
POY 4.1.1

Program Documentation
Version 4.1.1

Program and Documentation
Andrés Varón

Le Sy Vinh
Illya Bomash

Ward C. Wheeler

Documentation
Ilya Tëmkin

Megan Cevasco
Kurt M. Pickett
Julián Faivovich

Taran Grant
William Leo Smith

Andrés Varón
Division of Invertebrate Zoology, American Museum of Natural History, New
York, NY, U.S.A.
Computer Science Department, The Graduate School and University Center, The
City University of New York, NY, U.S.A.
Le Sy Vinh
Ward C. Wheeler
Ilya Tëmkin
Megan Cevasco
Division of Invertebrate Zoology, American Museum of Natural History, New
York, NY, U.S.A.
Illya Bomash
Department of Physiology And Biophysics, Weill Medical College of Cornell
University, New York, NY, U.S.A.
Kurt M. Pickett
Department of Biology, University of Vermont, Burlington, VT, U.S.A.
Julián Faivovich
Departamento de Zoologia, Instituto de Biociências, Universidade Estadual
Paulista, Brasil
Taran Grant
Faculdade de Biociências, Pontifcia Universidade Católica do Rio Grande do Sul
(PUCRS), Brasil
William Leo Smith
Department of Zoology, The Field Museum of Natural History, Chicago, IL,
U.S.A.

The American Museum of Natural History
c©2007, 2008 by Andrés Varón, Le Sy Vinh, Illya Bomash, Ward Wheeler, and
The American Museum of Natural History

3

All rights reserved. Published 2008

Varón, A., L. S. Vinh, I. Bomash, W. C. Wheeler. 2008. POY 4.1.1. New York,
American Museum of Natural History. Documentation by Varón, A., L. S. Vinh,
I. Bomash, W. Wheeler, I. Tëmkin, M. Cevasco, K. M. Pickett, J. Faivovich, T.
Grant, and W. L. Smith.
http://research.amnh.org/scicomp/projects/poy.php

Available online at http://research.amnh.org/scicomp/projects/poy.php
and http://code.google.com/p/poy4/

http://research.amnh.org/scicomp/projects/poy.php
http://research.amnh.org/scicomp/projects/poy.php
http://code.google.com/p/poy4/

4

Contents

1 What is POY4 9
1.1 The structure of POY4 documentation 9

2 POY4 Quick Start 11
2.1 Requirements: software and hardware 11

2.1.1 Software . 11
2.1.2 Hardware . 11

2.2 Obtaining and installing POY4 11
2.3 The Graphical User Interface 13

2.3.1 POY menu bar . 14
2.3.2 POY Launcher . 15
2.3.3 The Analyses menu 16
2.3.4 The View menu . 26

2.4 Using the Interactive Console 27
2.4.1 The interface . 28
2.4.2 Starting a POY4 session using the Interactive Console . 29
2.4.3 Entering commands 29
2.4.4 Browsing the output 31
2.4.5 Switching between the windows 32
2.4.6 Importing data . 32
2.4.7 Inspecting data . 35
2.4.8 Building the initial trees 36
2.4.9 Performing a local search 37
2.4.10 Selecting trees . 39
2.4.11 Visualizing the results 40
2.4.12 Interrupting a process 40
2.4.13 Reporting errors . 42
2.4.14 Exiting . 42

2.5 Creating and running POY4 scripts 42

5

6 CONTENTS

2.6 Obtaining help . 44
2.7 WWW resources . 46

3 POY4 Commands 47
3.1 POY4 command structure . 47

3.1.1 Brief description . 47
3.1.2 Grammar specification 48

3.2 Notation . 50
3.3 Command reference . 51

3.3.1 build . 51
3.3.2 calculate support . 54
3.3.3 clear memory . 58
3.3.4 cd . 59
3.3.5 echo . 60
3.3.6 exit . 61
3.3.7 fuse . 61
3.3.8 help . 63
3.3.9 inspect . 64
3.3.10 load . 65
3.3.11 perturb . 66
3.3.12 pwd . 68
3.3.13 quit . 69
3.3.14 read . 70
3.3.15 rediagnose . 77
3.3.16 recover . 77
3.3.17 redraw . 78
3.3.18 rename . 79
3.3.19 report . 81
3.3.20 run . 91
3.3.21 save . 92
3.3.22 search . 93
3.3.23 select . 96
3.3.24 set . 100
3.3.25 store . 103
3.3.26 swap . 104
3.3.27 transform . 109
3.3.28 use . 122
3.3.29 version . 123
3.3.30 wipe . 124

CONTENTS 7

4 POY4 Tutorials 125
4.1 Combining search strategies 125
4.2 Searching under iterative pass 128
4.3 Bremer support . 130
4.4 Jackknife support . 132
4.5 Sensitivity analysis . 133
4.6 Chromosome analysis: unannotated sequences 136
4.7 Chromosome analysis: annotated sequences 138
4.8 Custom alphabet break inversion characters 140
4.9 Genome analysis: multiple chromosomes 141
Bibliography . 143
General Index . 148
POY 3.0 Commands Index . 149

8 CONTENTS

Chapter 1

What is POY4

POY4 is a flexible, multi-platform program for phylogenetic analysis of mole-
cular and other data. An essential feature of POY4 is that it implements the
concept of dynamic homology [27, 28] allowing optimization of unaligned
sequences. POY4 offers flexibility for designing heuristic search strategies
and implements an array of algorithms including multiple random addition
sequence, swapping, tree fusing, tree drifting, and ratcheting. As output,
POY4 generates a comprehensive character diagnosis, graphical representa-
tions of cladograms and their user-specified consensus, support values, and
implied alignments. POY4 provides a unified approach to co-optimizing dif-
ferent types of data, such as morphological and molecular sequence data.
In addition, POY4 can analyze entire chromosomes and genomes, taking into
account large-scale genomic events (translocations, inversions, and duplica-
tions).

1.1 The structure of POY4 documentation

This first chapter, POY4 Quick Start, will get you started using POY4. The
first few sections are intended to provide detailed instructions on how to
obtain and install POY4, introduce the user to the program’s two working
environments, the Graphical User Interface and the Interactive Console.
These sections also show how to initiate a POY4 session and point to the
various resources to obtain further assistance. Subsequent sections build on
that knowledge and give step-by-step examples on how to