus in parenthetical notation) to the file results.
It also outputs a strict consensus tree in PDF format to the file
consensus.pdf.

• report(graphsupports, "bremertree", graphsupports:bremer)
This command reports on screen all previously calculated support
values placed at the nodes of ascii trees and outputs to file the
bremertree.pdf only the tree(s) with Bremer support values.

• report(implied alignments)
This command reports the implied alignments for all dynamic homology
characters on screen. This is equivalent to report(ia).

• report("align file", ia:names:("SSU", "LSU"))
This command generates the file align file that contains the implied
alignments only for characters contained in data files SSU and LSU.

114 CHAPTER 3. POY5 COMMANDS

• report("swapping", timer:"swap end")
This command generates the file swapping that contains the string
swap end followed by the number of seconds (in decimals) elapsed
since the execution of the previous timer argument.

• report("new tree diagnosis.xml", diagnosis)
This command reports the diagnosis to the new tree diagnosis.xml
file in XML format.

See also

• calculate support (Section 3.3.2)

3.3.20 run

Syntax

run(STRING)

Description

Runs POY5 script file(s). The filenames must be included in quotes and, if
multiple files are included, they must be separated by commas. The script-
containing files are executed in the order in which they are listed in the string
argument. Executing scripts using run is useful in cases when operations
take a long time or many scripts need to be executed automatically, e.g.
when conducting a sensitivity analysis [57]. There are no default settings of
run.

NOTE

Note that if any of the scripts contain the commands exit() or
quit(), POY5 will quit after executing that file. Therefore, if multiple
files are submitted, only the last one must contain exit() or quit().

Examples

• run("script1", "script2")
This command executes POY5 command scripts contained in the files
script1 and script2 in the same order as they are listed in the list
of arguments of run. Recall: If the last line of script1 ends in quit
or exit, POY5 will finish before script2 can be run.

3.3. COMMAND REFERENCE 115

See also

• exit (Section 3.3.6)

• quit (Section 3.3.13)

3.3.21 save

Syntax

save(STRING [, STRING])

Description

Saves the current POY5 state of the program to a file (POY5 file). The first,
obligatory string argument specified the name of the POY5 file. The second,
optional string argument specifies a string included in the POY5 file, that can
be retrieved using the command inspect (Section 3.3.9).

POY5 files are not intended for permanent storage; they are recommended
for temporary storing of a POY5 session by a user, checkpointing the current
state of a search to avoid loss work in case the computer or the program
itself fails, or to report bugs. POY5 will also automatically generate the file
in many cases when a terminating error occurs (an important exception is
out-of-memory errors). The format of these files might differ among different
versions of POY5; consequently, these files might not be interchangeable
between all the versions of the program.

Examples

• save("alldata.poy")
This command stores all the memory contents of the program in the
file alldata.poy located in the current working directory, as printed
by pwd().

• save("alldata.poy", "Total evidence data")
This command performs the same operation as described in the example
above, but, in addition, it includes the string Total evidence data
with the file alldata.poy, which can later be retrieved using the
command inspect (Section 3.3.9).

• save("/Users/andres/alldata.poy", "Total evidence data")
This command performs the same operation as the command described

116 CHAPTER 3. POY5 COMMANDS

above with the important difference that the file alldata.poy gener-
ated in the directory /Users/andres/ instead of the current working
directory.

See also

• inspect (Section 3.3.9)

• load (Section 3.3.10)

3.3.22 search

Syntax

search([argument list])

Description

search implements a default search strategy that includes tree building,
swapping using TBR, perturbation using ratchet, and tree fusing. The
strategy involves specifying targets for a driven search, such as maximum
and minimum execution times, maximum allowed memory consumption for
tree storage, minimum number of times the shortest tree is found, and an
expected cost for the shortest tree. When executing search using parallel
processing, trees are exchanged upon the completion of the command (after
fusing). Because the lowest cost unique trees generated are selected and stored
at the end of a search (defined by the user with max time), aggressive use of
this command in a parallel environment consists of including few sequential
search commands that will allow the processes to exchange trees and add
the pool of selected best trees to subsequent iterations of the command (see
the example for parallel processing).

Trees that exists in memory prior to the search command are included
in the set of trees available for the fuse but are not swapped.

Arguments

constraint:STRING A complete description of this argument can be seen
in constraint (Section 3.3.1) associated with the command build.

hits:INTEGER Specifies the minimum number of times that the minimum
cost must be reached before terminating the search. The hits argument
is not used in parallel processing.

3.3. COMMAND REFERENCE 117

max time:FLOAT:FLOAT:FLOAT Specifies the maximum total execution time
for the search. The time is specified as days:hours:minutes. For
example, executing the search for 1.5 days can be expressed as 1:12:00
or 1.5:00:00.

memory:LIDENT:FLOAT Specifies the maximum amount of memory allo-
cated for the stored trees during the search per processor. POY5 at-
tempts to consume memory within the specified limit, but it may
surpass it in certain operations (most notably during the ratchet). The
LIDENT value expresses the units of memory (gb for Gigabytes and
mb for Megabytes), whereas the float value specifies the actual value.
Keeping memory consumption within the limit is approximate and is
used as a rough guide to POY5, preventing the program from overflowing
the memory. Furthermore, it is important to note that when running
POY5 in parallel the maximum amount of memory specified by the user
is allocated to each process. Under certain circumstances, however,
POY5 may use more memory to avoid program failures.

NOTE

In order to maximize computational efficiency when using
search in parallel processing environments the hits argument
is ignored. However, a diverse set of trees which include the
current best trees found among all the processes is desirable to
improve the potential of tree fusing.

POY will only exchange trees between processes at the end
of each search command. Therefore, to guarantee that separate
processes seed each other with the best trees they have found
every number of hours, it is advisable to use few successive
search commands when executing the program in parallel. Each
search will still be run in parallel, but after each one, trees will
be exchanged between processors, to initiate each successive
round of search.

min time:FLOAT:FLOAT:FLOAT Specifies the minimum total execution time
for the search. The time is specified as days:hours:minutes. This
command is useful when the number of hits is specified but the actual
cost of the tree is unknown. In this case, POY5 performs the search for
at least the time specified by this argument.

118 CHAPTER 3. POY5 COMMANDS

target cost:FLOAT Specifies the upper limit for the cost of the shortest
tree.

visited[:STRING] For a complete description see visited (Section 3.3.26).
Note that this argument has a significant execution time cost, as
outputting the trees becomes a bottleneck for the application.

Defaults

search(max time:0:1:0, min time:0:1:0, memory:gb:2) Under default
parameters, the program performs a search for at most one hour using at
most 2 GB of memory. [Note: If the user does not specify the value of
max time, the search will be terminated after one hour.]

Examples

• search(hits:100, target cost:385, max time:1:12:13)
This command will attempt as many builds, swaps, ratchets, and tree
fusings as possible within the specified time of 1 day, 12 hours, and 13
minutes, finding at least 100 hits (whichever occurs first, the time limit
or the number of hits), knowing that the expected cost of the best hits
is at most 385 steps.

• For Parallel Implementation of search
search(max time:0:6:0)
select()
search(max time:0:6:0)
select()
search(max time:0:4:0)
select()
This series of commands will attempt as many builds, swaps, ratchets,
and tree fusings as possible within the specified total time of 16 hours.
Trees are exchanged among processors at the end of each search and
the best unique trees are then selected and included in the following
search command.

• search(max time:00:48:00, constraint:"best tree.tre")
This command will attempt as many builds, swaps, ratchets, and tree
fusings within the specified time period of 48 hours. In this example,
however, these operations are constrained by the tree specified in the
file best tree.tre.

3.3. COMMAND REFERENCE 119

• search(max time:00:48:00, visited:"visited.txt")
This command will attempt as many builds, swaps, ratchets, and tree
fusings as possible within the specified time of 2 days. During this time,
every visited tree and its cost during the local search will be stored in
the file visited.txt.

See also

• build (Section 3.3.1)

• swap (Section 3.3.26)

• transform (Section 3.3.27)

3.3.23 select

Syntax

select([argument])

Description

Specifies a subset of terminals, characters, or trees from those currently
loaded in memory to use in subsequent analysis.

Arguments

Characters and terminals selection Specifies terminals and characters
to use in subsequent analysis. The arguments in this group specify whether
terminals or characters are being selected. Identifiers are used to specify
which characters or terminals are being selected (see the Character and
terminal identifiers argument group below for the description of methods for
selecting specific terminals or characters).

characters Specifies that the subsequently listed identifiers refer to charac-
ters to be selected.

STRING Selects terminals listed in the file specified by the string argument.

terminals Specifies that the subsequently listed identifiers refer to terminals
to be selected. By default, POY5 assumes that the specification refers
to terminals. For example, to analyze only those terminals listed in the
file opiliones using the character data currently loaded in memory,

120 CHAPTER 3. POY5 COMMANDS

use the command select(files:("opiliones")). This command is
equivalent to select(terminals,files:("opiliones")).

When the command is executed, the list of selected terminals is printed
on screen. terminals is only valid as an argument of commands
select and rename (Section 3.3.18).

NOTE

Note that once specific terminals and/or characters are selected,
the excluded data cannot be restored. To be able to reconstitute
the original data set or to experiment with various character
and terminal selections within a given POY5 session, use the
commands store (Section 3.3.25) and use (Section 3.3.28).

Character and terminal identifiers Identifiers specify which characters
or terminals are analyzed. In addition to the command select, identifiers
are used as arguments for other commands that require selection of specific
terminals or characters, such as commands report (Section 3.3.19) and
transform (Section 3.3.27).

all Specifies all characters or terminals. Unless a terminals or characters
file is selected, all the data is read by the program.

codes:(INTEGER list) Specifies the codes of characters or terminals. The
codes are unique numbers that are generated by POY5 when data files
are first imported. The codes can be reported using the argument data
(Section 3.3.19) of the command report. The codes are generated
anew when a given data file is reloaded; therefore, they can effectively
be used only within a current POY5 session.

dynamic Specifies the dynamic homology characters.

files:(STRING list) Specifies the filename list containing lists of terminals
or characters.

missing:INTEGER Selects terminals or characters to be included in the
analysis based on the proportion of missing data. The integer value
sets the maximum percentage of missing data in the analysis. Terminals
or characters that have more missing data than that of the defined
value are included in the analysis (compare with not missing below)

names:(STRING list) Specifies the names of the characters or terminals.

3.3. COMMAND REFERENCE 121

not codes:(STRING list) Specifies the characters or terminals other than
those the codes of which are listed in the string list.

NOTE

For dynamic homology characters, the missing data refer to
sequence fragments, whereas for static characters it refers to
individual matrix positions. Therefore, when excluding termi-
nals with missing data, the resulting set of selected terminals
depends on the character type and might, or might not, be
identical. For example, if a data file (containing sequences
corresponding to a single fragment) were to include a very short
sequence, this sequence is not treated as missing data regardless
of its length. This is because in the context of dynamic homo-
logy a fragment, rather than an individual nucleotide position,
constitutes a character. On the other hand, if the same data
are treated as static characters, the taxon represented by a very
short sequence might be excluded if the length of the sequence
exceeds the threshold defined by the value of missing.

not missing:INTEGER Selects terminals or characters to be included from
the analysis based on the proportion of missing data. The integer value
sets the minimum percentage of missing data. Terminals or characters
that have fewer missing data than defined by the value are included
in the analysis. In effect, this selects a complement of data to the
argument missing (compare with missing above).

not names:(STRING list) Specifies the characters or terminals other than
those the names of which are listed in the string list.

static Specifies the static homology characters.

Select trees The following arguments are used to select trees from the
pool of trees currently in memory.

best:INTEGER Selects the number of best trees specified by the integer
value. Best trees are not equivalent to optimal trees because best trees
can include suboptimal trees in case the value of best exceeds the
number of optimal (minimal-cost) trees. If the number of optimal trees
exceeds the value of best, only a subset of optimal trees (equal to the
value of best is selected in an unspecified order).

122 CHAPTER 3. POY5 COMMANDS

optimal Selects all trees of minimum cost.

random:INTEGER Randomly selects the number of trees specified by the
integer value irrespective of cost.

NOTE

There is no special command in POY5 to clear trees from mem-
ory. However, selecting zero best trees using the command
select(best:0) effectively removes all trees currently stored
in memory.

unique Selects only topologically unique trees (after collapsing zero-length
branches) irrespective of their cost.

within:FLOAT Selects all optimal and suboptimal trees the costs of which
do not exceed the current optimal cost by the float value. For example,
if the current optimal cost is 507 and the float value of within is 3.0,
all trees with costs 507–510 are selected.

Defaults

select(unique, optimal) By default POY5 selects all unique trees of opti-
mal (best) cost. The rest of the trees are removed from memory.

Examples

• select(terminals, names:("t1", "t2", "t3", "t4", "t5"),
characters, names:("chel.aln:0"))
This command selects only terminals t1, t2, t3, t4, and t5 and use
data only from the fragment 0 contained in the file chel.aln.

• select(terminals, missing:50)
This command excludes from subsequent analyses all the terminals that
have more than 50 percent of characters missing. The list of included
and excluded terminals is automatically reported on screen.

• select(optimal)
Selects all optimal (best cost) trees and discards suboptimal trees from
memory. The pool of optimal trees might contain duplicate trees (that
can be removed using unique).

3.3. COMMAND REFERENCE 123

• select(unique, within:2.0)
This command selects all topologically unique optimal and suboptimal
trees the cost of which does not exceed that of the best current cost
by more than 2. For example, if the best current cost is 49, all unique
trees that fall within the cost range 49–51 are selected.

See also

• characters (Section 3.3.23)

• transform (Section 3.3.27)

3.3.24 set

Syntax

set([argument list])

Description

Changes the settings of POY5. This command performs diverse auxiliary
functions, from setting the seed of the random number generator, to selecting
a terminal for rooting output trees, to defining character sets for different
partitions.

There is no default setting for set and the order of its arguments is
arbitrary.

Arguments

Application settings Some generic application settings. Have no effect
in the analyses themselves.

history:INTEGER Sets the size of the POY5 output history displayed in the
POY Output window to the number of lines specified by the integer
value. The size of the history must be greater than zero. This command
has effect only in the ncurses interface. The default size of the output
history is 1000 lines.

log:STRING Directs a copy of a partial output to the file specified by the
string argument. The output includes the information in the POY
Output, Interactive Console, and State of Stored Search windows of
ncurses interface. Timers and current state of the search are not

124 CHAPTER 3. POY5 COMMANDS

included in the log. If the log file already exists, POY5 will append the
text to it; if the log file does not exist, then POY5 creates a new file. If
the user would like to delete the contents of a pre-existing file, then
the argument log:new:"logfile" creates a new initially empty file
named logfile. [Note: setting a log will increase execution time to
some extent, as the application has to output this log file.]

nolog Stops outputting the log to any previously selected file. See the
description of the argument log above. Unless specified, no log is set
by the program.

root:LIDENT Specifies the terminal to root output trees. The terminal can
either be indicated as a taxon name (a STRING, which must appear in
quotes, such as "Genus species") or the code, that is automatically
assigned to the taxon by POY5 at the beginning of each POY5 session
(for example, set(root:45). The codes can be obtained using the
command report(data)). The terminal codes, however, are consistent
only within a current session.

timer:INTEGER Specifies the lapse of time in seconds that should have
passed between reporting the total execution time of a swap and
build command. If the timer is set to 0, then no time messages are
generated.

Cost calculation These arguments set the tree cost estimation procedures
and are applied to all character types. The arguments are mutually exclusive:
only the last specified argument of set is used.

exhaustive do Applies a standard Direct Optimization algorithm for the
tree cost estimation [58, 62]. The difference between this argument
and normal do is that the calculation of the tree costs during a search
is much more intense, always looking for the best possible optimization
for every single topology (instead of a lazy and greedy strategy used
by normal do).

iterative:LIDENT:[:INTEGER] Applies the Iterative Pass optimization
for the tree cost calculations. There are two forms of iterative pass:
if the argument value is exact (the default), then a complete three
dimensional optimization is computed, as described for POY 3.0 in [64].
Otherwise, if the argument value is approximate, then the iterations
approximate the three dimensional alignment using pairwise alignments.

3.3. COMMAND REFERENCE 125

If the argument value is exact, this method improves the tree cost
estimation but at the expense of execution time (by a factor of the
sequence length). When approximate, the execution time footprint is
much smaller, and far less memory is consumed. A typical heuristic
strategy is to apply iterative at the very end of an analysis to polish
the final set of trees and perform a final search.

Both arguments accept an optional integer, stating the maximum
number of iterations that can be performed. If no integer is given,
then the procedure iterates until no further tree cost improvement is
incurred.

normal do Applies a standard Direct Optimization algorithm [54] for the
tree cost estimation. This is the default and fastest technique.

normal do plus Applies a more exhaustive Direct Optimization algorithm [54]
for the tree cost estimation. During branch swapping, a more exhaustive
calculation of the tree cost is performed.

NOTE

Due to the complexity of heuristics of the Iterative Pass optimi-
zation, there is no guarantee that the tree cost recovered from
the search will be exactly the same as produced by the diagnosis
of the same tree. However, the cost of the tree found during
the search can be verified by outputting the medians from the
diagnosis (see the description of the argument diagnosis (Sec-
tion 3.3.19)) of the command report and determining edge
costs by hand. The cost of the tree found during the search
might differ from that obtained by the rediagnosing of the same
tree (see rediagnose (Section 3.3.16)), but will recover the
same tree cost in subsequent rediagnoses.

Likelihood Optimization These arguments relate to the level of gran-
ularity (significant digits) and thoroughness (number of iterations) of the
optimization routines used for defining the branches and model for the
likelihood characters.

opt:none No optimization procedures are performed; the current model
parameters are kept, and branch lengths are set to a JC69 distance
approximation.

126 CHAPTER 3. POY5 COMMANDS

opt:coarse[:INTEGER] The tolerance of the routines is set to 1e-3 (half
the log of a full, exhaustive search). By default, the branches and
model are each optimized once, setting the INTEGER allows the user to
control how many times a branch/model pass occurs (by default the
number is set to 1).

opt:exhaustive[:INTEGER] The tolerance level is set to the algorithms
default, i.e. 1e-6. The algorithms for optimizing branches and the
models will alternate until no more improvement occurs, or until as
many times as specified by the INTEGER.

NOTE

Rediagnosing a tree after search or swap may result in a
different likelihood score if the number of optimization passes
is set lower than convergence. For example, if we do a search
where we only optimize the branches, then optimize the final
trees model under coarse through rediagnose(clear), then
POY5 will clear the parameters before optimizing and may result
in a tree with higher cost.

Randomized routines

seed:INTEGER Sets the seed for the random number generator using the
integer value. If unspecified, POY5 uses the system time as seed.

NOTE

It is critical to set a seed value to insure reproducibility of
the results of the analyses that require randomization routines
(such as tree building).

NOTE

The sequence of randomizations is dependent on the version of
OCaml used to compile the binaries. The algorithm to create
the random seed number changed in OCaml version 3.12.0,
thereby generating different sequences of pseudo-random num-
bers. To ensure reproducibility of results, the user must ensure
that the same version of OCaml is used during compilation.

3.3. COMMAND REFERENCE 127

Defaults

set(history:5000, normal do) Under default settings the size of the his-
tory buffer is limited to 5,000 lines, the Direct Optimization is used for tree
cost calculation, and the current time is used to specify the seed.

Examples

• set(history:10000, seed:45, log:"mylog.txt")
This command increases the size of the history in the ncurses interface
to 10,000 lines, sets the seed of the random number generator to 45, and
initiates a log file mylog.txt, located in the current working directory.

• set(root:"Mytilus edulis")
This commands selects the terminal Mytilus edulis as the root for
the output trees.

• set(iterative:exact)
Turns on the iterative exact algorithm in all the nucleotide sequence
characters. The program will iterate on each vertex of the tree until
no further tree cost improvements can be made.

• set(iterative:approximate:2)
Turns on the iterative approximate algorithm in all the nucleotide
sequence characters. The program will iterate either two times, or until
no further tree cost improvements can be made, whichever happens
first.

• set(iterative:exact:2)
Same as the previous, but using the exact algorithm.

• set(opt:exhaustive:3)
Set floating point optimization to a tolerance of 1e-6, and specify that
a maximum of three optimization iterations occur.

• set(opt:coarse:10)
Set floating point optimization to a tolerance of 1e-3, and specify that
a maximum of 10 optimization iterations occur.

See also

• report (Section 3.3.19)

128 CHAPTER 3. POY5 COMMANDS

3.3.25 store

Syntax

store(STRING)

Description

Stores the current state of POY5 session in memory. The stored information
includes character data, trees, selections, everything. Specifying the name of
the stored state of the search (using the string argument) does not, however,
generate a file under this name that can be examined; the name is used only
to recover the stored state using the command use.

In combination with use, the command store is extremely useful when
exploring alternative cost regimes and terminal sets within a single POY5
session.

Arguments

STRING Specifies the name of the stored search state of the current POY5
session.

Examples

• store("initial tcm")
transform(tcm:(1,1))
use("initial tcm")
The first command, store, stores the current characters and trees under
the name initial tcm. The second command, transform, changes
the cost regime of molecular characters, effectively changing the data
being analyzed. However, the third command, use, recovers the initial
state stored under the name initial tcm.

See also

• use (Section 3.3.28)

• transform (Section 3.3.26)

3.3.26 swap

Syntax

swap([argument list])

3.3. COMMAND REFERENCE 129

Description

swap is the basic local search function in POY5. This command implements
a family of algorithms collectively known in systematics as branch swapping
and in combinatorial optimization as hill climbing. They proceed by clipping
parts of a given tree and attaching them in different positions. It can be
used to perform a local search from a set of trees loaded in memory.

Swapping is performed on all trees in memory. During a search, swap
can collect information about the visited trees and perform various kinds of
checkpoints to reduce information loss in case POY5 crashes.

swap is also used as an argument for other commands to specify a local
search strategy in other contexts, for example, in calculating support values
using the command calculate support (Section 3.3.2).

All arguments of swap are optional and their order is arbitrary. The ar-
gument of different groups can be combined to fine tune the search heuristics,
but the arguments within each group are mutually exclusive.

[Note: If more than one arguments of one argument group, such as Join
method, is listed, only the last one is executed.]

Arguments

Branch break order During the local search, a branch is broken and local
branch swapping is performed (see the Neighborhood group of arguments).
The precise choice of which branches are broken first can affect both the
speed and the local optimum found by the program. The following arguments
select among the different strategies available in POY5.

once Breaks each branch only once during a local search; that is, if a broken
branch does not yield a better tree, it is never broken again, no matter
how many changes occur along the search trajectory.

randomized Chooses branches uniformly at random for breakages.

distance Gives higher priority to those branches with the greatest length.

Character transformation Concerns the transformation of characters
prior to using the command swap.

transform Specifies a type of character transformation to be performed
prior to swapping. See the command transform (Section 3.3.27) for
the description of the methods of character type transformations and
character selection.

130 CHAPTER 3. POY5 COMMANDS

Join method After breaking a tree (using SPR or TBR), the following
arguments control the selection of the positions to join the broken clades.

constraint[:INTEGER | (depth:INTEGER, file:STRING)] Constrains the
join locations during the search using both a tree and an optional max-
imum distance from the break branch. Only sets defined either in
the input file, or in the strict consensus of the files in memory are
considered during swapping. An integer value of depth specifies the
maximum distance from the break branch to attempt joins. The string
value for file specifies an input file containing a single tree that defines
topological constraints. Under default settings, constraint will use a
consensus tree from the files in memory and perform swapping with
the value of depth set to 0 (no maximum distance is specified).

all[:INTEGER] Turns off all preference strategies to make a join, simply
trying all possible join positions for each pair of clades generated after
a break, in a randomized order.

sectorial[:INTEGER] Join in edges at distance equal or less than the
value of the argument from the broken edge, where the distance is the
number of edges in the path connecting them. If no argument is given,
then no distance limit is set.

Likelihood Optimization Specifies when the likelihood model and how
the branches of the tree are optimized during the swap routine. These options
are also available in the commands build and fuse. In all cases, a complete
round of optimization will occur after the completion of a build.

optimize(model [:LIDENT], branch [:LIDENT]) Specifies when POY5
optimizes the likelihood model and how POY5 optimizes the branches.
These options are also available in the fuse and swap commands. In all
cases a complete round of optimization will occur after the completion
of a build.

model:never Do not optimize the model during the swap.

model:always Optimize the model after every swap (default).

model:threshold:FLOAT Optimize the model if the cost of the join
under the current model is within FLOAT times the current best
cost.

3.3. COMMAND REFERENCE 131

branch:never Do not optimize the branches during the swap process.
Estimates are made based on the proportion of sites that would
undergo a transformation.

branch:all branches Optimize all branch lengths on each join (de-
fault).

branch:join region Optimize a maximum of five branches; the new
edge, and the two edges on either side.

branch:join delta Optimize the branches along the path from the
break to the new join location.

Neighborhood A neighborhood is a subset of topologies reachable from
a given area of the tree by a given search method. The basic standard proce-
dures for local search in phylogenetic analysis are SPR and TBR [49]. The
nearest-neighbor interchanges (NNI) [7] swapping strategy is implemented
by combining the arguments spr and sectorial (see Join method group of
arguments) within the swap, i.e. swap(spr, sectorial:1).

alternate Performs spr and tbr swapping iteratively until a local optimum
is found. This is a specific strategy of performing tbr, as the trees
visited by spr are a subset of those visited by tbr.

spr[:once] This argument performs spr swapping, starting from the current
trees in memory and subsequently repeating the SPR procedure until
a local optimum is found. If the optional value once is specified, spr
stops once the first tree with better cost is found.

tbr[:once] This argument performs tbr swapping, starting from the current
trees in memory and subsequently repeating the TBR procedure until
a local optimum is found. If the optional value once is specified, tbr
will stop once the first tree with better cost is found.

Reroot order During TBR, the following options control the order of the
rerooting.

bfs[:INTEGER] Reroots using breath first search [8] from the broken edge,
within the arguments value distance from the root of the clade. If no
value is given, there is no limit distance for the rerooting. By default,
bfs is used with no limit distance for the rerooting.

132 CHAPTER 3. POY5 COMMANDS

Trajectory The following arguments define the direction of the search in
the defined neighborhood.

around Changes the trajectory of a search by completely exploring the
neighborhood of the current tree in memory and choosing the best
swap position before continuing. The default in POY5 is to choose the
first one available that shows a better cost than the current best cost.

annealing:(FLOAT, FLOAT) Uses simulated annealing [29]. If the argu-
ment’s value is (a, b), POY5 accepts a tree with cost c when the
best known tree has cost d with probability exp (−(c− d)/t), where
t = a × exp−i/b and i is the number of tree evaluated in the local
search.

drifting:(FLOAT, FLOAT) Uses POY5 drifting function [19]. If the argu-
ment’s value is (a, b), then POY5 always accepts a tree with better cost
than the current best cost, with probability a a tree with equal cost,
and with probability 1/(b + d) a tree with cost d greater than the
current best cost.

Trajectory samples During the search, POY5 visits a large number of
trees. For some applications it might be desirable to collect information
about the trees examined during a search: for example, to provide backups of
the state of a search (in an unlikely crash), or to examine the characteristics
of the alignments. The difference from the swap arguments is that the user
can choose any combination of trajectory samples, and that can be used
during the search. None of the trajectory samples is used by default.

recover Stores the current best tree in memory that can be recovered in
case of failure. If it is necessary to recover such trees after an aborted
command, use recover (Section 3.3.15). If the program terminates
normally, the stored trees are exactly those produced at the end of
the swap. Using recover, however, requires twice as much memory
compared to swapping without it.

timeout:INTEGER Specifies the number of seconds after which tree branch
swapping is stopped. The current best tree is the result of the swap
after the timeout.

timedprint:(INTEGER, STRING) timedprint:(n, "trees.txt") prints the
current best tree in memory to the file trees.txt, at least every n

3.3. COMMAND REFERENCE 133

seconds. However, POY5 typically underestimates the amount of time
and, therefore, the samples can be slightly sparcer. timedprint can
only be used in combination with the argument recover.

trajectory[:STRING] trajectory:"better.txt" will store every new
tree found with a better score during the local search in the file
better.txt. The string is the filename where the trajectory is to
be stored, which is optional (indicated by brackets); if not added, the
trees are printed in the standard output (flat interface) or the output
window (ncurses interface).

visited[:STRING] visited:"visited.txt" will store every visited tree
and its cost during the local search in the file visited.txt. The
(optional) string is the filename where the trajectory is to be stored.
If not included, the trees are printed in the standard output (flat
interface) or the output window (ncurses interface).

Tree selection As the tree search proceeds, a tree may or may not be
selected to continue the search or to return as a result. The following
arguments determine under what conditions can a tree be acceptable during
the search.

threshold:FLOAT Sets the percentage cost for suboptimal trees that are
more exhaustively evaluated during the swap, meaning that trees within
the threshold are subject to an extra round of swapping. For example,
if the current optimal tree has cost 450, and threshold:10 is specified,
trees with cost at most 495 are swapped. threshold is equivalent to
slop of POY3.

trees:INTEGER Maximum number of best trees that are retained in a
search round, per tree in memory.

Defaults

swap(trees:1, alternate, threshold:0, bfs) By default, current trees
are submitted to a round of alternate rounds of SPR and TBR using breadth
first search and one best tree per starting tree is kept.

Examples

• swap()
This command performs swapping under default settings.

134 CHAPTER 3. POY5 COMMANDS

• swap(trees:5)
Submits current trees to a round of SPR followed by TBR. It keeps up
to 5 minimum cost trees for each starting tree.

• swap(transform((all, static approx)))
Submits current trees to a round of SPR followed by TBR, using static
approximations for all sequence characters.

• swap(trees:4, transform((all, static approx)))
Submits current trees to a round of SPR followed by TBR, using static
approximations for all characters, keeping up to 4 minimum cost trees
for each starting tree.

• swap(constraint:(depth:4))
Calculates a consensus tree of the files in memory and uses it as
constraint file, then joins at a distance of at most 4 from the breaking
branch. This is equivalent to swap(constraint:(4)).

• swap(constraint:(file:"bleh"))
Reads the tree in file bleh and use it as constraint for the search. This
is equivalent to swap(constraint:("bleh")). This presumes that the
file bleh is located in the current working directory.

• swap(constraint:(file:"bleh", depth:4))
Uses the tree in the file bleh as a constraint tree and joins at distance
at most 4 from the breaking branch during the swap. This presumes
that the file bleh is located in the current working directory.

• swap(drifting:(0.5, 2.0))
Defines the direction of search via drifting, such that there is a 50%
probability of replacing the current tree with a new tree of equal
cost. For suboptimal trees with a cost d greater than the current
best tree, the probability of accepting this tree is 1/(2.0 + d). For
example the probability of keeping a suboptimal tree of 3 steps longer
= 1/(2.0 + 3) = 0.2.

• swap(spr, all, optimize:(model:never, branch:join region))
Submits the current trees to a round of SPR swapping. Following each
round of SPR, the model is never optimized, but a maximum of five
branches (the new edge, and the two edges on either side of the join
site) are optimized.

3.3. COMMAND REFERENCE 135

• swap(recover, timedprint:(5, "timedprint.txt"))
Saves the current best tree to the file timedprint.txt every 5 seconds.

See also

• transform (Section 3.3.27)

3.3.27 transform

Syntax

transform([argument list])

Description

Transforms the properties of the imported characters from one type into
another. This includes changing costs for indels and substitution, modifying
character weights, converting dynamic into static homology characters, trans-
forming nucleotide into chromosomal characters, and specifying characters
as either static or dynamic likelihood characters, among other operations.

The essential arguments of the command transform include identifiers
and methods. The methods specify what type of transformation is applied to
the set of characters, as specified by identifiers, as defined in the description
of the command select (Section 3.3.23).

The methods, or string of methods (each separated by a comma), should
be enclosed in parentheses. Identifiers precede the methods and are separated
from them with a comma. It is important to remember that only identifiers
of characters (such as names, codes, among others) can be used. Parentheses
separate these essential arguments from all other optional arguments that
might be included in the list. If only identifiers and methods are specified,
the argument list of transform is included in parentheses. For example,
the command transform(all,(gap opening:1)) contains only an identifier
(all) and a method (gap opening). [Note: this is different from previous
versions of poy where double parentheses were required.] Minimally, only
methods can be specified: in this case, the transformation is applied to all
characters to which the transformation method can be applied. For instance,
transform(gap opening:1), where gap opening defines the transformation
method.

There are no default values for transform, thus if no arguments are
specified (transform()), the command does nothing.

136 CHAPTER 3. POY5 COMMANDS

Arguments

Identifiers Identifiers specify which characters are transformed. Only iden-
tifiers of characters (not terminals) can be used. If identifiers are omitted,
the transformation to is applied to all applicable characters. For exam-
ple, transform(all,(tcm:(1,1))) is equivalent to transform(tcm:(1,1)).
See the command select (Section 3.3.23) for detailed description of identi-
fiers.

Character selection methods This set of arguments specifies different
transformations that can be applied to selected characters. If multiple
transformation methods are applied sequentially in the same list of arguments,
the effect of the methods listed earlier might be altered or canceled by methods
listed after that. Thus, caution must be used in designing complex strategies
with multiple character transformations. See the note on command order
(Section 3.2).

alphabetic terminals Alphabetizes the terminals in the data file that is
input into POY5. This is used in conjunction with build or search. See
the description of the argument randomize terminals.

auto static approx Evaluates each selected fragment and, if the number
of indels appear to be low and stable between topologies, then the
character is transformed to the equivalent character using static homolo-
gies with the implied alignment [63]. This method greatly accelerates
searching and is applicable only to nucleotide sequences under dynamic
homology analysis.

auto sequence partition Evaluates each fragment in the data file and if
a long region appears to have no indels, then the fragment is broken
inside that region. Any number of partitions can occur along a frag-
ment. Fragmenting long sequences greatly accelerates searching. This
method is applicable only to dynamic homology characters that are
not prealigned, and requires a tree in memory.

direct optimization Transforms the characters specified so that the initial
assignment of sequences to the internal vertices of a tree use direct
optimization [58]. This method is recommended for small alphabets
(fewer than 7 elements). It is only applicable to dynamic homology
characters.

do Synonymous with direct optimization.

3.3. COMMAND REFERENCE 137

fixed states[:(STRING, LIDENT)] Transforms the characters specified in
fixed state characters [59] where the initial assignment of sequences to
the internal vertices of the tree is one of the observed sequences. If the
observed sequences contain ambiguities, only those that resolve closest
to another sequence are added to the set of valid states. It is only
applicable to dynamic homology characters. The optional arguments
may be specified for use with the chromosome character type. The
STRING specifies the root name of Mauve [9] readable files (“STRING
i j.alignment” where i and j are median states) to generate graphical

sequence maps between median states. The default LIDENT is set
to full polymorphism, which will consider all sequence ambiguities.
As one might expect, this option is also the most time consuming.
Alternatively, if the LIDENT is set to simple polymorphism or ignore -
polymorphism, new potential median states will be generated that
consider fewer sequence polymorphisms in their calculations, thus
reducing execution time.

gap opening:INTEGER Sets the cost of opening a block of gaps to the
specified value. Note that this cost is in addition to the standard
cost of the insertion, as specified by a given transformation cost matrix.
The default in POY5 is not to have extension gap cost (gap opening:0).
If the gap opening cost is a, and indel(x) is the cost of inserting (or
deleting) a base x according to the tcm assigned to the character,
the total cost of inserting (or deleting) the sequence s[0...n] is a +
indel(s[0])+indel(s[1])+ ...+indel(s[n−1])+indel(s[n]). This method
is applicable only to dynamic homology characters with the nucleotide
alphabet.

level:(INTEGER , LIDENT) The integer argument specifies the heuristic
level in median sequence calculation. This determines the number of
possible states stored at each median sequence position. For nucleotide
data, all possibilities are stored. This median states can be a single
character (e.g. A, C, G, T) or a combination of INTEGER characters
(e.g. A/C versus G). The default for amino acid sequences and for
custom alphabet characters it is 2. Storage and set up time increase
combinatorially with level number. If the LIDENT is first, ties are
broken (if the number of equally costly states is greater than the level
number) by choosing the first median state examined; if last, the last
state, and if at random then uniformly at random. The default choice
method is first.

138 CHAPTER 3. POY5 COMMANDS

[Note: Levels greater than the default levels can consume large amounts
of memory.]

multi static approx Calculates the implied alignment for each tree in
memory and convert them to static homology characters using the
alignment’s cost regime. The new character set will be the union of all
those characters generated for all the trees [69]. This option is intended
only for heuristic search purposes and is applicable only to dynamic
homology characters.

partitioned:LIDENT Similar to auto sequence partition, the difference
being that no tree is required prior to partitioning, and large sequence
length variations at the ends of sequences are treated as missing data.
If the LIDENT clip is chosen, then a large difference in length at the
end of the sequence is assumed to be caused by missing data. For clip
to take effect, at least two fragments must be found. If LIDENT noclip
is selected, then sequence ends are treated like any other fragment.

prealigned Treats the sequences as prealigned and uses the cost regime
according to the specified transformation cost matrix. All other cost
parameters are ignored (including affine gap costs). This command
requires that all the specified sequences have the same length (which
can be achieved by the insertion of N’s at the 5’ and/or 3’ ends of the
sequence if data are missing).

randomize terminals Randomizes the terminals in the data file that is
input into POY5. This is used in conjunction with build or search. See
the description of the argument alphabetic terminals.

search based:(STRING, STRING) Transforms the optimization of fixed -
states characters to search based optimization [65] by adding the
sequences found in the file specified by the second argument to the
character specified by the first argument.

sequence partition:INTEGER Partitions the sequences in the argument’s
value number of fragments of roughly the same length. This method is
applicable only to dynamic homology characters.

static approx[:LIDENT] Transforms the sequences to the static homo-
logy characters corresponding to their implied alignments and their
transformation cost matrix [63]. The resulting characters and their
number will vary depending on the characteristic of transformation

3.3. COMMAND REFERENCE 139

cost matrix assigned to each sequence. For example, if the cost of
both substitutions and indels is 1, then one non-additive character is
created per each homologous position in the implied alignment. If the
cost of substitutions is 1 and the cost of indels is 2, then one character
is created for each homologous position, and one extra character for
each homologous position with gaps. In more complex cases, a Sankoff
character is created.

The LIDENT remove excludes all uninformative characters information
(except autapomorphies), whereas the LIDENT keep retains these char-
acters. The default is remove. This method is applicable only to
dynamic homology characters. If a non-metric transformation cost
matrix is in use, this transformation will assume that the non-metricity
is due to the individual insertion and deletion cost.

NOTE

The transformation of dynamic into static homology charac-
ters cannot be reverted. Therefore, caution must be taken
when the transformation is applied. For example, if sequence
characters have been transformed into static characters at top
level using the command transform(all,(static approx)),
all commands executed subsequently will be applied to the
transformed data. However, if the transformation has been
applied within another command (as an argument of swap,
for instance, swap(transform(all,(static approx)))), the
characters will transformed only for that specific operation.

NOTE

It is important to remember that the local optimum for the
dynamic homology characters can differ from that for the static
homology characters based on the same sequence data. There-
fore, performing additional searches on the transformed data
(for example, in calculating support values based on individual
nucleotides rather than on sequence fragments) can produce a
discrepancy in tree costs.

tcm:(INTEGER, INTEGER) Defines the transformation cost matrix. The first
integer value specifies substitution cost, the second integer value defines

140 CHAPTER 3. POY5 COMMANDS

indel cost. By default, the cost of substitutions and indels are both 1.
[Note: previous versions of poy, had the cost of an indel set to 2 (i.e.
tcm:(1,2)).]

NOTE

When constructing a transformation cost matrix it is impor-
tant to do so in a text editor such as Notepad (for Windows),
TextEdit (for Mac), or Nano (for Linux). Generating a tcm
in a word processing application such as Microsoft Word may
lead to the insertion of hidden characters, which will result in
an error.

tcm:(STRING, INTEGER) Defines the transformation cost matrix by import-
ing a file (specified by the string value) that contains a user defined
nucleotide transformation cost matrix. This method is applicable only
to dynamic homology characters. The transformation cost matrix
file contains five rows and columns with values listed in the following
order (left to right and top to bottom): adenine, cytosine, guanine,
thymine/uracil, and indel. A similar pattern is followed for amino acids
where the matrix columns and rows reflect all the amino acid names in
alphabetical order (read left to right and top to bottom) with the last
row and column containing a gap cost. The costs must be symmetrical
(that is, the cost of the A to T substitution is equal to the cost of T to
A substitution). For example:

0 2 1 2 4
2 0 2 1 4
1 2 0 2 4
2 1 2 0 4
4 4 4 4 0

The integer argument specifies the heuristic level in median sequence
calculation. This determines the number of possible states stored at
each median sequence position. For nucleotide data, all possibilities are
stored. The default for amino acid sequences and for custom alphabet
characters is 2. Storage and set up time increase combinatorially with
level number.

ti:STRING/(INTEGER list) Synonym of trailing insertion.

3.3. COMMAND REFERENCE 141

trailing insertion:STRING/(INTEGER list) The tail and prepend costs
specify the cost of having an insertion of each element in the alphabet
at the beginning or end of a sequence. The string is the name of a file
containing the cost of a trailing insertion corresponding to each of the
elements in the alphabet separated by spaces. The last element in the
list is the cost of the indel of a gap (should be 0). Instead of a file, the
list can be the input of the argument, in the same order, separated by
commas. Synonym of the argument ti. This method is applicable only
to dynamic homology characters.

td:STRING/(INTEGER list) Synonym of trailing deletion.

trailing deletion:STRING/(INTEGER list) The tail and prepend costs
specify the cost of having a deletion of each element in the alphabet at
the beginning or end of a sequence. The string is the name of a file
containing the cost of a trailing deletion corresponding to each of the
elements in the alphabet separated by spaces. The last element in the
list is the cost of the indel of a gap (should be 0). Instead of a file, the
list can be the input of the argument, in the same order, separated by
commas. Synonym of the argument td. This method is applicable only
to dynamic homology characters.

weight:INTEGER/ FLOAT Changes the cost of specified characters to a
constant or absolute value (weight), which is specified by either a float
or an integer value. This method is applicable to any character type
and can be applied to individual characters in a data set.

weightfactor:INTEGER/ FLOAT Changes the cost of specified characters
by a multiplicative factor (weight factor), and is specified by either a
float or an integer value. This method is applicable to any characters.
This argument differs from weight in that this cost is applied to a class
of characters.

Chromosome and genome transformation methods For these char-
acter types, POY5 optimizes nucleotide-, locus-, and chromosome-level vari-
ation simultaneously . The arguments in this group transform nucleotide
characters into chromosomal characters and allow for translocations, inver-
sions, and indel events both at the locus-level for chromosomal data and at
the chromosome-level for genomic data.

The functions to calculate breakpoint and inversion distances between two
sequences of gene orders are taken from the rearrangement software packages:

142 CHAPTER 3. POY5 COMMANDS

GRAPPA, Genome Rearrangements Analysis under Parsimony and other
Phylogenetic Algorithms [2], and MGR, Multiple Genome Rearrangements
[5], as well as from the Concord TSP Solver available at http://www.tsp.
gatech.edu/concorde/.

annotate:(LIDENT,FLOAT,FLOAT,FLOAT,FLOAT) Specifies the annotation
method for unannotated chromosome sequences. The LIDENT is mauve,
which utilizes the Mauve algorithm [9]. As with other chromosome
and genome alignment methods, the Mauve algorithm uses “anchoring”
in order to speed up the alignment process. However, it differs from
other such programs in that the anchor selection method relaxes the
assumption of collinearity of the genomes and instead, identifies and
aligns regions of local collinearity called locally collinear blocks (LCBs).
These LCBs represent a homologous region of a sequence shared by
two or more genomes and are without internal rearrangements. The
float parameters, which are order dependent include the quality of the
LCB (default value 35), LCB coverage (default 0.30), minimum length
of LCB as a percentage of sequence length (default 0.01), maximum
length of LCB as a percentage of sequence length (default 0.10). Percent
calculations are based on the shorter of two sequences compared.

chromosome:([argument list]) Specifies parameters for the creation of
chromosome- and genome-level HTUs (medians). The arguments of
chromosome define homologous blocks within unannotated chromosome
sequences by specifying parameters within the Mauve aligner [9] in-
cluding block quality, block coverage, minimum and maximum block
length. Users also specify the costs assigned to locus-level transforma-
tion events: (i.e. locus inversion, locus dcj, or locus breakpoint,
and locus indel), take into account whether the chromosome is linear
or circular (circular), and implement a number of heuristic proce-
dures to accelerate computations (median, swap med, and med approx).
Under default settings, the pairwise distance between two chromosome
segments or two chromosomes is determined using breakpoint rather
than inversion calculations and the rest of the arguments are executed
under their default settings.

chrom breakpoint:INTEGER Calculates the breakpoint distance [4] be-
tween two sequences of multiple chromosomes given the cost for rear-
rangement specified by an integer value. The breakpoint distance takes
into account locus rearrangements between non-homologous chromo-
somes (translocations) but not inversions. For further discussion on how

http://www.tsp.gatech.edu/concorde/
http://www.tsp.gatech.edu/concorde/

3.3. COMMAND REFERENCE 143

breakpoint distance is calculated see the argument locus breakpoint.
The default value of chrom breakpoint is 100.

chrom hom:FLOAT Specifies the lower limit of distance between two chro-
mosomes beyond which point the chromosomes are not considered to
be homologous. The default value of chrom hom is 0.75.

chrom indel:(INTEGER, FLOAT) Specifies the cost for insertion and dele-
tion of a chromosome in analysis of multiple chromosomes. The integer
value sets gap opening cost (o), whereas the float value sets gap exten-
sion cost (e). The indel cost for a fragment of length l is specified by the
following formula: o+ (l× e). The default values are o = 10, e = 1.0.

circular:BOOL Specifies whether the chromosome is circular (boolean value
true) or linear (boolean value false). The default value of circular
is false (linear chromosome).

NOTE

Note that the arguments locus breakpoint and chrom -
breakpoint cannot be used simultaneously with the arguments
locus inversion and chrom inversion as they designate al-
ternative methods of calculating distance between two chro-
mosomes. If both arguments are specified, the latter will be
executed. The order of other locus level arguments is arbitrary.

genome:([argument list]) Specifies parameters for creating genome-level
HTUs (medians). The arguments of genome define homologous blocks
within annotated genome sequences by specifying parameters within
the Mauve aligner [9] including block quality, block coverage, minimum
and maximum block length. Users also specify the costs assigned to
locus-level transformation events: (i.e. locus inversion or locus -
breakpoint; locus indel; and chromosome indel), and implement a
number of heuristic procedures to accelerate computations (median,
swap med, and med approx). Under default settings, the pairwise
distance between two genome segments or two genomes is determined
using breakpoint rather than inversion calculations and the remainder
of the arguments are executed under their default settings.

locus breakpoint:INTEGER Calculates the breakpoint distance [4] be-
tween two pairs of chromosomes given the cost for rearrangement

144 CHAPTER 3. POY5 COMMANDS

specified by an integer value. The breakpoint distance calculation
considers a chromosome or genome G = (x1, . . . , xn) of n gene, wherein
each appears exactly once and its orientation is either positive or nega-
tive. Gene orders are altered by gene rearrangement operations: gene
inversion, gene translocation, gene inversion and translocation (see
Figure 3.3).

g
1

g
2 g

3 g
4

g
5

g
1

g
2

g
5

g
3

g
4 g

1
g
2

g
1

g
2

−g −g−g
5 4 3

−g −g −g
5 4 3Translocation and inversion

Translocation

Inversion

Original order of gene

Figure 3.3: Examples of gene rearrangements: inversions and translocations.

The breakpoint distance takes into account rearrangements but not
inversions. Given G and G′, a pair of genes (gi, gj) is a breakpoint
if (gi, gj) occur consecutively in G but neither (gi, gj) nor (−gj ,−gi)
occur consecutively in G′ [43]. The breakpoint distance between G
and G′ is the number of breakpoints between them. Figure 3.4 shows
two breakpoints between G and G′. The breakpoint can be calculated
easily in linear time. This argument cannot be used in conjunction
with locus inversion.or locus dcj. The default value of locus -
breakpoint is 10.

g
1

g
2

g
3

g
4

g
5

g
1

g
2

−g −g−g
5 4 3

Figure 3.4: Rearrangement calculations between chromosomal or genomic
data of six genes g1, . . . , g6, where the rearrangement events are detected as
either two breakpoints (g2, g3), (g5, g6) or a single inversion (g1, g2, g3).

locus dcj:INTEGER Calculates the double cut and join distance [72]
between two chromosome segments given the cost for each event
specified by the integer value. The inversion distance takes in

3.3. COMMAND REFERENCE 145

consideration rearrangements and inversions. The dcj distance is
normally smaller than the inversion and breakpoint distances. This
argument cannot be used in conjunction with locus breakpoint
or locus inversion.

locus indel:(INTEGER, FLOAT) Specifies the cost for insertion or
deletion of a chromosome segment. The integer value sets the gap
opening cost (o), whereas the float value sets the gap extension
cost (e). The indel cost for a fragment of length l is specified
by the following formula: o + (l × e). The default values are
o = 10, e = 1.0.

locus inversion:INTEGER Calculates the inversion distance [22] be-
tween two chromosome segments given the cost for inversion
specified by the integer value. The inversion distance takes in
consideration rearrangements and inversions. Given G and G′,
the inversion distance between them is the number of inversions to
convert chromosome or genome G into G′ [22]. Figure 3.4 shows
one inversion between G and G′. The inversion can be calculated
in linear time. The breakpoint distance is normally larger than
inversion distance and dcj distance. This argument cannot be
used in conjunction with locus breakpoint or locus dcj.

max kept wag:INTEGER Defines the maximum number of Wagner-
based possible ancestral sequence alignments kept to create the
next set of alignments during the pairwise alignment with re-
arrangement process. The default value of max kept wag is 1,
however, at every step in the pairwise alignment with rearrange-
ment process, the original order (1...n) is always considered as a
potential solution.

median:INTEGER Specifies the number of alternative locus and chro-
mosome rearrangements of the best cost selected (randomly) for
each HTU (hypothetical taxonomic unit) or median. Limiting
the number of rearrangements stored in memory (smaller value
of median) is a heuristic strategy to accelerate calculations at
the expense of thoroughness of the search. By default, only 1
rearrangement is retained (the first one found). If more than
one rearrangement is specified, the selected number of rearrange-
ments is selected in random order from the pool of all generated
rearrangements.

med approx:BOOL Approximates chromosome medians using a fixed-
states approach. This is most useful to accelerating tree building

146 CHAPTER 3. POY5 COMMANDS

and searching operations for large chromosomal data sets. The
boolean value true applies the fixed-states optimization. The
default value is false.

median solver:LIDENT Specifies the median solver. User can choose
from default(caprara),vinh,siepel,bbtsp,coaletsp,chainedlk and sim-
plelk. The default median solver is caprara median solver. Note:
Concorde package is required for chainedlk and simplelk median
solver. Download Concorde package from
http://www.tsp.gatech.edu//concorde/downloads/downloads.
htm.

newkkonen[:LIDENT] The optional newkkonen argument can be used
with chromosomal or genomic data to minimize memory consump-
tion during the alignment of LCBs. This option, however, may
slow the alignment process and is only recommended for very large
chromosomal data sets to reduce memory consumption [70].

seq to chrom:([argument list]) Transforms nucleotide type data
into chromosome type data to allow rearrangements, inversions,
and locus-level indel operations. The chromosome-specific options
(e.g. locus breakpoint, locus inversion, locus dcj, and locus -
indel) can be specified by the argument.

swap med:INTEGER Specifies the maximum number of swapping iter-
ations to search for best pairwise alignment of two chromosomes
taking into account locus-level rearrangement events. Limiting
the number of swapping iterations accelerates the search at the
expense of thoroughness. The default value is 1.

Custom alphabet and break inversion transformation methods
This set of arguments govern the transformation of characters that are
either multi-locus nucleotides sequences (chromosome) or multi-locus, multi-
chromosomal nucleotide sequences (genome). Chromosome sequences can be
annotated or unannotated.

breakinv:(STRING, STRING, [orientation:BOOL]) An enhancement
of the data file type custom alphabet allowing rearrangement events.
Syntactically, breakinv data type is identical to custom alphabet data
type. Users specify the costs assigned to locus-level transformation
events: (i.e. locus inversion or locus breakpoint) and implement
the heuristic procedure to accelerate computations (median), as well

http://www.tsp.gatech.edu//concorde/downloads/downloads.htm.
http://www.tsp.gatech.edu//concorde/downloads/downloads.htm.

3.3. COMMAND REFERENCE 147

as defining orientation by the inclusion of “∼” symbols in the data
file.

breakinv to custom Transforms breakinv character type into custom -
alphabet characters. This transformation prevents the use of rear-
rangement operations.

Likelihood transformation methods This set of arguments enables
analysis using several variants of the maximum likelihood criterion, including
Most Parsimonious Likelihood (MPL) and Maximum Average Likelihood
(MAL).

likelihood([:argument list]) Transforms the specified characters to ei-
ther static or dynamic likelihood characters. All arguments are optional
except for model or model selection, which must be specified. The
defaults are presented in the sub-sections below.

elikelihood([:argument list]) Transforms the specified characters to
either static or dynamic likelihood characters while estimating the pa-
rameters based on a parsimony tree [71]. The initial rates (for example
of GTR) are set to the proportion of those transformations found across
branches of the tree. As with the standard likelihood command, all
arguments are optional except for model or model selection, which have
to be specified; the defaults are presented in the sub-sections below.

NOTE

Dynamic likelihood for unaligned sequence data is implemented
only as MPL [3]. Both MAL and MPL can be applied on static
characters.

NOTE

Dynamic likelihood characters necessarily include gaps/indels
as a state in the character alphabet. See information for gap
below.

Character frequencies Estimate the equilibrium frequencies of the char-
acters in the stationary Markov process. In order to yield the likelihood score,
the conditional probability of the data is multiplied by these frequencies. In
general, maximum likelihood applications in phylogenetics use the observed

148 CHAPTER 3. POY5 COMMANDS

(empirical) frequencies of the characters in the data as an approximation
to the likelihood-optimized frequencies. This approximation is sensible for
sequences evolving nearly neutrally, but this approximation breaks down for
sequences under moderate or strong selection.

priors:equal Constrains each of the equilibrium frequencies to be 1
r , where

r is the character alphabet size.

priors:estimate Uses observed frequencies of the characters to approxi-
mate the ML-optimized equilibrium frequencies. Under dynamic likeli-
hood, the indel equilibrium frequency is estimated to be the minimum
number of indels required to align all the sequences:

πgap =
∑n

i=1 |Sî| − |Si|
n|Sî|

where Sî is the longest sequence and n is the number of sequences.

given:(FLOAT list) Uses equilibrium frequencies given as a comma-separated
list specified by the user.

Cost Specifies the variant of relative likelihood (sensu [46]) used by POY5
to calculate the costs at each node and score the topology.

mal Specifies the standard criterion of MAL [15], in which the likelihood is
derived from the sum over all internal vertex labelings. Because the
vertex assignments are marginalized, this version of relative likelihood is
not compatible with the optimization of unaligned sequences (dynamic
likelihood).

mpl Specifies the criterion of MPL [3], in which the likelihood is derived
from the set of most probable state assignments at each node. Under
this criterion, vertex state assignments are not marginalized, and so
this variant of relative likelihood is compatible with dynamic likelihood.
However, several studies have noted that parameters under this criterion
may not be identifiable [74] and that the method may not be statistically
consistent [34].

3.3. COMMAND REFERENCE 149

Determination of alphabet size This option applies to qualitative char-
acters only, and is used to define the alphabet size for transform. While
unobserved states do not affect the cost of the tree under parsimony, this is
not necessarily the case with likelihood. This argument enables the user to
specify the size of the alphabet.

alphabet:min Sets the alphabet size to be the minimum value that encom-
passes all character observations for each state.

alphabet:max Do not modify the alphabet; use the one currently set under
the character type. This can be up to 32.

alphabet:INTEGER Specifies the size of the alphabet as defined by the
INTEGER value. This value must be ≥ the number of observed states.
If the specified value is greater than the number of observed states,
this INTEGER will be used in calculation of the likelihood of the tree.

Gap treatment Defines how atomic gaps (indels) are treated in likelihood
analysis. When employed, the POY5 approach to indels on static likelihood
characters is as a 5th state [33, 66]. POY is unique among likelihood im-
plementations both by enabling indel parameterization for any reversible,
stationary model applied to static characters and, more crucially, for imple-
menting dynamic likelihood for true sequence optimizations and topology
inference. Indel-aware models are scarce, but see Rivas and Eddy [40], and
Redelings and Suchard [39, 38] for alternative parameterizations.

gap:character Specifies that atomic indels are a character state without
adding an additional rate class, except under GTR, where POY5 keeps
the unrestricted nature of the model intact, and each indel-nucleotide
rate has its own class (e.g. A ↔ –, C ↔ –).

gap:coupled Specifies that atomic indels are a character state, with rates of
nucleotide-to-indel substitution constrained to be equal to one another.
For example, the Q-matrix

Q =


−3α− β α α α β

α −3α− β α α β
α α −3α− β α β
α α α −3α− β β
β β β β −4β



150 CHAPTER 3. POY5 COMMANDS

specifies a Jukes-Cantor matrix augmented to estimate nucleotide-to-
indel substitutions as a coupled parameter separate from nucleotide-
to-nucleotide substitutions. In accordance with other likelihood imple-
mentations, the entries of the Q-matrix are normalized to scale their
mean rate to 1.

gap:missing Specifies that indels be treated under standard assumptions,
thus making analyses in POY for a given model and alignment com-
parable to other implementations such as RAxML [45] and GARLI
[75].

Model choice Defines the reversible stochastic Markov model of evolution.
POY5, as in other standard likelihood implementations, employs globally
homogeneous models [25], which estimate rates using a single matrix over
the entire topology. POY5 requires a model of character substitution to be
specified during the transformation to likelihood characters.

Specific parameters for diagnosis can be specified by following the model
name with a colon, left parenthesis, and a list of numbers for the particular
model, followed by a closing parenthesis, (i.e. k2p:(2.0)).

NOTE

All matrices are normalized so the mean rate is one. This allows
branch lengths to represent the expected number of transformations
averaged over the sequence length. This is standard in most (if not
all) likelihood programs.

jc69/neyman The model of Jukes and Cantor [26] under nucleotide data, or
Neyman [35] in general. A single rate class. All equilibrium frequen-
cies are constrained to be equal. This model will work for any size
alphabet.

f81 The model of Felsenstein 1981 [15]. A single rate class, proportional
to the equilibrium frequencies. This model will work for any size
alphabet.

k2p/k80 The model of Kimura [28]. Transitions and transversions are
constrained to have separate rate classes. All equilibrium frequencies
are constrained to be equal.

f84 The model of Felsenstein 1984 [14]. Rates are constrained as in k2p,
but are also proportional to the equilibrium frequencies.

3.3. COMMAND REFERENCE 151

hky85 The model of Hasegawa et al. [23]. Three rate classes: transver-
sions (purine/pyrimidine), and independent classes for purine-purine
and pyrimidine-pyrimidine transitions. Rates are also proportional to
equilibrium frequencies.

tn93 The model of Tamura and Nei [50]. Three rate classes: transver-
sions (purine/pyrimidine), and independent classes for purine-purine
and pyrimidine-pyrimidine transitions. Rates are also proportional to
equilibrium frequencies.

gtr The model of Tavaré [51]. The most general reversible, stationary model
of nucleotide substitution, and the one most frequently selected by
information criteria. All rates constrained to be independent. This
model works for any size alphabet, but note that there are N(N−1)

2
rates, where N is the alphabet size.

ncm This model of Tuffley and Steel [52], is an extension of the neyman
model, but in this case each character is free to evolve at its own rate
on every edge of the tree. This model can only be used with static
data, including prealigned sequences. Because these characters evolve
at their own rate, gamma options are ignored.

file:STRING An external file containing a matrix of estimated rate values.
The diagonal values are ignored and may take any value. As mentioned
above, the rates of the matrix are normalized. The model is not
optimized further. For example:

0.0 2.0 1.0 2.0 4.0
2.0 0.0 0.0 1.0 4.0
1.0 2.0 0.0 2.0 4.0
2.0 1.0 2.0 0.0 4.0
4.0 4.0 4.0 4.0 0.0

Will be normalized so that the mean rate is 1, and so that the rows
sum to 0.0 to become (with equal equilibrium frequencies),

−0.865 0.192 0.096 0.192 0.384
0.192 −0.865 0.192 0.096 0.384
0.096 0.192 −0.865 0.192 0.384
0.192 0.096 0.192 −0.865 0.384
0.384 0.384 0.384 0.384 −1.538

152 CHAPTER 3. POY5 COMMANDS

custom:STRING An external file wherein the rate class constraints of the
Q-matrix are specified. As previously mentioned, diagonal elements are
ignored, but necessary and any character can be used as a placeholder
(below we use a dash, ‘–’). Any ASCII character can be used to define
an associated rate, but the matrix must be symmetric. For example,
the following matrix will create a model where three parameters are
ultimately optimized:

− a c d e
a − c d e
c c − d e
d d d − e
e e e e −

Model selection As an alternative to selecting a model directly (as above),
information theoretic approaches to model selection are provided. These
include the Akaike Information Criterion (AIC) [1], the corrected AIC (AICc)
[47], and the Bayesian Information Criterion (BIC) [44].

These methods, which require a tree in memory, will optimize the model to
the tree of all available models, and select the best (based on the information
criterion selected) to be kept in memory. A report is also printed to show the
scores and analysis of model selection (see Table 3.1). Delta, the difference
between the row and the best score are given, along with a weight (ωi) given
by,

wi =
e
−∆i

2∑R
r=1 e

−∆r
2

where R equals the number of models and i equals the ith model.

aic[:STRING] Uses the AIC (Akaike Information Criteron) to determine
the best model in the set. The STRING is optional, and if specified,
POY5 will output the table of information to this file. This is also
the case for the STRING attached to aicc and bic. The formula to
calculate the AIC is given by,

AIC = −2 log(L(θ̂|data)) + 2K

Where K is the number of parameters for the model, θ̂ and n are the
number of characters.

3.3. COMMAND REFERENCE 153

Table 3.1: Example of POY5 output showing scores and analysis of model
selection using aicc. Model type, negative log likelihood values (-`), penalty
parameter which include the number of branches (K), number of characters
(n), AICc values, AICc differences (∆), Akaike weights (ω) and cumulative
Akaike weights (Cum (ω)) are reported. In this example, JC69 garners the
best Information Theoretic score.

Model -` K n AICc ∆ ω Cum(ω)
JC69 538.819 31 49 1256.345 0.000 0.863 0.863
JC69+G 532.219 32 49 1260.438 4.093 0.111 0.975
K81 533.777 32 49 1263.554 7.209 0.023 0.998
K81+G 526.763 33 49 1269.127 12.782 0.001 1.000
F81 539.512 34 49 1317.024 60.678 5.754e-14 1.000
HKY 532.270 35 49 1328.387 72.041 1.961e-16 1.000
F84 533.315 35 49 1330.477 74.131 6.899e-17 1.000
F81+G 533.682 35 49 1331.210 74.865 4.780e-17 1.000
HKY+G 526.033 36 49 1346.067 89.721 2.840e-20 1.000
F84+G 526.518 36 49 1347.037 90.691 1.749e-20 1.000
TN93 531.899 36 49 1357.799 101.453 8.052e-23 1.000
TN93+G 525.841 37 49 1381.318 124.973 6.290e-28 1.000
GTR 530.724 39 49 1486.116 229.770 1.102e-50 1.000
GTR+G 523.365 40 49 1536.731 280.386 1.125e-61 1.000

NOTE

If n
k ¡ 40.0 then a warning message will be reported suggesting

the use of AICc (below).

aicc[:STRING] This is the second-order bias correction used for small
samples sizes (as mentioned in the statement above, when n

k < 40.0).
The correction is,

AICc = AIC +
2K(K + 1)
n−K − 1

bic[:STRING] Bayesian information criterion, although included in the
Information Theoretic approaches, it is in fact not related to information
theory. BIC is given by,

BIC = −2 ln(L(θ̂|data)) +K log(n)

154 CHAPTER 3. POY5 COMMANDS

Rate distributions Specifies the distribution of rates among sites. Rate
variation distributions allow multipliers to be applied to separate groups of
characters. This additional parameterization frequently improves estimated
likelihood scores. Commonly employed distributions for the parameterizing
of among-site variation include the discrete gamma distribution (Γ) [73]
and this distribution (Γ) with an additional invariant rate class, the theta
distribution (Θ) [21].

rates:gamma:(N, α) Applies a discrete gamma distribution of N classes,
γ(α, β), of rate variation across characters. The mean rate for the
distribution is set to 1.0 (i.e. α = β), thus one parameter is estimated.
The default for N is 4. If α is not given the parameter is optimized.

rates:theta:(N, α, %) Applies a discrete gamma distribution with an
additional invariable rate class (thus N + 1 rate classes in total). The
default for N is 4. α and % are optimized if not given.

rates:none Applies a single rate category to all sites.

NOTE

Under MAL, the rates are averaged across the discrete distri-
bution, while under MPL we select the best rate class for the
assignment of each character. Because dynamic likelihood char-
acters’ alignment matrix would select one rate class for align-
ment, and because this procedure is equivalent to a constant
multiplication of the branch length, dynamic MPL characters
do not support rate distribution. Rate distributions are ignored
if applied during a transform and a warning to that affect is
reported.

NOTE

It should be noted that although many researchers apply both
a gamma and theta in likelihood analyses, the parameter values
inferred are correlated [48]. It has therefore been recommended
that a proportion of invariant sites be “pseudo”-estimated by
increasing the number of discrete categories for the gamma
distribution to account for very low rate character groups. The
mean of each class is used to define the rate for the discrete
category.

3.3. COMMAND REFERENCE 155

Defaults

transform() If no arguments are given, this command does nothing.

Examples

• transform(all,(tcm:(1,1)))
Applies the transformation cost matrix (1,1) to all characters, meaning
that substitutions and gaps receive the same weight.

• transform(all,(tcm:("molmatrix")))
Applies the character transformation matrix ”molmatrix” to all char-
acters.

• transform(tcm:(1,1), gap opening:1)
Applies the transformation cost matrix and the gap opening cost to
all characters. In this example the cost for substitutions is 1, the gap
opening cost is 2 (1 set by gap opening + 1 set by tcm), and the gap
extension cost is 1 (set by tcm).

• transform(tcm:(2,2), ti:(1,1,1,1,0), td:(1,1,1,1,0))
Assigns to all characters the symmetric transformation cost matrix
with cost 2 for every indel and substitution, but for those insertions
and deletions at the ends of the sequences, the cost assigned will only
be 1.

• transform(tcm:("some tcm file",level:(1,first)))
This command applies the cost matrix as specified in tcm file ”some -
tcm file”. The heuristic median calculations are set to level 1 and tie
breaks are broken by choosing the first median state examined.

• transform(static,(weightfactor:2))
This command reweights all the static homology characters by a multi-
plicative factor of 2, while keeping the weighting scheme that has been
specified before.

• transform(static,(weight:4.2))
Applies the same weight (a float value 4.2) to all static homology
characters.

• transform(dynamic,(weight:4))
Applies the same weight (an integer value 4) to all dynamic homology
characters.

156 CHAPTER 3. POY5 COMMANDS

• transform(names:("test.ss:*"),(weight:3))
Weights all the morphological characters (*) in the file test.ss by an
integer value of 3.

• transform(names:("gen1", "gen4"), (fixed states))
Transform only specified sequence characters (gen1 and gen4) into
fixed states characters.

• transform((all,(tcm:(1,1))), (names:("gen1", "gen2",
(static approx))), (names:("gen3", (tcm:("molmatrix")))))
Applies the substitution and indel costs 1 to all characters, then applies
static approximation using that tcm to characters in files gen1 and
gen2, and for file gen3, it invokes a different transformation cost matrix,
contained in the file molmatrix. Beware that the file name should be
exactly as it was reported with report(data), which differs from the
actual file name (report (data) reports files as fileX:N).

• transform((all,(tcm:(1,1))),(names:("gen1:3","gen2:10",
"gen3:1", "gen4:5"),(static approx)), (names:("gen5","gen6"),
(tcm:"Molmatrix1")))
Applies tcm (1,1) to all characters, then applies static approximation
to the sequence data contained in files gen1, gen2, gen3, and gen4
according to this transformation cost matrix, and applies the custom
transformation cost matrix contained in the file Molmatrix1 to the
sequence data contained in files gen5 and gen6.

• transform(names:("mycustom.fas"),(tcm:("mycustom.mat",2)))
This examples transforms the cost matrix used to optimize custom al-
phabet character “mycustom.fas” to “mycustom.mat” and uses heuris-
tic level 2.

• transform(fixed states)
Transformed all sequence characters into fixed states characters.

• transform(likelihood:(jc69, rates:gamma:(2), mpl, priors:
equal))
Transforms the characters to likelihood characters, using a jc69 + Γ2
model, with equal equilibrium frequencies under MPL. In this model,
gaps are treated as “missing” (the default value).

• transform(likelihood:(tn93, rates:theta:(4), gap:coupled,
mpl, priors:estimate))

3.3. COMMAND REFERENCE 157

This command transforms the characters to likelihood characters, using
a tn93 + Θ4 model, with estimated equilibrium frequencies under
MPL. In this model, indels are treated as “coupled”.

• transform(fixed states:("shrimp",ignore polymorphism))
This example shows the optional arguments for a MAUVE-based
fixed states analysis. Here, MAUVE genome alignment files will be
generated with the names “shrimp i j.alignment” where i and j are
median states. Sequence ambiguities will not be resolved to generate
additional medians beyond those determined by the data.

• transform(search based:(("mycustom char1.fas","mycustom
extra1.fas"), ("mycustom char2.fas","mycustom extra2.fas")))
This command adds the sequences found in “mycustom extra1.fas”
and “mycustom extra2.fas” to fixed states characters “mycustom -
char1.fas” and “mycustom char2.fas” respectively.

• transform(chromosome:(annotate:(mauve,35.0,0.35,0.01,0.10)))
This command specifies the use of MAUVE annotation with 35.0 for
quality of LCB, 35% coverage of all sequences by LCB’s, 1% min length
of LCB (100 for length 10,000 sequence), and 10% max length (1000
for length 10,000 sequence).

• transform(seq to chrom:(locus indel:(50, 1.0), min seed
length:15))

All applicable (i.e. sequence) data are transformed into chromosome
data and the locus-level gap opening cost is set at 50 with a gap
extension cost at 1.0.

3.3.28 use

Syntax

use(STRING)

Description

Restores from memory the state of a POY5 session (that includes character
data, selections, trees, all other data and specifications) that had previously
been saved during the session using the command store (Section 3.3.25). The
recalled session replaces the current session. The string argument specifies
the name of the stored state.

158 CHAPTER 3. POY5 COMMANDS

In combination with store (Section 3.3.25), the command use is useful
for exploring alternative cost regimes and terminal sets within a single POY5
session.

Examples

• store("initial tcm")
transform(tcm:(1,1))
use("initial tcm")
The first command, store, stores the current characters and trees under
the name initial tcm. The second command, transform, changes
the cost regime of molecular characters, effectively changing the data
being analyzed. However, the third command, use, recovers the initial
state stored under the name initial tcm.

See also

• store (Section 3.3.25)

• transform (Section 3.3.26)

3.3.29 version

Syntax

version()

Description

Reports the POY5 version number in the output window of the ncurses
interface, or to the standard error in the flat interface.

Examples

• version ()

3.3.30 wipe

Syntax

wipe()

3.3. COMMAND REFERENCE 159

Description

Eliminates the data stored in memory (all character data, trees, etc.).

Examples

• wipe ()

160 CHAPTER 3. POY5 COMMANDS

Chapter 4

POY5 Heuristics: A Practical
Guide

4.1 Introduction

As the level of phylogenetic analysis increases—from individual loci, to chro-
mosomes, to genomes containing multiple chromosomes—so too does the
computational complexity. In POY5, a significant increase in computational
time results from combining cladogram searching with co-optimization of
nucleotide pairwise alignments, rearrangements of loci within a chromosome,
and rearrangements of chromosome fragments within the genome. As a
result, a phylogenetic analysis involves a set of nested computationally “hard”
(NP-complete) problems that makes finding exact solutions impossible. In ad-
dition, increasing sequence length heterogeneity (at the levels of nucleotides,
loci, and chromosomes) and the ever-growing sizes of datasets, further con-
tribute to computational complexity making it impossible to obtain exact
solutions.

To circumvent the problem of computational intractability, and hence, the
speed of the analyses, POY5 can employ a battery of approximate, or heuristic
methods that function at different levels of the analysis. As with all heuristic
procedures, a tradeoff is involved: a substantial decrease in execution time
comes at a price of obtaining solutions with reduced optimality (however,
the extent of the tradeoff is difficult to evaluate in the analyses of real
datasets). Therefore, it becomes important to understand the combined
effect of different heuristic methods, so that the chosen search strategy
balances the computational time with a “reasonable” quality of the result.

Here, we provide general guidelines for using different heuristic methods,

161

162 CHAPTER 4. POY5 HEURISTICS: A PRACTICAL GUIDE

exploring their combined effect, and suggesting the choice of parameters that
can be explored to provide the best result for specific cases. Real datasets
differ greatly in size and complexity, so that no single optimal strategy can
be suggested. These guidelines, however, should enable the investigator to
design an efficient strategy that can be tailored to the peculiarities of a given
dataset.

In addition to heuristic methods, this chapter attempts to assist with
the selection of transformation cost regimes. Alternative cost regimes can
significantly affect the outcome of the analysis, this becomes particularly
apparent in dealing with large, genome-level datasets, where multiple cost
regimes are used simultaneously to specify transformations at different levels
of analysis. Many problems stem from the difficulty in selecting the most
reasonable combination of parameters for the optimization of DNA sequence
data at the levels of nucleotides, loci, and chromosomes.

4.2 Data treatment

Direct optimization (see Character optimization section below) involves
comparing all potential nucleotide homologies between two sequences. Conse-
quently, the time it takes is proportional to the product of the lengths of the
sequences compared (O(n2)) [67]. This procedure can be time consuming
for long sequences and for those DNA fragments that greatly differing in
length. In cases where unambiguous (such as long, completely conserved
regions) sequence fragments can be identified, partitioning the long sequences
into smaller fragments delimited by these regions can significantly reduce
computational time. Such economy is reached because nucleotide homologies
are not examined over the separate partitions. This strategy assumes that
the fragments are mutually exclusive and are homologous across terminals.

At the level of nucleotides, individual fragments in a locus can be sepa-
rated by pound symbols (“#”) or contained as individual files (that is, treated
as partitions). When “#’s” are used, their number must be the same across
homologous sequences. Alternatively, the argument of auto sequence -
partition of the command transform (Section 3.3.26) can partition the
data . This command evaluates each fragment in the data file and if a long
region appears to have no indels, then the fragment is broken inside that
region. Fragmenting long sequences greatly accelerates searching. At the
chromosome level, individual loci can be separated by pipes (“|”) (see Table
4.1).

4.3. CHARACTER OPTIMIZATION 163

Table 4.1: Heuristics Guide: Data Treatment.

Level of analysis Heuristic Implementation

Nucleotides and
amino acids

Fragment sequences Manually separate fragments with #
symbols or transformed using auto -
sequence partition

Locus Fragment chromosome Manually insert pipes separating
loci

Chromosomes N/A N/A

4.3 Character optimization

Minimizing overall cladogram cost is an NP-Hard optimization dependent on
the lowest cost assignment of HTU sequences. POY implements direct optimi-
zation (DO; [58]), fixed-states optimization (FSO; [59]), and Search-Based
(SBO; [65]) heuristics to determine the set of HTU sequences comprising the
internal nodes of each cladogram constructed.

Direct Optimization decomposes the problem into a series of two-node
comparisons, calculating locally optimal solutions, which generates the total
cladogram cost. An advantage of direct optimization is that it allows for
the exploration of a large diversity of putative homologies and selects the
scheme that yields the best solution. This is useful in analyzing sequences
of different length, where site-to-site homologies are uncertain. Because the
procedure is based on a greedy algorithm, it requires multiple iterations
(independent initial cladogram builds) and extensive tree searches to reach a
potentially global minimum.

In contrast, fixed-states optimization does not calculate HTU sequences
but rather optimizes those observed in terminal taxa. These internal node
sequences then are diagnosed using dynamic programming based on a matrix
of edit costs between sequences. In the fixed-states implementation, clado-
gram optimization is independent of sequence lengths after initial state cost
calculation, and as the number of sequences increase so to does the pool
from which the HTU sequences are drawn, thereby improving cladogram cost
estimation (this can be further improved using additional potential median
sequences via SBO). Due to these properties fixed-states optimization is
recommended as an initial approximation strategy for large data sets with
large variation in sequence length.

164 CHAPTER 4. POY5 HEURISTICS: A PRACTICAL GUIDE

Further approximations and economies can be achieved by varying param-
eters of commands, such as selecting a limited subset of trees for subsequent
analysis limiting the number of replicates, and examining intermediary results
from an interrupted analysis.

4.4 Tree searching

Heuristic approaches to cladogram searching include random addition of
taxa, branch swapping (TBR and SPR), simulated annealing (the ratchet
and tree-drifting), and genetical algorithms (tree fusing). These techniques,
frequently used in combination, allow a more efficient exploring of tree space
and provide the means of finding more globally optimal solutions. These
methods are widely used in phylogenetics [17, 68], although POY5 implements
additional modifications of these procedures.

Typical search strategy in POY5 involves consecutive application of tree
search algorithms that begin with generating multiple, randomly selected
starting points [Random Addition Sequences (RAS) or Wagner trees]. The
importance of multiple starting trees cannot be overemphasized and a suc-
cessful search will maximize the number of RAS. However, making a tree
search more exhaustive by increasing the number of starting trees comes
at a price of increased computation time. Therefore, it is advised here to
estimate the amount of time it takes to complete a single replicate and takes
this information in consideration when designing a more exhaustive strategy.
The number of replicates used by POY5 practitioners for datasets of moderate
size (70-100 terminals) ranges from 100 to 250 (or approximately n times
the number of terminals. Here are some examples of search strategies:

RAS+SPR/TBR+Ratchet The strategy is for a thorough search for a
data set of 100 or fewer taxa. A diversity of starting points is generated
by multiple RAS, each refined by a local search (TBR or a combination
of SPR and TBR, the latter is an efficient default strategy in POY5).
Ratcheting is used to examine tree space that potentially has not been
explored by the local searches.

RAS+SPR/TBR+Ratchet+Tree Fusing Adding a tree fusing step al-
lows for combining the best subtrees of cladograms that can potentially
yield a tree of shorter length. Empirical studies show that adding tree
fusing after replicate rounds enhances the results only when dealing
with data sets with more than 50 taxa.

4.5. TRANSFORMATION COST REGIMES 165

RAS+SPR/TBR+Ratchet+Tree Drifting+Tree Fusing Tree Drift-
ing can be used in place of or in addition to the Ratchet.

Input Trees+SPR/TBR+Ratchet+Tree Drifting+Tree Fusing For
more exhaustive searches, the best trees obtained from the initial
searches using the strategies outlines above, can be used as input trees
for subsequent analyses. In doing so, the RAS step can be omitted
because searching starts with locally optimal trees.

The aggressiveness of searches can be adjusted by varying parameters of
the branch swapping, ratchet, tree fusing, and tree drifting commands.

Further economies can be reached by using a combination of different
character optimization methods. For example, initial searches can be con-
ducted under the faster static approximation (that converts sequence data
into static homology characters; see Character optimization section), whereas
the final refinement can be performed using direct optimization.

4.5 Transformation cost regimes

In analyses at the level of nucleotides, there are three general approaches to
selecting transformation cost regimes most commonly used by POY5 practi-
tioners.

Equal costs This approach assigns the same cost to all substitutions and
indels, and does not take into account gap extension cost. For rationale
for using this cost regime see Frost et al. [18]

“Homology maximization” This approach, developed by De Laet [31],
assigns costs 2, 3, and 1 to transformations, gap opening, and gap
extension respectively.

Parameter sensitivity analysis This method, suggested by Wheeler [57],
explores the effect of varying transformation costs by comparing results
of analyses conducted under different cost regimes. Partition incon-
gruence can subsequently be computed for each cladogram and the
parameter set that minimizes incongruence is selected as best.

More specifically, sequence optimization parameters depend on the relative
costs of nucleotide- and locus-level transformations. Nucleotide-level trans-
formations are specified by the tcm argument, the locus-level rearrangements
are specified by locus breakpoint or locus inversion costs. If locus -
level rearrangement costs are extremely high, few rearrangements will be

166 CHAPTER 4. POY5 HEURISTICS: A PRACTICAL GUIDE

employed. On the other hand, if their cost is very low (equal or slightly
above that of the nucleotide-level rearrangements), rearrangements can be
frequent.

When DNA sequence data is combined with morphological data, the cost
for morphological character transformations often is set to be the same as
for nucleotide substitutions or indels.

4.6 Likelihood Analyses

The analysis of sequence data under likelihood, whether prealigned (static)
or not, can be significantly more time consuming than similar analyses under
parsimony. A basic strategy to improve execution times under likelihood
is to perform initially less complex analyses and build up through a series
of increasingly more complex procedures until the desired level of search
complexity is achieved.

Parsimony initial pass This approach begins with an initial build and
search (of arbitrary complexity) under parsimony before transforming
to a likelihood model and diagnosing the topology. This procedure
saves time by avoiding RAS builds and swapping under likelihood. A
potential caveat of this heuristic is that a parsimony-optimal topol-
ogy may be far in tree space from the likelihood-optimal topology,
and significant swapping after transformation to likelihood may be
necessary.

Rough parameter estimation The granularity of model parameter esti-
mation can be increased. For example, under a traditional likelihood-
based swap, all branches (regardless of the distance from the join site)
are re-optimized, and the model parameters are re-optimized after
every swap. Time can be saved by optimizing the model only if the
cost of a join is within a threshold number of the current best cost, or
by optimizing branches within a specified distance of the join region.
RAxML takes advantage of this heuristic method by using its GTRCAT
model for topology search, and a more refined GTRGAMMA for final
parameter estimation on the best topology.

Floating point granularity The coarseness of floating point calculations
can be increased to limit the time spent on optimizing parameter values
during swapping or even during transformation to likelihood characters.
Coarse granularity operates by limiting both the precision calculated
and the number of optimization iterations conducted when estimating

4.6. LIKELIHOOD ANALYSES 167

parameter values. A caveat of this heuristic is that coarse granularity
may adversely affect analyses for which multiple topologies and branch
length schemes are close to equally optimal. Additionally, likelihood
scores under coarse granularity are not comparable to those of other
likelihood programs, and a full optimization should be conducted on
the final topology.

Optimization schedule The stringency of the model parameter optimi-
zation schedule can be decreased. For example, under a traditional
likelihood-based swap, all branch lengths (regardless of the distance
from the join site) and model parameters are re-optimized after every
swap. Time can be saved by limiting this schedule and optimizing the
model only if the cost of a join is within a threshold number of the
current best cost, or by optimizing branches within a specified distance
of the join region. A caveat of this heuristic is that the optimal schedule
is difficult to predict, and is likely to be strongly data-dependent.

Limited rearrangement neighborhoods The size of the rearrangement
neighborhood (variants in complexity between NNI and TBR) can be
restricted in early search stages of topology search under likelihood.
This approach restricts the number of calculations during rearrange-
ments, whereas increasing granularity restricts the time spent on a given
calculation. Once solutions have been identified that are suspected
to be near optimal, more exhaustive model estimation and search
strategies can be performed. A caveat of this heuristic is similar to
that of a parsimony initial pass–limiting rearrangement neighborhoods
may identify a local optimum under likelihood that may be difficult to
escape.

Other possibilities for heuristics exist, including alternation between opti-
mality criteria on static characters (transformations back and forth between
static likelihood and parsimony), between variants of one optimality criterion
(between MPL and MAL), or between character assumptions (between four-
and five-state variants of a given model).

168 CHAPTER 4. POY5 HEURISTICS: A PRACTICAL GUIDE

Chapter 5

POY5 Tutorials

These tutorials are intended to provide guidance for more sophisticated ap-
plications of POY5 that involve multiple steps and a combination of different
commands. Each tutorial contains a POY5 script that is followed by detailed
commentaries explaining the rationale behind each step of the analysis. Al-
though these analyses can be conducted interactively using the Interactive
Console or running separate sequential analyses using the Graphical User
Interface, the most practical way to do this is to use POY5 scripts (see POY5
Quick Start for more information (Section 2.3).

NOTE

It is important to remember that the numerical values for most
command arguments will differ substantially depending on type,
complexity, and size of the data. Therefore, the values used here
should not be taken to be optimal parameters.

The tutorials use sample datasets that are provided with POY5 installation
but can also be downloaded from the POY5 site at:

http://research.amnh.org/scicomp/projects/poy.php

The minimally required items to run the tutorial analyses are the POY5
application and the sample data files. Running these analyses requires some
familiarity with the POY5 interface and command structure that can be found
in the preceding chapters.

169

http://research.amnh.org/scicomp/projects/poy.php

170 CHAPTER 5. POY5 TUTORIALS

5.1 Combining Search Strategies

The following script implements a strategy for a thorough search. This is
accomplished by generating a large number of independent initial trees by
random addition sequence and combining different search strategies that aim
at exploring local tree space and escaping the effect of composite optima by
comprehensively traversing the tree space. In addition, this script shows how
to output the status of the search to a log file and calculate the duration of
the search.

(* search using all data *)
read("9.fas","31.ss")
read(prealigned:(aminoacids:("41_aln.aa"), tcm:("s1t2.mat")))
(* Taxon "t1" selected as the root *)
set(log:"all_data_search.log",root:"t1")
report(timer:"search_start")
build(250)
swap(threshold:5.0)
select(unique)
perturb(transform(static_approx),iterations:15,ratchet:(0.2,3))
select()
fuse(iterations:200,swap())
select()
report("all_trees",trees:(total),"constree",graphconsensus,
"diagnosis",diagnosis)
report(timer:"search end")
set(nolog)
exit()

• (* search using all data *) This first line of the script is a com-
ment. While comments are optional and do not affect the analyses,
they are useful for housekeeping purposes.

• read("9.fas","31.ss") This command imports the nucleotide se-
quence files 9.fas (in FASTA format), and a morphological data file
31.ss (in Hennig86 format).

• read(prealigned:(aminoacids:("41 aln.aa), tcm:("s1t2.mat")))
This command imports the prealigned amino acids file 41 aln.aa and
sets the transformation cost matrix to be used in calculating the cost
of the tree for these data. The tcm file s1t2.mat specifies that the
cost of substitutions are 1 and that of indels 2.

5.1. COMBINING SEARCH STRATEGIES 171

• set(log:"all data search.log",root:"t1") The set command spec-
ifies conditions prior to tree searching. Specifying the log produces
a file, all data search.log, that provides an additional means to
monitor the process of the search. The outgroup (t1) is designated as
the root, so that all the reported trees have the desired polarity. By
default, the analysis is performed using direct optimization.

• report(timer:"search start") In combination with report(timer:
"search end"), this commands reports the amount of time that the
execution of commands enclosed by timer takes. In this case, it reports
how long it takes for the entire search to finish. Using timer is useful
for planning a complex search strategy for large datasets that can
take a long time to complete: it is instructive, for example, to know
how long a search would last with a single replicate (one starting tree)
before starting a search with multiple replicates.

• build(250) This commands begins tree-building step of the search
that generates 250 random-addition sequence Wagner trees. A large
number of independent starting points insures that a reasonable portion
of tree space will be examined.

• swap(threshold:5.0) swap specifies that each of the 250 trees is
subjected to alternating SPR and TBR branch swapping routines
(the default of POY5). In addition to the most optimal trees, all the
suboptimal trees found within 5% of the best cost are swapped. This
step ensures that the local searches settled on the local optima.

• select(unique) Upon completion of branch swapping, this command
retains topologically unique trees. Contra select(), which selects
topologically unique and optimal trees, select(unique) selects all
unique trees, regardless of cost, thus ensuring that a larger tree space
is explored.

• perturb(transform(static approx),iterations:15,ratchet:
(0.2,3)) Having transformed to static data (static approx), 20% of
the characters are selected at random and are then upweighted by a
factor of 3. This process is repeated 15 times.

• fuse(iterations:200,swap()) In this step, up to 200 swaps of sub-
trees identical in terminal composition but different in topology, are
performed between pairs of best trees recovered in the previous step.
This is another strategy for further exploration of tree space. Each

172 CHAPTER 5. POY5 TUTORIALS

resulting tree is further refined by local branch swapping under the
default parameters of swap.

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• report("all trees",trees:(total),"constree",graphconsensus,
"diagnosis",diagnosis) This command produces a series of outputs
of the results of the search. It includes a file containing best trees in
parenthetical notation and their costs (all trees), a graphical repre-
sentation (in PDF format) of the strict consensus (constree), and the
diagnoses for all best trees (diagnosis).

• report(timer:"search end") This command stops timing the du-
ration of search, initiated by the command report(timer:"search
start").

• set(nolog) This command stops reporting any output to the log file,
all data search.log.

• exit() This command ends the POY5 session.

5.2 Timed Search Analysis

The following script implements a strategy for a thorough search using the
timed search option. The timed search option applies a default strategy that
performs as many rounds of tree building, followed by TBR branch swapping,
parsimony ratchet and tree fusing.

(* search using a Timed Search *)
read("9.fas","31.ss")
read(prealigned:(aminoacids:("41_aln.aa"), tcm:("s1t2.mat")))
set(root:"t1")
search (max_time:00:12:00)
select(unique)
report("Run1a.tre", trees)
search(max_time:00:12:00)
select(unique)
report("Run1b.tre", trees)
fuse(iterations:250)

5.2. TIMED SEARCH ANALYSIS 173

select()
swap(trees:100)
select()
report("Run1c_H86.tre",trees:(hennig, total), "Run1c_cs.tre",
consensus,"Run1c.pdf", graphconsensus)
quit()

• (* search using a Timed Search *) This first line of the script is a
comment. While comments are optional and do not affect the analyses,
they are useful for housekeeping purposes.

• read("9.fas","31.ss") This command imports the nucleotide se-
quence files 9.fas (in FASTA format), and a morphological data file
31.ss (in Hennig86 format).

• read(prealigned:(aminoacids:("41 aln.aa), tcm:("s1t2.mat")))
This command imports the prealigned amino acids file 41 aln.aa and
sets the transformation cost matrix to be used in calculating the cost
of the tree for these data. The tcm file s1t2.mat specifies that the
cost of substitutions are 1 and that of indels 2.

• set(root:"t1") The set command specifies conditions prior to tree
searching. The outgroup (t1) is designated as the root, so that all the
reported trees have the desired polarity. By default, the analysis is
performed using direct optimization.

• search(max time:00:12:00) When performing a timed search, it is
crucial to set the maximum time such that the program has a reasonable
amount of time to perform a search. Thus, it is important to have
some approximation as to the length of time it would take to perform
a single round of searching (e.g. build (1), followed by TBR, ratchet
and fusing in the case of a parsimony analysis of DNA sequence data).
With this information, the user can then estimate the amount of time
necessary to perform a thorough search. The amount of time set for the
search is clearly data dependent. In this case, it has been determined
that 24 hours is sufficient time to perform a thorough search.

• select(unique) Upon completion of the timed search, this command
retains topologically unique trees. Contra select(), which selects
topologically unique and optimal trees, select(unique) selects all
unique trees, regardless of cost, thus ensuring that a larger tree space
is explored.

174 CHAPTER 5. POY5 TUTORIALS

• report("Run1a.tre", trees) Having selected all unique trees, these
trees are reported to a file. Outputting trees at different stages of longer
runs is advisable, in case of hardware problem, computer crashes, power
outages etc:

• search(max time:00:12:00) A second timed search is performed.

• select(unique) All topologically unique trees (including suboptimal
trees) are selected.

• report("Run1b.tre", trees) Having selected all unique trees, these
trees are reported to a file.

• fuse(iterations:250) In this step, up to 250 swaps of subtrees iden-
tical in terminal composition but different in topology, are performed
between pairs of best trees recovered in the previous step. This is
another strategy for further exploration of tree space.

• select() Upon completion of fusing, this command retains only opti-
mal and topologically unique trees; all other trees are discarded from
memory.

• swap(trees:100) Submits current trees to a round of SPR followed
by TBR. It keeps up to 100 minimum cost trees for each starting tree.

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• report(Run1c H86.tre",trees:(hennig, total), "Run1c cs.tre",
consensus, "Run1c.pdf", graphconsensus) This command reports
a series of outputs of the results of the search. It includes a file contain-
ing the most optimal trees in parenthetical notation (Run1c H86.tre)
with the associated costs in square brackets. These trees have been
prepended with tread and are separated by asterisks. In addition, a
strict consensus (Run1c cs.tre) and a graphical representation of this
strict consensus (Run1c.pdf) are also outputted.

• quit() This command ends the POY5 session.

5.3. ITERATIVE PASS ANALYSIS 175

5.3 Iterative Pass Analysis

The following script implements a strategy for a thorough search under
iterative pass optimization. The iterative pass optimization is a very time
consuming procedure that makes it impractical to conduct under this kind
of optimization (save for very small datasets that can be analyzed within
reasonable time). The iterative pass, however, can be used for the most
advanced stages of the analysis for the final refinement, when a potential
global optimum has been reached through searches under other kinds of
optimization (such as direct optimization). Therefore, this tutorial begins
with importing an existing tree (rather than performing tree building from
scratch) and subjecting it to local branch swapping under iterative pass.

(* search using all data under ip *)
read("9.fas","31.ss")
read(prealigned:(aminoacids:("41_aln.aa"), tcm:("s1t2.mat")))
read("Run1c_H86.tre")
set(iterative:approximate:2)
swap(around)
select()
report("all_trees",trees:(total),"constree",graphconsensus,
"diagnosis",diagnosis)
exit()

• (* search using all data under ip *) This first line of the script
is a comment. While comments are optional and do not affect the
analyses, they are useful for housekeeping purposes.

• read("9.fas","31.ss") This command imports the nucleotide se-
quence files 9.fas (in FASTA format), and a morphological data file
31.ss (in Hennig86 format).

• read(prealigned:(aminoacids:("41 aln.aa), tcm:("s1t2.mat")))
This command imports the prealigned amino acids file 41 aln.aa and
sets the transformation cost matrix to be used in calculating the cost
of the tree for these data. The tcm file s1t2.mat specifies that the
cost of substitutions are 1 and that of indels 2.

• read("Run1c H86.tre") This command imports a tree file, inter -
tree.tre, that contains the most optimal tree from a previous analyses.

176 CHAPTER 5. POY5 TUTORIALS

• set(iterative:approximate:2) This command sets the optimization
procedure to iterative pass such that approximated three dimensional
alignments generated using pairwise alignments will be considered. The
program will iterate either two times, or until no further tress cost
improvements can be made.

• swap(around) This commands specifies that the imported tree is sub-
jected to alternating rounds of SPR and TBR branch swapping (the
default of POY5) following the trajectory of search that completely
evaluates the neighborhood of the tree (by using around).

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• report("all trees",trees:(total),"constree",
graphconsensus,"diagnosis",diagnosis) This command produces
a series of outputs of the results of the search. It includes a file
containing best trees in parenthetical notation and their costs (all -
trees), a graphical representation (in PostScript format) of the strict
consensus (constree), and the diagnoses for all best trees (diagnosis).

• exit() This command ends the POY5 session.

5.4 Calculating supports: Bremer

This tutorial illustrates the calculation of Bremer support values for trees
constructed from dynamic homology characters.

(* Bremer support part 1: generating trees *)
read("9.fas","31.ss")
read(prealigned:(aminoacids:("41_aln.aa"), tcm:("s1t2.mat")))
set(root:"t1")
read("Run1c_H86.tre")
swap(all,visited:"tmp.trees", timeout:3600)
select()
report("bremertrees.tre",trees)
exit()

(* Bremer support part 2: Bremer calculations *)
read("9.fas","31.ss")

5.4. CALCULATING SUPPORTS: BREMER 177

read(prealigned:(aminoacids:("41_aln.aa"),tcm:("s1t2.mat")))
read("bremertrees.tre")
report("Bremer_trees.pdf", graphsupports: bremer: "tmp.trees")
exit()

• (* Bremer support part1: generating trees *) This first line
of the script is a comment. While comments are optional and do not
affect the analyses, they are useful for housekeeping purposes.

• read("9.fas","31.ss") This command imports the nucleotide se-
quence files 9.fas (in FASTA format), and a morphological data file
31.ss (in Hennig86 format).

• read(prealigned:(aminoacids:("41 aln.aa), tcm:("s1t2.mat")))
This command imports the prealigned amino acids file 41 aln.aa and
sets the transformation cost matrix to be used in calculating the cost
of the tree for these data. The tcm file s1t2.mat specifies that the
cost of substitutions are 1 and that of indels 2.

• set(root:"t1") The set command specifies conditions prior to tree
searching. The outgroup (t1) is designated as the root, so that all the
reported trees have the desired polarity. By default, the analysis is
performed using direct optimization.

• read("Run1c H86.tre") This command will read in the tree file Run1c -
H86.tre that was generated in Tutorial 2.

• swap(all,visited:"tmp.trees", timeout:3600) The swap command
specifies that each of the trees be subjected to an alternating SPR
and TBR branch swapping routine (the default of POY5). The all
argument turns off all swap heuristics. The visited:"tmp.trees"
argument stores every visited tree in the file specified. Although the
visited tree file is compressed to accommodate the large number of
trees it will accumulate, the argument timeout can be used to limit
the number of seconds allowed for swapping also limiting the size of the
file. Alternately the swap command can be performed as a separate
analysis and terminated at the users discretion to maximize the number
of trees generated.

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

178 CHAPTER 5. POY5 TUTORIALS

• report("bremertrees.tre",trees) This command will save the swapped
tree(s) to a file bstrees.tre.

• exit() This command ends the POY5 session.

• (* Bremer support part 2: Bremer calculations *) A comment
indicating the intent of the commands which follow.

• read("9.fas","31.ss")

• read(prealigned:(aminoacids:("41 aln.aa"),tcm:("s1t2.mat")))

• read("bremertrees.tre") This command imports the tree file bstrees.tre
for which the support values will be generated. It is important to
only read the selected "bstrees.tre" file rather than the expansive
"tmp.trees" file which will be used in bremer calculations.

• report("Bremer trees.pdf",graphsupports:bremer:"tmp.trees")
The report command in combination with a file name and the
graphsupports generates a pdf file designated by the name Bremer -
trees.pdf with bremer values for the selected trees held in tmp.trees.
It is strongly recommended that this more exhaustive approach is used
for calculating Bremer supports rather than simply using the
graphsupports defaults.

• exit() This command ends the POY5 session.

5.5 Calculating supports: Jackknife

This tutorial illustrates the calculation of Jackknife support values for trees
constructed from static homology characters—these characters are prealigned.
Although it is possible to calculate Jackknife support values for trees con-
structed using dynamic homology characters, it is highly recommended
against doing so as resampling of dynamic characters occurs at the fragment
(rather than nucleotide) level (e.g. calculating jackknife supports for a dataset
that contains a single fragment would be meaningless).

(* Jackknife support for static homology trees *)
read(prealigned:("28s_aln.fas",tcm:(1,2)))
set(root:"Americhernus")

5.5. CALCULATING SUPPORTS: JACKKNIFE 179

build()
swap()
select()
calculate_support(jackknife:(remove:0.50,resample:1000),
build(5),swap(tbr ,trees:3))
report("jackknives", graphsupports)
exit()

• (* Jackknife support for static homology trees *) This first
line of the script is a comment. While comments are optional and do
not affect the analyses, they are useful for housekeeping purposes.

• read(prealigned:("28s.aln",tcm:(1,2))) This command imports
the prealigned nucleotide sequence file 28s.aln, and treats the charac-
ters as static with the prescribed transformation cost matrix.

• set(root:"Americhernus") The set command specifies conditions
prior to tree searching. The outgroup (Americhernus) is designated
by the root, so that all the reported trees have the desired polarity.

• build() This command begins the tree-building step of the search
that generates by default 10 random-addition trees. It is essential that
trees are either specified from a file or that trees are built and loaded
in memory before attempting to calculate support values.

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY5).

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• calculate support(jackknife,(remove:0.50,resample:1000) The
calculate support command generates support values as specified by
the jackknife argument for each tree held in memory. During each
pseudoreplicate half of the characters will be deleted as specified in the
argument remove:0.50.

• report("jackknives", graphsupports) The report command in
combination with a file name and the graphsupports generates a
pdf file with jackknife values designated by the name specified (i.e.
jackknives).

180 CHAPTER 5. POY5 TUTORIALS

• exit() This command ends the POY5 session.

5.6 Calculating supports: Bootstrap

This tutorial illustrates the calculation of Jackknife support values for trees
constructed from static homology characters. As these characters are not pre-
aligned, the dynamic homology characters are converted to static characters
using the argument static approx prior to calculation of support.

(* Bootstrap support for static homology trees *)
read("28s.fas")
transform(tcm:(1,2))
set(root:"Americhernus")
build()
swap()
select()
transform (all, (static_approx))
swap()
calculate_support(bootstrap:100), build(5), swap(tbr,trees:5))
report("bootstraps", graphsupports)
exit()

• (* Bootstrap support for static homology trees *) This first
line of the script is a comment. While comments are optional and do
not affect the analyses, they are useful for housekeeping purposes.

• read("28s.fas") This command imports the nucleotide sequence file
28s.fas.

• transform(tcm:(1,2)) The file 28s.fas is transformed such that the
cost of substitutions are 1 and that of indels 2.

• set(root:"Americhernus") The set command specifies conditions
prior to tree searching. The outgroup (Americhernus) is designated
by the root, so that all the reported trees have the desired polarity.

• build() This command begins the tree-building step of the search
that generates by default 10 random-addition trees. It is essential that
trees are either specified from a file or that trees are built and loaded
in memory before attempting to calculate support values.

5.7. SENSITIVITY ANALYSIS 181

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY5).

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• transform (all, (static approx)) This command transforms all
the dynamic characters into static characters.

• swap() The local optimum for dynamic homology characters can differ
from that for the static homology characters based on the same sequence
data. Therefore, an extra round of swapping on the transformed data is
performed in order to reach the local maximum for the static homology
characters prior to calculating support values.

• calculate support(bootstrap:100),build(5),swap(tbr,trees:5))
The calculate support command generates support values as speci-
fied by the bootstrap argument for each tree held in memory. During
each pseudoreplicate the characters are randomly sampled and replaced,
followed by 5 Wagner tree builds (by random addition sequence) and
swapping these trees under tbr, keeping five minimum-cost trees after
each round. The procedure is repeated 100 times.

• report("bootstraps",graphsupports) The report command in com-
bination with a file name and the graphsupports generates a pdf file
with bootstrap values designated by the name specified (i.e. bootstrap).

• exit() This command ends the POY5 session.

5.7 Sensitivity Analysis

This tutorial demonstrates how data for parameter sensitivity analysis is
generated. Sensitivity analysis [57] is a method of exploring the effect of
relative costs of substitutions (transitions and transversions) and indels
(insertions and deletions), either with or without taking gap extension cost
into account. The approach consists of multiple iterations of the same search
strategy under different parameters (i.e. combinations of substitution and
indel costs). Obviously, such analysis might become time consuming and
certain methods are shown here how to achieve the results in reasonable

182 CHAPTER 5. POY5 TUTORIALS

time. This tutorial also shows the utility of the command store and how
transformation cost matrixes are imported and used.

POY5 does not comprehensively display the results of the sensitivity
analysis or implements the methods to select a parameter set that produces
the optimal cladogram, but the output of a POY5 analysis (such as the one
presented here) generates all the necessary data for these additional steps.

For the sake of simplicity, this script contains commands for generating
the data under just two parameter sets. Using a larger number of parameter
sets can easily be achieved by replicating the repeated parts of the script
and substituting the names of input cost matrixes.

(* sensitivity analysis *)
read("9.fas")
set(root:"t1")
store("original_data")
transform(tcm:("s1t1.txt"))
build(100)
swap(timeout:3600)
select()
report("9_11.tre",trees:(total) ,"9_11con.tre",consensus,
"9_11con.pdf",graphconsensus)
load("original_data")
transform(tcm:"(s1t2.txt"))
build(100)
swap(timeout:3600)
select()
report("9_12.tre",trees:(total),"9_12con.tre",consensus,
"9_12con.pdf",graphconsensus)
exit()

• (* sensitivity analysis *) This first line of the script is a com-
ment. While comments are optional and do not affect the analyses,
they are useful for housekeeping purposes.

• read("9.fas") This command imports the nucleotide sequence file
9.fas (in FASTA format).

• set(root:"t1") The outgroup (t1) is designated by the root, so that
all the reported trees have the desired polarity.

• store("original data") This commands stores the current state of
analysis in memory in a temporary file, original data.

5.7. SENSITIVITY ANALYSIS 183

• transform(tcm:"(s1t1.txt")) This command applies a transforma-
tion cost matrix from the file s1t1.txt to for subsequent tree searching.
In this cost matrix both substitutions and indels are assigned a cost of
1.

• build(100) This commands begins tree-building step of the search that
generates 100 random-addition trees. A large number of independent
starting point insures that thee large portion of tree space have been
examined.

• swap(timeout:3600) swap specifies that each of the 100 trees build
in the previous step is subjected to alternating SPR and TBR branch
swapping routine (the default of POY5). The argument timeout speci-
fies that 3600 seconds are allocated for swapping and the search is going
to be stopped after reaching this limit. Because sensitivity analysis
consists of multiple independent searches, it can take a tremendous
amount of time to complete each one of them. In this example, timeout
is used to prevent the searches from running too long. Using timeout
is optional and can obviously produce suboptimal results due to in-
sufficient time allocated to searching. A reasonable timeout value can
be experimentally obtained by the analysis under one cost regime and
monitoring time it takes to complete the search (using the argument
timer of the command set). The advantage of using timeout is saving
time in cases where a local optimum is quickly reached and the search
is trapped in its neighborhood.

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• report("9 11.tre",trees:(total) ,"9 11con.tre",consensus,
"9 11con.pdf",graphconsensus) This command produces a file con-
taining best tree(s) in parenthetical notation and their costs (9 11.tre),
a a file containing the strict consensus in parenthetical notation
(9 11con.tre), and a graphical representation (in PDF format) of the
strict consensus (9 11con.pdf).

• load"original data") This command restored the original (non-
transformed) data from the temporary file original data generated
by store.

184 CHAPTER 5. POY5 TUTORIALS

• transform(tcm:("s1t2.txt")) This command applies a different
transformation cost matrix from the file s1t2.txt to for another round
of tree searching under this new cost regime.

• build(100) This commands begins tree-building step of the search that
generates 100 random-addition trees. A large number of independent
starting point insures that thee large portion of tree space have been
examined.

• swap(timeout:3600) swap specifies that each of the 100 trees build
in the previous step is subjected to alternating SPR and TBR branch
swapping routine (the default of POY5) to be interrupted after 3600
seconds (see the description in the previous iteration of the command
above).

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• report("9 12.tre",trees:(total),"9 12con.tre",consensus,
"9 12con.pdf", graphconsensus) This command produces a set of
the same kinds of outputs as generated during the first search (see
above) but under a new cost regime.

• exit() This command ends the POY5 session.

5.8 Chromosome Analysis: Unannotated Sequences

This tutorial illustrates the analysis of chromosome-level transformations
using unannotated sequences, i.e., contiguous strings of sequences without
prior identification of independent regions.

(* Chromosome analysis of unannotated sequences *)
read(chromosome:("11mito.fas"))
transform(tcm:(1,2), gap_opening:3)
transform(chromosome:(locus_inversion:100,locus_indel:(10,0.9)))
transform(chromosome:(annotate:(mauve,25.0,0.3,0.01,0.08)))
transform(fixed_states:("mauveout", ignore_polymorphism))
build()
swap(threshold:5.0)
select()

5.8. CHROMOSOME ANALYSIS: UNANNOTATED SEQUENCES 185

set(root:"Taxon11")
report("chrom",diagnosis)
report("consensustree",graphconsensus)
exit()

• (* Chromosome analysis of unannotated sequences *) This first
line of the script is a comment. While comments are optional and do
not affect the analyses, they are useful for housekeeping purposes.

• read(chromosome:("11mito.fas")) This command imports the unan-
notated chromosomal sequence file 11mito. The argument chromosome
specifies the characters as unannotated chromosomes.

• transform(chromosome:(locus inversion:100,locus indel:
(10,0.9)). The transform followed by the argument chromosome
signifies the conditions to be applied when calculating chromosome-level
(medians). The argument locus inversion:100 applies an inversion
distance between chromosome loci with the integer value determining
the rearrangement cost. The argument locus indel:10,0.9 specifies
the indel costs for the chromosomal segments, such that the integer
10 sets the gap opening cost and the float 0.9 sets the gap extension
cost. When selecting appropriate cost parameters for transformation
events it is important to remember that the lowest cost option for
an event will be applied. For example, in the sample mitochondrial
data set used in this tutorial it is biologically feasible that locus level
transformations may have occurred in short (¡100) nucleotide strings
(e.g. tRNA genes). To allow for locus transformations to be detected
in these data an appropriate locus indel cost must be less than the
relative cost of explaining these transformations by nucleotide indels
and substitutions.

• transform(tcm:(1,2), gap opening:3)) The file 11mito is trans-
formed such that the cost of substitutions are 1, indels 2, and there is
a gap opening cost of 3.

• transform(chromosome:(annotate:(mauve,25.0,0.3,0.01,0.08)))
The argument annotate:(mauve) specifies that the program will use
the Mauve aligner [9] to determine locally collinear homologous blocks
within the chromosomal sequences. The values that follow the Mauve
option set the parameters for determining the lcb homologies: quality,
coverage, and minimum and maximum lcb length relative to overall

186 CHAPTER 5. POY5 TUTORIALS

sequence length. In this case, the lcb quality parameter that represents
the cost of the lcb divided by its length of lcb is set to the relatively low
value of 25 to facilitate the detection of blocks within the sequences.
The higher the lcb quality values will result in more stringent lcb
determination and likely fewer local collinear blocks recovered. The
second parameter within the argument annotate:(mauve) sets the
minimum lcb sequence coverage at 30% meaning that if total length
of an input sequence is, for example,100, a minimum coverage of 0.30
would require a the total length of all lcbs to be at least 30. The default
value of 0.01 or 1% is sets the minimum length of a given lcb relative
to the length of the entire sequence (e.g. 100 for a 10,000 nucleotide
sequence). The maximum length allowed for an lcb in this example is
set at 8% of the length of the total sequence.

• transform(fixed states:‘‘mauveout’’,ignore polymorphism))
The transform command in combination with fixed states:
("mauveout",ignore polymorphism)) is used to produce alignment
files that can be read into Mauve to track the movement of lcbs between
sequences. Here, Mauve genome alignment files will be generated
with the names ”mauveout i j.alignment” where i and j are median
states. Sequence ambiguities will not be resolved to generate additional
medians beyond those determined by the data. These files can be
used in conjunction with the diagnosis output to determine inferred
rearrangement events.

• build(100) This commands begins the tree-building step of the search
that generates 100 random- addition trees. It is highly recommended
that a greater number of Wagner builds be implemented when analyzing
data for purposes other than this demonstration.

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY5). In addition to the most optimal trees, all the suboptimal
trees found within 5% of the best cost are thoroughly evaluated.

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• set(root:"Taxon11") The outgroup (Taxon11) is designated by the
root, so that all the reported trees have the desired polarity.

5.9. CHROMOSOME ANALYSIS: ANNOTATED SEQUENCES 187

• report("mito.diag",diagnosis) The report command in combina-
tion with a file name and the diagnosis outputs the optimal median
states and edge values to a specified file (mito).

• report("consensustree",graphconsensus) The report command
in combination with a file name and the graphconsensus generates a
pdf strict consensus file of the trees generated (consensustree).

• exit() This command ends the POY5 session.

5.9 Chromosome Analysis: Annotated Sequences

This tutorial illustrates the analysis of chromosome-level transformations
using annotated sequences, i.e., contiguous strings of sequences with prior
identification of independent regions delineated by pipes "|".

(* Chromosome analysis of annotated sequences *)
read(annotated:("aninv2.fas"))
transform(annotated:(locus_inversion:20,locus_indel:(10,1.5),
circular:false,median:1,swap_med:1)))
build(20)
swap()
select()
report("Annotated",diagnosis)
report("graphann",graphdiagnosis)
report("consensustree",graphconsensus)
exit()

• (* Chromosome analysis of annotated sequences *) This first line
of the script is a comment. While comments are optional and do not
affect the analyses, they are useful for housekeeping purposes.

• read(annotated:("aninv2.fas")) This command imports the anno-
tated chromosomal sequence file aninv2. The argument annotated
specifies the characters.

• transform((annotated:(locus inversion:50,locus indel:
(10,0.9),circular:false,median:1,swap med:1)) The transform
followed by the argument annotated specifies the conditions to be ap-
plied when calculating chromosome-level (medians). The argument
locus inversion:50 applies an inversion distance between chromo-
some loci with the integer value determining the rearrangement cost

188 CHAPTER 5. POY5 TUTORIALS

and using the default Caprara median solver. The argument locus -
indel:
(10,0.9 specifies the indel costs for chromosomal segments, where the
integer 10 sets the gap opening cost and the float 0.9 sets the gap exten-
sion cost. The default values are applied to the arguments circular
median and swap med arguments to minimize the time require for these
nested search options. To more exhaustively perform these calculations,
trees generated from initial builds can be imported to the program
and reevaluated with values greater than 1 entered for the median and
swap med arguments.

• build(20) This commands begins the tree-building step of the search
that generates by 20 random-addition sequence Wagner trees. It
is highly recommended that a greater number of Wagner builds be
implemented when analyzing data for purposes other than this demon-
stration.

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY5).

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• report("Annotated",diagnosis) The report command in combina-
tion with a file name and the diagnosis outputs the optimal median
states and edge values to a specified file (Annotated).

• report("graphann",graphdiagnosis) The report command in com-
bination with a file name and the graphdiagnosis outputs a pdf tree
file with labeled medians that allow users to link to the diagnosis file
to reconstruct the median states at the internal tree nodes.

• report("consensustree",graphconsensus) The report command
in combination with a file name and the graphconsensus generates a
pdf strict consensus file of the trees generated

• exit() This command ends the POY5 session.

5.10. GENOME ANALYSIS: MULTIPLE CHROMOSOMES 189

5.10 Genome analysis: multiple chromosomes

This tutorial illustrates the analysis of genome-level transformations using
data from multiple chromosomes.

(* Genome analysis of multiple chromosomes *)
read (genome:("gen7.fas"))
transform(tcm:(1,1), gap_opening:1)
transform(chromosome:(annotate:(mauve,25.0,0.3,0.01,0.08)))
transform(chromosome:(locus_breakpoint:80,locus_indel:(15,2.5)))
transform(genome:(translocation:100))
transform(fixed_states:("genomeout", ignore_polymorphism))
build(100)
swap()
select()
set(root:"Taxon5")
report("genome",diagnosis)
report("graphgen.pdf",graphdiagnosis)
report("genconsensus",graphconsensus)
exit()

• (* Genome analysis of multiple chromosomes*) This first line of
the script is a comment. While comments are optional and do not
affect the analyses, they provide are useful for housekeeping purposes.

• read(genome:("gen7.fas")) This command imports the genomic
sequence file gen7. The argument genome specifies the characters as
data consisting of multiple chromomsomes.

• transform(genome:(translocation:100)) sets the breakpoint cost
for the movement of lcbs from one chromosomal segment to another.

• transform(chromosome:(annotate:(mauve,25.0,0.3,0.01,0.1)))
The argument annotate: (mauve) specifies that the program will
use the Mauve aligner [9] to determine locally collinear homologous
blocks within the chromosomal sequences. The values that follow the
Mauve option set the parameters for determining the lcb homologies:
quality, coverage, and minimum and maximum lcb length relative to
overall sequence length. In this case the lcb quality parameter which
represents the cost of the lcb divided by its length of lcb is set to the
relatively low value of 25 to facilitate the detection of blocks within

190 CHAPTER 5. POY5 TUTORIALS

the sequences. The higher the lcb quality values will result in more
stringent lcb determination and likely fewer local collinear blocks recov-
ered. The second parameter within the argument annotate:(mauve)
sets the minimum lcb sequence coverage at 30% meaning that if total
length of an input sequence is, for example,100, a minimum coverage
of .30 would require a the total length of all lcbs to be at least 30.
The default value of .01 or 1% is sets the minimum length of a given
lcb relative to the length of the entire sequence (e.g. 100 for a 10,000
nucleotide sequence). The maximum length allowed for an lcb in this
example is set at 10% of the length of the total sequence.

• transform(chromosome:(locus breakpoint:80,locus indel:
(10,1.5))) The command transform followed by chromosome speci-
fies the conditions to be applied when calculating genome-level HTUs
(medians). The argument chrom breakpoint:80 applies a breakpoint
distance between chromosomes with the integer value determining the
rearrangement cost. The argument chrom indel:15,1.5 specifies the
indel costs for each entire chromosome, whereby the integer sets the gap
opening cost and the float sets the gap extension cost. The argument
inversion: 20 applies an inversion distance between chromosome
loci with the integer value determining the rearrangement cost. The
argument locus indel:10,1.5 specifies the indel costs for the chro-
mosomal segments, whereby the integer 10 sets the gap opening cost
and the float 1.5 sets the gap extension cost.

• transform(genome:(translocation:100)) sets the breakpoint cost
for the movement of lcbs from one chromosomal segment to another.

• transform(fixed states:‘‘genomeout’’,ignore polymorphism))
The transform command in combination with fixed states:
("genomeout",ignore polymorphism)) is used to produce alignment
files that can be read into Mauve to track the movement of lcbs between
sequences. Here, Mauve genome alignment files will be generated
with the names ”mauveout i j.alignment” where i and j are median
states. Sequence ambiguities will not be resolved to generate additional
medians beyond those determined by the data. These files can be
used in conjunction with the diagnosis output to determine inferred
translocation and rearrangement events.

• build(100) This commands begins the tree-building step of the search
that generates by default 100 random- addition trees. It is highly

5.11. CUSTOM ALPHABET ANALYSIS 191

recommended that a greater number of Wagner builds be implemented
when analyzing data for purposes other than this demonstration.

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY5).

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• set(root:"Taxon5") The set command specifies the outgroup taxon
(Taxon5) is designated as the root, so that all the reported trees have
the desired polarity.

• report("genome",diagnosis) The report command in combination
with a file name and the diagnosis outputs the optimal median states
and edge values to a specified file (genome).

• report("graphgen",graphdiagnosis) The report command in com-
bination with a file name and the graphdiagnosis outputs a pdf tree
file with labeled medians that allow users to link to the diagnosis file
to reconstruct the median states at the internal tree nodes.

• report("genconsens",graphconsensus) The report command in
combination with a file name and the graphconsensus generates a pdf
strict consensus file of the trees generated (genconsensus).

• exit() This command ends the POY5 session.

5.11 Custom Alphabet Analysis

This tutorial illustrates the analysis of the custom alphabet character type.
This data is in a user-defined alphabet format.

(* Custom Alphabet Analysis *)
read(custom_alphabet:("UT_louse.fas", tcm:("UT_louse.mat")))
build(all, 2)
swap()
select()
set(root:"ta38")
report("louse_all.tre",trees:(total),"louse_all.pdf",graphtrees)
quit()

192 CHAPTER 5. POY5 TUTORIALS

• (* Custom Alphabet Analysis *) This first line of the script is a
comment. While comments are optional and do not affect the analyses,
they are useful for housekeeping purposes.

• read(custom alphabet:("UT louse.fas", tcm:("UT louse.mat")))
This command imports the user-defined custom alphabet character
file UT louse.fas and the accompanying transformation matrix UT -
louse.mat.

• build(all, 2) This command builds two trees and turns off all pref-
erence strategies for adding branches and tries all possible addition
positions for all terminals.

• swap() Submits current trees to a round of SPR followed by TBR, the
default settings.

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• set(root:"ta38") The set command specifies the outgroup taxon
(ta36) is designated as the root, so that all the reported trees have
the desired polarity.

• report("louse all.tre", trees:(total), "louse all.pdf",
graphtrees) This command reports a series of outputs of the results
of the search. It includes a file containing the most optimal trees in
parenthetical notation (louse all.tre) with the associated costs in
square brackets.

• quit() This command ends the POY5 session.

5.12 Maximum Likelihood Analysis: Static

The following tutorial illustrates the analysis of static characters under the
maximum likelihood criterion. This analysis is of similar intensity to that of
a search using the GTR model in PhyML. Full maximum likelihood analyses,
(i.e. analyses that include builds under likelihood, sensu PAUP*) can be
computationally intensive, therefore parsimony alternatives to RAS under
likelihood are provided.

5.12. MAXIMUM LIKELIHOOD ANALYSIS: STATIC 193

(* ML analysis: Static; Initial parsimony search *)
read(prealigned:("9.fas", tcm:(1,1)))
search(max_time:00:01:00)
select()

(* Transform static to LK characters. Heuristics follow *)
set(opt:coarse)
transform(likelihood:(gtr, rates:gamma:(4), priors:estimate,
gap:missing, mal))
swap(all:5, spr, optimize:(model:never, branch:never))
fuse(all:5, spr, optimize:(model:never, branch:join_region))
select(best:1)
set(opt:exhaustive)
report("9_statML.tre",trees:(branches))
report("9_statML.lkm",lkmodel)
wipe()
quit()

• (* ML analysis: Static. Initial parsimony search *) This
first line of the script is a comment. While comments are optional and
do not affect the analyses, they are useful for housekeeping purposes.

• read(prealigned:("9.fas",tcm:(1,1))) This command imports the
nucleotide sequence data file 9.fas as prealigned characters and and
specifies the transformation cost matrix to be used in calculating the
cost of the tree for these data, such that the cost of substitutions and
indels are 1.

• search(max time:00:01:00) search is a default strategy that will
perform as many builds, swaps, perturbation using ratchet, and tree
fusing for the defined time of 1 hour.

• select() This command retains only optimal and topologically unique
trees; all other trees are discarded from memory.

• set(opt:coarse) This command sets the floating point optimization
strategy for subsequent swapping under likelihood. In this case, the
tolerance of the routines is set to 1e-3 (half the log of a full, exhaustive
search).

194 CHAPTER 5. POY5 TUTORIALS

• transform(likelihood:(gtr,rates:gamma:(4), priors:estimate,
gap:missing, mal)) This command transforms the characters to
static likelihood characters, using a GTR + Γ4 model, with empirical
equilibrium frequencies under standard MAL. In this model, indels are
treated as missing data, as for the preceding parsimony search.

• swap(all:5,spr,optimize:(model:never,branch:never)) This
command swaps using SPR within a distance of 5 from the join point.
Following each round of SPR, the model is never optimized, and the
branches are not optimized during the swap process.

• fuse(all:5,spr,optimize:(model:never,branch:join region))
This command fuses using spr within a distance of 5 from the join
point, turning off model parameter optimization, and optimizing all
branch lengths within the region of the join point.

• select(best:1) This command saves a single most optimal topology
(with branch lengths) in memory. All other trees are purged.

• set(opt:exhaustive)

• report(‘‘9 statML.tre’’,trees:(branches)) This command out-
puts the topology, with branch lengths, in .tre format.

• report(‘‘9 statML.lkm’’,lkmodel) This command outputs the re-
sult of the likelihood analysis, which consists of the likelihood score,
the variant of likelihood used, the tree length (sum of branch lengths),
the values of the parameter estimates for the entries of the substitution
rate matrix (Q), and the estimate of the value of the rate variation
shape parameter.

• exit() This command ends the POY5 session.

5.13 Maximum Likelihood Analysis: Dynamic

The following tutorial illustrates the analysis of dynamic characters under
the most parsimonious likelihood (MPL) criterion.

(* Maximum likelihood analysis: Dynamic *)
(* Initial parsimony search *)
read("9.fas")

5.13. MAXIMUM LIKELIHOOD ANALYSIS: DYNAMIC 195

search(max_time:00:01:00)
select()

(* Transform parsimony DO characters to dynamic MPL characters *)
set(opt:coarse)
transform(likelihood:(gtr, priors:estimate, gap:coupled, mpl))
swap(spr, all:5)
select(best:1)
set(opt:exhaustive)
report("9_dMPL.ia", ia:all)
report("9_dMPL.tre",trees:(branches))
report("9_dMPL.lkm",lkmodel)
wipe()

(* Re-load the alignment/tree pair generated by dynamic MPL and
re-diagnose as static MAL characters *)

read(prealigned:("9_dMPL.ia",tcm:(1,1)), "9_dMPL.tre")
transform(likelihood:(gtr, rates:gamma:(4), priors:estimate, mal))
report("9_dyn-stat.lkm", lkmodel)
wipe()

(* Re-load the implied alignment as a heuristic multiple sequence
alignment and conduct a quick search under parsimony *)

read(prealigned:("9_dMPL.ia", tcm:(1,1)))
build(20)
swap()
select()
perturb(transform(static_approx),iterations:50,ratchet:(0.2,3))
select()

(* Transform to static MPL characters and swap *)
set(opt:coarse)
transform(likelihood:(gtr, gap:coupled, mpl))
swap(all, spr, optimize:(model:always, branch:join_delta))
report("9_final_diag.lkm",lkmodel)
report("9_final_diag.tre",trees:(branches))
exit()

• (* Read in the data *) This first line of the script is a comment.
While comments are optional and do not affect the analyses, they are

196 CHAPTER 5. POY5 TUTORIALS

useful for separating different components of an analysis, especially if
the script is long.

• read("9.fas") This command imports the nucleotide sequence data
file 9.fas under the default behavior of treatment as dynamic charac-
ters. Note: unlike the previous tutorial, the characters are not imported
as prealigned.

• search(max time:00:01:00) search is a default strategy that will
perform as many builds, swaps, perturbation using ratchet, and tree
fusing for the defined time of 1 hour.

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• set(opt:coarse) Sets coarse granularity for floating point optimiza-
tion.

• transform(likelihood:(gtr,priors:estimate,gap:coupled,mpl))
This command transforms the characters to static likelihood charac-
ters, using a GTR model, with empirical equilibrium frequencies under
dynamic MPL. Note: Under dynamic MPL rate variation distribution
is not enabled.

• swap(spr, all:5) This command swaps the tree using subtree prun-
ing and regrafting, specifying that joins occur within 5 from the break
point. Iteration of likelihood model parameters occurs after every join.

• select(best:1) This command saves 1 of the most optimal topology
(with branch lengths) in memory. All other trees are purged.

• set(opt:exhaustive) Sets machine precision granularity for floating
point optimization. Optimization is run over multiple iterations until
convergence.

• report("9 dMPL.ia", ia:all) This command saves the implied align-
ment generated by dynamic MPL as a file named 9 dMPL.ia.

• report("9 dMPL.tre",trees:(branches)) This command saves the
topology in memory with branch lengths as a .tre file named 9 -
dMPL.tre.

5.13. MAXIMUM LIKELIHOOD ANALYSIS: DYNAMIC 197

• report("9 dMPL.lkm",lkmodel) This command saves the parameter
estimates generated by dynamic MPL as a file named 9 dMPL.lkm.

• wipe() This commands clears the memory.

• read(prealigned:("9 dMPL.ia",tcm:(1,1)),"9 dMPL.tre") Read in
the tree/alignment combination produced by the preceding search under
dynamic MPL as static characters.

• transform(likelihood:(gtr,rates:gamma:(4),priors:estimate))
Transform the static characters to MAL, using a GTR + Γ4 model and
empirical equilibrium frequencies. POY will re-diagnose the topology
using this model and optimize the values.

• report("9 dyn-stat.lkm",lkmodel) Report the output of the likeli-
hood analysis to the file 9 dyn-stat.lkm.

• wipe() This commands clears the memory.

• read(prealigned:("9 dMPL.ia",tcm:(1,1))) This command imports
the nucleotide implied alignment 9 dMPL.ia as prealigned characters.

• build(20) This command generates 20 random-addition Wagner trees.
A large number of independent starting points ensures that a large
portion of tree space have been examined.

• swap() swap specifies that each of the 20 trees is subjected to alter-
nating SPR and TBR branch swapping routines (the default of POY5).
All trees with the optimal score found are stored in memory.

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• perturb(transform(static approx),iterations:50,ratchet:
(0.2,3)) Having transformed to static data (static approx), 20% of
the characters are selected at random and are then upweighted by a
factor of 3. 50 successive rounds are repeated.

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• set(opt:coarse) Set coarse granularity for floating point optimiza-
tion.

198 CHAPTER 5. POY5 TUTORIALS

• transform(likelihood:(gtr, gap: coupled, mpl))) Transform
the static parsimony characters to static MPL characters with a GTR
model, empirical equilibrium frequencies, and a coupled nucleotide-indel
parameter.

• swap(all, spr, optimize:(model:(always), branch:join delta)
This command swaps the tree using subtree pruning and regrafting,
specifying that iteration of likelihood model parameters will occur after
every join, and that only the path from the break to the join will be
optimized.

• report("9 final diag.lkm",lkmodel) This command outputs the
result of the likelihood analysis to the file "9 LKstaticdiagnose.lkm.

• report("9 final diag.tre",trees:(branches)) This command out-
puts the topology, with branch lengths, in .tre format.

• exit() This commands ends the POY5 session.

5.14 ML Analysis: Partitions and Model Selection

The following scripts cover analyses of model selection and partitioned
analysis under the maximum likelihood criterion. The first section of this
tutorial covers the selection of models for, and analysis of, partitioned codons
of protein coding sequences.

(* ML Analysis: Partitions and Model Selection *)
read(prealigned:("coleoptera_nd2.fasta",tcm:(1,1)))
set(codon_partition:("codon", names:("coleoptera_nd2.fasta")))
build(100)
swap()
select(best:1)
transform(likelihood:(aicc:"coleoptera_cp", rates:gamma:(4)))
swap(spr,all:5,optimize:(model:threshold:1.33,branch:join_delta)
swap(spr,all:1)
report("codon_LK.tre", trees:(branches))
report("codon_LK.lkm", lkmodel)
exit()

5.14. ML ANALYSIS: PARTITIONS AND MODEL SELECTION 199

• (* ML Analysis: Partitions and Model Selection *) This first
line of the script is a comment. While comments are optional and do
not affect the analyses, they are useful for housekeeping purposes.

• read(prealigned:("coleoptera nd2.fasta",tcm:(1,1))) This com-
mand imports the nucleotide sequence data file coleoptera nd2.fasta
as prealigned characters. The tcm sets the transformation cost matrix
to be used in calculating the cost of the tree for these data (the cost of
substitutions and indels are 1).

• set(codon partition:("codon", names:("coleoptera nd2.fasta")))
Specifies that the data be partitioned as “codon” data, in which a
partition is defined to include every third nucleotide position. This
command is equivalent to the NEXUS partitioning commands

Begin SETS;
pos1 = 1 - N /3;
pos2 = 2 - N /3;
pos3 = 3 - N /3;
END;

where N is the aligned length of the static data. The data must
begin at the first codon position and must be a multiple of three.

• build(100) This command begins the tree-building step of the search
by random-addition trees. 100 trees are built.

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY5).

• select(best:1) Select the best scoring tree and save to memory. All
other trees are purged.

• transform(likelihood:(aicc:"coleoptera cp",rates:gamma:(4)))
This command runs model selection, including both the named-rate-
matrix-only (RMO) models and RMO + Γ 4 models, and using the
corrected AIC (AICc) as the model selection criterion. The results with
all model fits are output to the file coleoptera cp, and the best-fit
models for each codon position are automatically stored in memory for
subsequent analysis.

200 CHAPTER 5. POY5 TUTORIALS

• swap(spr,all:5, optimize:(model:(threshold:1.33),branch:
join delta)) This command swaps the tree using spr, with joins
occurring within five branches of the break site. The model parameters
are optimized if the cost of the join under the current model is within
1.33 times the current best cost (proportion 0.33 worse). Only the
branches along the path from the break to the new join location are
optimized.

• swap(spr,all:1) This command swaps the tree using nearest-neighbor
interchange (NNI), this time optimizing all the model parameters and
the branches after every join.

• report("codon LK.tre",trees:(branches)) This command outputs
the topology, with branch lengths in .tre format.

• report("codon LK.lkm",lkmodel) This command outputs the result
of the likelihood analysis, which consists of the likelihood score, the
variant of likelihood used, the tree length (sum of branch lengths), the
values of the parameter estimates for the entries of the substitution
rate matrix (Q), and the estimate of the value of the rate variation
shape parameter.

• exit() This commands ends the POY5 session.

Bibliography

[1] H. Akaike. Information theory and an extension of the maximum
likelihood principle. Second international symposium on information
theory, pages 267–281, 1973.

[2] D.A. Bader, B.M.E. Moret, T. Warnow, S.K. Wyman, M. Yan,
J. Tang, A.C. Siepel, and A. Caprara. Grappa, version 2.0.
http://www.cs.unm.edu/ moret/grappa. Technical report, University of
New Mexico, 2002.

[3] D. Barry and J. Hartigan. Statistical analysis of hominid molecular
evolution. Stat. Sci., 2:191–210, 1987.

[4] M. Blanchette, G. Bourque, and D. Sankoff. Genome Informatics,
chapter Breakpoint phylogenies, pages 25–34. Universal Academy Press,
Tokyo, 1997. S. Miyano and T. Takagi–eds.

[5] G. Bourque and P. A. Pevzner. Genome-scale evolution: Reconstructing
gene orders in the ancestral species. Genome Research, 12:26–36, 2002.

[6] K. Bremer. The limits of amino acid sequence data in angiosperm
phylogenetic reconstruction. Evolution, 42:795–803, 1988.

[7] J.H. Camin and R.R. Sokal. A method for deducing branching sequences
in phylogeny. Evolution, 19:311–326, 1965.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 2nd edition, 2001.

[9] A.C.E. Darling, B. Mau, F. R. Blattner, and N. T. Perna. Mauve:
Multiple alignment of conserved genomic sequence with rearrangements.
Genome Research, 14:1394–1403, 2004.

[10] J. S. Farris. A method for computing Wagner trees. Systematic Zoology,
19:83–92, 1970.

201

202 BIBLIOGRAPHY

[11] J. S. Farris. Hennig86, 1988.

[12] J. S. Farris. The retention index and the rescaled consistency index.
Cladistics, 5:417–419, 1989.

[13] J. S. Farris, V. A. Albert, M. Källersjö, Lipscomb, and A. G. Kluge.
Parsimony jackknifing outperforms neighbor-joining. Cladistics, 12(2):99–
124, 1996.

[14] J. Felsenstein. PHYLIP, 1980.

[15] J. Felsenstein. Evolutionary trees from dna sequences: a maximum
likelihood approach. J. Mol. Evol., 17:368–376, 1981.

[16] J. Felsenstein. Confidence limits on phylogenies: An approach using the
bootstrap. Evolution, 39(4):783–791, 1985.

[17] J. Felsenstein. Inferring Phylogenies. Sinauer, Sunderland, MA, 2004.

[18] D. R. Frost, M. T. Rodrigues, T. Grant, and T. A. Titus. Phylogenetics of
lizard genus Tropidurus (squamata: Tropiduridae: Tropidurinae): direct
optimization, descriptive efficiency, and sensitivity anaylsis of congruence
between molecular data and morphology. Molecular Phylogenetics and
Evolution, 21(3):352–371, 2001.

[19] P. Goloboff. Analyzing large data sets in reasonable times: solutions for
composite optima. Cladistics, 15(4):415–428, 1999.

[20] P. A. Goloboff, C. I. Mattoni, and A. S. Quinteros. Continuous characters
analyzed as such. Cladistics, 22:589–601, 2006.

[21] X. Gu, Y. X. Fu, and W. H. Li. Maximum likelihood estimation of the
heterogeneity of substitution rate among nucleotide sites. Mol. Biol.
Evol., 12:546–557, 1995.

[22] S. Hanenhalli and P. A. Pevzner. Transforming a cabbage into a turnip
(polynomial algorithm for sorting signed permutations by reversals). In
Proceedings of the 27th Annual ACM-SIAM Symposium on the Theory
of Computing, pages 178–189, 1995.

[23] M. Hasegawa, H. Kishino, and T. Yano. A new molecular clock of
mitochondrial dna and the evolution of hominoids. Proc. Japan Acad.,
60:95–98, 1984.

BIBLIOGRAPHY 203

[24] M. D. Hendy and D. Penny. Branch and bound algorithms to determine
minimal evolutionary trees. Mathematical Biosciences, 60:133–142, 1982.

[25] V. Jayaswal, L.S. Jermiin, and J. Robinson. Estimation of phylogeny
using a general markov model. Evolutionary Bioinformatics Online,
1:62, 2005.

[26] T. H. Jukes and C. R. Cantor. Evolution of protein molecules. In
N. H. Munro, editor, Mammalian Protein Metabolism, pages 21–132.
Academic Press, New York, 1969.

[27] M. Källersjö, J. S. Farris, A. G. Kluge, and C. Bult. Skewness and
permutation. Cladistics, 8:275–287, 1992.

[28] M. Kimura. A simple method for estimating evolutionary rate of base
substitution through comparative studies of nucleotide sequences. J.
Mol. Evol., 16:111–120, 1980.

[29] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, May 1983.

[30] A. G. Kluge and J. S. Farris. Quantitative phyletics and the evolution
of anurans. Systematic Zoology, 30:1–32, 1969.

[31] J. De Laet. Parsimony and the problem of inapplicables in sequence
data. In V. A. Albert, editor, Parsimony, Phylogeny, and Genomics,
page 81116. Oxford University Press, 2005.

[32] T. Margush and F. R. McMorris. Consensus n-trees. Bulletin of
Mathematical Biology, 43:239–244, 1981.

[33] G. McGuire, M.C. Denham, and D.J. Balding. Models of sequence
evolution for dna sequences containing gaps. Molecular Biology and
Evolution, 18(4):481–490, 2001.

[34] E. Mossel, S. Roch, and M. Steel. Shrinkage effect in ancestral maximum
likelihood. Computational Biology and Bioinformatics, IEEE/ACM
Transactions on, 6(1):126–133, 2009.

[35] J. Neyman. Molecular studies in evolution: a source of novel statistical
problems. In S. S. Gupta and J. Yackel, editors, Statistical Decision
Theory and Related Topics, pages 1–27, 1971.

[36] K. C. Nixon. The parsimony ratchet, a new method for rapid parsimony
analysis. Cladistics, 15(4):407–414, 1999.

204 BIBLIOGRAPHY

[37] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence
comparison. PNAS, 85:2444–2448, 1988.

[38] B. Redelings and M. Suchard. Incorporating indel information into
phylogeny estimation for rapidly emerging pathogens. BMC evolutionary
biology, 7(1):40, 2007.

[39] B.D. Redelings and M.A. Suchard. Joint bayesian estimation of align-
ment and phylogeny. Systematic Biology, 54(3):401–418, 2005.

[40] E. Rivas and S.R. Eddy. Probabilistic phylogenetic inference with
insertions and deletions. PLoS computational biology, 4(9):e1000172,
2008.

[41] F. J. Rohlf. Consensus indices for comparing classifications. Mathemat-
ical Biosciences, 59:131–144, 1982.

[42] N. Saitou and M. Nei. The neighbor-joining method: A new method
for reconstructing phylogenetic trees. Molecular Biology and Evolution,
4:406–425, 1987.

[43] D. Sankoff and M. Blanchette. The median problem for breakpoints in
comparative genomics. Computing and Combinatorics 3rd Annual Int.
Conf. COCOON 97, 1276:251–263, 1997.

[44] G Schwarz. Estimating the dimension of a model. Annals of Statistics,
19:205–221, 1978.

[45] A. Stamatakis, T. Ludwig, and H. Meier. raxml-vi-hpc: Maximum
likelihood-based phylogenetic analyses with thousands of taxa and mixed
models. Bioinformatics, 22(21):26882690, 2006.

[46] M. Steel and D. Penny. Parsimony, likelihood, and the role of models in
molecular phylogenetics. Molecular Biology and Evolution, 17(6):839–
850, 2000.

[47] N. Sugiura. Further analysis of the data by akaike’s information criterion
and the finite corrections. Communications in Statistics, Theory and
Methods, A7:13–27, 1978.

[48] J. Sullivan, D. L. Scofford, and G. J. P. Naylor. The effect of taxon-
sampling on estimating rate heterogeneity parameters on maximum-
likelihood models. Mol. Biol. Evol., 52:7649–664, 1999.

BIBLIOGRAPHY 205

[49] D. L. Swofford and G. J. Olsen. Phylogeny reconstruction. In D. Hillis
and C. Moritz, editors, Molecular Systematics, chapter 11, pages 411–501.
Sinauer Ass. Inc., Sunderland, Massachusetts, USA, 1990.

[50] H. Tamura and M. Nei. Estimation of the number of nucleotide sub-
stitutions in the control region of mitochondrial dna in humans and
chimpanzees. Mol. Biol. Evol., 10:512–526, 1993.

[51] S. Tavaré. Some probabilistic and statistical problems on the analysis
of dna sequences. Lec. Math. Life Sci., 17:57–86, 1986.

[52] C. Tuffley and M. Steel. 1998. Bull. Of Math. Biol., 59:581–607, 1998.

[53] A. Varón, L. S. Vinh, and W.C. Wheeler. POY version 4: Phylogenetic
analysis using dynamic homologies. Cladistics, 26:72–85, 2010.

[54] A. Varón and W.C. Wheeler. Heuristics for the general tree alignment
problem. BMC Bioinformatics, page In Press, 2013.

[55] L. S. Vinh, A. Varon, D. Janies, and W.C. Wheeler. Towards phyloge-
nomic reconstruction. In Proceedings of the International Conference
on Bioinformatics and Computational Biology, pages 98–104, Las Vegas,
Nevada, USA, 2007. CSREA Press.

[56] L. S. Vinh, A. Varon, and W.C. Wheeler. Pairwise alignment with
rearrangements. Genome informatics, 17(2):141–151, 2006.

[57] W.C. Wheeler. Sequence alignment, parameter sensitivity, and the
phylogenetic analysis of molecular data. Systematic Biology, 44(3):321–
331, 1995.

[58] W.C. Wheeler. Optimization alignment: The end of multiple sequence
alignment in phylogenetics? Cladistics, 12(1):1–9, 1996.

[59] W.C. Wheeler. Fixed character states and the optimization of molecular
sequence data. Cladistics, 15(4):379–385, 1999.

[60] W.C. Wheeler. Homology and DNA sequence data. In G.P. Wagner,
editor, The Character Concept in Evolutionary Biology, pages 303–318.
Academic Press, New York, 2001.

[61] W.C. Wheeler. Homology and the optimization of DNA sequence data.
Cladistics, 17:S3–S11, 2001.

206 BIBLIOGRAPHY

[62] W.C. Wheeler. Optimization Alignment: down, up, error, and improve-
ments. Techniques in Molecular Systematics and Evolution. Birkhäuser,
Basel, Boston, Berlin, 2002.

[63] W.C. Wheeler. Implied alignment. Cladistics, 19:261–268, 2003.

[64] W.C. Wheeler. Iterative pass optimization. Cladistics, 19:254–260, 2003.

[65] W.C. Wheeler. Search-based character optimization. Cladistics, 19:348–
355, 2003.

[66] W.C. Wheeler. Dynamic homology and the likelihood criterion. Cladis-
tics, 22:157–170, 2006.

[67] W.C. Wheeler. Systematics: A Course of Lectures. Wiley-Blackwell,
Oxford, 2012.

[68] W.C. Wheeler, L. Aagesen, C. P. Arango, J. Faivoich, T. Grant,
C. D’Haese, D. Janies, W. L. Smith, A. Varón, and G. Giribet. Dynamic
Homology and Systematics: A Unified Approach. American Museum of
Natural History, 2006.

[69] W.C. Wheeler, J. Gatesy, and R. DeSalle. Elision: A method for
accommodating multiple molecular sequence alignments with alignment-
ambiguous sites. Molecular Phylogenetics and Evolution, 4(1):1–9, 1995.

[70] W.C. Wheeler and L. Hong. A space saving modification of the ukkonen
string matching algorithm. In prep., 2013.

[71] W.C. Wheeler and N. Lucaroni. Maximum likelihood and the general
tree alignment problem. In prep., 2013.

[72] S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of ge-
nomic permutations by translocation, inversion and block interchange.
Bioinformatics, 21:3340–3346, 2005.

[73] Z. Yang. Maximum likelihood phylogenetic estimation from dna se-
quences with variable rates over sites: Approximate methods. J. Mol.
Evol., 39:105–111, 1994.

[74] L. Zou, E. Susko, C. Field, and A.J. Roger. The parameters of the barry
and hartigan general markov model are statistically nonidentifiable.
Systematic Biology, 60(6):872–875, 2011.

BIBLIOGRAPHY 207

[75] D. J. Zwickl. Genetic algorithm approaches for the phylogenetic analy-
sis of large biological sequence datasets under the maximum likelihood
criterion. PhD thesis, University of Texas at Austin, 2005.

208 BIBLIOGRAPHY

General Index

(STRING, STRING), 101

aic, 152
aicc, 153
all, 70, 120, 130
all roots, 106
alphabet, 149
alphabetic terminals, 136
alternate, 131
aminoacids, 91
annealing, 132
annotate, 93, 142
around, 132
as is, 70
asciitrees, 106
auto sequence partition, 136
auto static approx, 136

best, 81, 121
better, 81
bfs, 131
bic, 153
bootstrap, 75
branch:all branches, 71, 81, 131
branch:join delta, 131
branch:join region, 72, 81, 131
branch:never, 71, 81, 130
branch and bound, 70
branches, 108
breakinv, 93, 146
breakinv to custom, 147
bremer, 75
build, 70, 75

all, 70
as is, 70
branch:all branches, 71
branch:join region, 72
branch:never, 71

branch and bound, 70
constraint, 71
INTEGER, 71
lookahead, 71
model:always, 71
model:max count:INTEGER, 71
model:never, 71
nj, 72
of file, 71
optimize, 71
random, 72
randomized, 72
STRING, 72
threshold, 72
trees, 72

calculate support, 73
bootstrap, 75
bremer, 75
build, 75
jackknife, 75
remove, 75
resample, 75
swap, 76

cd, 78
STRING, 78

characters, 101, 119
chrom breakpoint, 142
chrom hom, 143
chrom indel, 143
chromosome, 93, 142
ci, 108
circular, 143
clades, 106
clear, 99
clear memory, 77

m, 77

GENERAL INDEX 209

s, 77
codes, 120
collapse, 108
consensus, 106
constraint, 71, 116, 130
cross references, 103
custom, 151
custom alphabet, 94

data, 103
diagnosis, 104
direct optimization, 136
distance, 129
do, 136
drifting, 132
dynamic, 120

echo, 79
error, 79
info, 79
output, 79

elikelihood, 147
error, 79
exhaustive do, 124
exit, 80
export

hennig, 113
nona, 113
tnt, 113

f81, 150
f84, 150
fasta, 105
file, 151
files, 120
fixed states, 136
fuse, 80

best, 81
better, 81
branch:all branches, 81
branch:join region, 81

branch:never, 81
iterations, 81
keep, 81
model:always, 81
model:never, 81
optimize, 81
replace, 81
swap, 81

gap, 149, 150
gap opening, 137
genome, 93, 143
given, 148
graphconsensus, 106
graphdiagnosis, 106
graphsupports, 106
gtr, 151

help, 82
LIDENT, 83
STRING, 83

hennig, 108
history, 123
hits, 116
hky85, 150

ia, 105
implied alignments, 105
info, 79
init3d, 95
inspect, 83
INTEGER, 71
iterations, 81, 86
iterative, 124

jack2hen, see clades
jackknife, 75
jc69/neyman, 150

k2p/k80, 150
keep, 81

210 BIBLIOGRAPHY

level, 95, 137
LIDENT, 83
likelihood, 147
lkmodel, 104
load, 84
locus breakpoint, 143
locus dcj, 144
locus indel, 145
locus inversion, 145
log, 123
lookahead, 71

m, 77
mal, 148
margin, 108
max kept wag, 145
max time, 116
med approx, 145
median, 145
median solver, 146
memory, 108, 117
min time, 117
missing, 120
model:always, 71, 81, 130
model:max count:INTEGER, 71
model:never, 71, 81, 130
model:threshold:FLOAT, 130
mpl, 148
multi static approx, 138

names, 120
ncm, 151
nearest-neighbor interchanges, see

swap
new, 102
newick, 108
newkkonen, 146
nexus, 104, 108
nj, 72
NNI, see swap

nolog, 124
nomargin, 108
normal do, 125
normal do plus, 125
not codes, 120
not missing, 121
not names, 121
nucleotides, 91

of file, 71
once, 129
opt:coarse, 125
opt:exhaustive, 126
opt:none, 125
optimal, 121
optimize, 71, 81, 130
orientation, 94
output, 79

partitioned, 138
perturb, 85

iterations, 86
ratchet, 86
resample, 86
swap, 86
transform, 86

phastwinclad, 105
prealigned, 96, 138
preserve, 99
priors, 148
pwd, 88

quit, 88

random, 72, 122
randomize terminals, 138
randomized, 72, 129
ratchet, 86
rates, 154
read, 89

aminoacids, 91

GENERAL INDEX 211

annotate, 93
breakinv, 93
chromosome, 93
custom alphabet, 94
genome, 93
init3d, 95
level, 95
nucleotides, 91
orientation, 94
prealigned, 96
STRING, 92
tiebreaker, 95

recover, 98, 132
rediagnose, 99

clear, 99
preserve, 99

redraw, 99
remove, 75
rename, 100

(STRING, STRING), 101
characters, 101
STRING, 101
terminals, 101

replace, 81
report, 102

all roots, 106
asciitrees, 106
branches, 108
ci, 108
clades, 106
collapse, 108
consensus, 106
cross references, 103
data, 103
diagnosis, 104
fasta, 105
graphconsensus, 106
graphdiagnosis, 106
graphsupports, 106
hennig, 108

ia, 105
implied alignments, 105
lkmodel, 104
margin, 108
memory, 108
new, 102
newick, 108
nexus, 104, 108
nomargin, 108
phastwinclad, 105
ri, 109
script analysis, 109
searchstats, 104
seq stats, 104
STRING, 102
supports, 107
terminals, 104
timer, 110
total, 108
treecosts, 104
trees, 107
treestats, 104
xslt, 110

resample, 75, 86
ri, 109
root, 124
run, 114

s, 77
save, 115
script analysis, 109
search, 116

constraint, 116
hits, 116
max time, 116
memory, 117
min time, 117
target cost, 117
visited, 118

search based, 138

212 BIBLIOGRAPHY

searchstats, 104
sectorial, 130
seed, 126
select, 119

all, 120
best, 121
characters, 119
codes, 120
dynamic, 120
files, 120
missing, 120
names, 120
not codes, 120
not missing, 121
not names, 121
optimal, 121
random, 122
static, 121
STRING, 119
terminals, 119
unique, 122
within, 122

seq stats, 104
seq to chrom, 146
sequence partition, 138
set, 123

exhaustive do, 124
history, 123
iterative, 124
log, 123
nolog, 124
normal do, 125
normal do plus, 125
opt:coarse, 125
opt:exhaustive, 126
opt:none, 125
root, 124
seed, 126
timer, 124

spr, 131

static, 121
static approx, 138
store, 128

STRING, 128
STRING, 72, 78, 83, 92, 101, 102,

119, 128
supports, 107
swap, 76, 81, 86, 128

all, 130
alternate, 131
annealing, 132
around, 132
bfs, 131
branch:all branches, 131
branch:join delta, 131
branch:join region, 131
branch:never, 130
constraint, 130
distance, 129
drifting, 132
model:always, 130
model:never, 130
model:threshold:FLOAT, 130
once, 129
optimize, 130
randomized, 129
recover, 132
sectorial, 130
spr, 131
tbr, 131
threshold, 133
timedprint, 132
timeout, 132
trajectory, 133
transform, 129
trees, 133
visited, 133

swap med, 146

target cost, 117

GENERAL INDEX 213

tbr, 131
tcm, 139, 140
td, 141
terminals, 101, 104, 119
threshold, 72, 133
ti, 140
tiebreaker, 95
timedprint, 132
timeout, 132
timer, 110, 124
tn93, 151
total, 108
trailing deletion, 141
trailing insertion, 140
trajectory, 133
transform, 86, 129, 135

aic, 152
aicc, 153
alphabet, 149
alphabetic terminals, 136
annotate, 142
auto sequence partition, 136
auto static approx, 136
bic, 153
breakinv, 146
breakinv to custom, 147
chrom breakpoint, 142
chrom hom, 143
chrom indel, 143
chromosome, 142
circular, 143
custom, 151
direct optimization, 136
do, 136
elikelihood, 147
f81, 150
f84, 150
file, 151
fixed states, 136
gap, 149, 150

gap opening, 137
genome, 143
given, 148
gtr, 151
hky85, 150
jc69/neyman, 150
k2p/k80, 150
level, 137
likelihood, 147
locus breakpoint, 143
locus dcj, 144
locus indel, 145
locus inversion, 145
mal, 148
max kept wag, 145
med approx, 145
median, 145
median solver, 146
mpl, 148
multi static approx, 138
ncm, 151
newkkonen, 146
partitioned, 138
prealigned, 138
priors, 148
randomize terminals, 138
rates, 154
search based, 138
seq to chrom, 146
sequence partition, 138
static approx, 138
swap med, 146
tcm, 139, 140
td, 141
ti, 140
tn93, 151
trailing deletion, 141
trailing insertion, 140
weight, 141
weightfactor, 141

214 BIBLIOGRAPHY

treecosts, 104
trees, 72, 107, 133
treestats, 104

unique, 122
use, 157

version, 158
visited, 118, 133

weight, 141
weightfactor, 141
wipe, 158
within, 122

xslt, 110

POY 3.0 COMMANDS INDEX 215

POY 3.0 Commands Index

agree, see constraint

bremer, see calculatesupports
bremerspr, see calculatesupports,

swap
build, see build
buildmaxtrees, see trees
buildslop, see threshold
buildspr, see spr
buildtbr, see tbr

cat commandbrowsing, see help
cat helptopics, see help
characterweights, see report
commandfile, see run
commandfiledir, see cd

datadir, see cd
defaultweight, see weight
diagnose, see report
disagree, see constraint
driftequallaccept, see drifting
driftlengthbase, see drifting
driftspr, see drifting
drifttbr, see drifting
drifttrees, see drifting
dropconstraints, see constraint

extensiongap, see gapopening, see
tcm

finalrefinement, see swap

gap, see gapopening, see tcm
gc, see memory

holdmaxtrees, see trees
hypancfile, see diagnosis
hypancname, see diagnosis

iafiles, see implied alignment
impliedalignment, see implied align-

ment
indices, see treestats
intermediate, see trajectory

jackboot, see jackknife
jackfrequencies, see jackknife
jackoutgroup, see outgroup
jackstart, see jackknife

leading, see trailing insertion

maxtrees, see trees
molecularmatrix, see tcm

newstates, see fixed states
noiafiles, see report
numdriftchanges, see repeat
numdriftspr, see repeat
numdrifttbr, see repeat

phastwincladfile, see phastwinclad
plotechocommandline, see echo
plotfile, see graphtrees
plotfrequencies, see graphtrees
plotmajority, see graphconsensus
plotoutgroup, see outgroup
plotstrict, see graphconsensus
plottrees, see graphtrees
poybintreefile, see trees
poystrictconsensustreefile, see con-

sensus
poytreefile, see trees
printtree, see asciitrees

random, see trees
ratchetinseq, see perturb
ratchetoverpercent, see ratchet

216 BIBLIOGRAPHY

ratchetpercent, see ratchet
ratchetseverity, see ratchet
ratchetslop, see perturb
ratchetspr, see perturb
ratchettbr, see perturb
ratchettrees, see perturb
replicatebuild, see trees
replicaterefinement, see trees
replicates, see trees

slop, see threshold
sprmaxtrees, see trees
staticapprox, see static approx
staticapproxbuild, see build

tbrmaxtrees, see trees
topodiagnoseonly, see read
topofile, see read
topolist, see trees
topology, see read
topooutgroup, see outgroup
trailinggap, see trailingdeletion, see

trailinginsertion
treefuse, see fuse
treefusespr, see fuse
treefusetbr, see fuse

	What is POY5
	The structure of POY5 documentation
	What's new in POY5

	POY5 Quick Start
	Requirements: software and hardware
	Software
	Hardware

	Obtaining and installing POY5
	Installing from the binaries
	Compiling from the source

	Executing a Script
	The Graphical User Interface
	POY menu bar
	POY Launcher
	The Analyses menu
	The View menu

	Using the Interactive Console
	The interface
	Starting a POY5 session using the Interactive Console
	Entering commands
	Browsing the output
	Switching between the windows
	Input of data
	Inspecting data
	Building the initial trees
	Performing a local search
	Selecting trees
	Visualizing the results
	Interrupting a process
	Reporting errors
	Exiting

	Creating and running POY5 scripts
	Obtaining help
	WWW resources

	POY5 Commands
	POY5 command structure
	Brief description
	Grammar specification

	Notation
	Command reference
	build
	calculate_support
	clear_memory
	cd
	echo
	exit
	fuse
	help
	inspect
	load
	perturb
	pwd
	quit
	read
	recover
	rediagnose
	redraw
	rename
	report
	run
	save
	search
	select
	set
	store
	swap
	transform
	use
	version
	wipe

	POY5 Heuristics: A Practical Guide
	Introduction
	Data treatment
	Character optimization
	Tree searching
	Transformation cost regimes
	Likelihood Analyses

	POY5 Tutorials
	Combining Search Strategies
	Timed Search Analysis
	Iterative Pass Analysis
	Calculating supports: Bremer
	Calculating supports: Jackknife
	Calculating supports: Bootstrap
	Sensitivity Analysis
	Chromosome Analysis: Unannotated Sequences
	Chromosome Analysis: Annotated Sequences
	Genome analysis: multiple chromosomes
	Custom Alphabet Analysis
	Maximum Likelihood Analysis: Static
	Maximum Likelihood Analysis: Dynamic
	ML Analysis: Partitions and Model Selection
	Bibliography
	General Index
	POY 3.0 Commands Index

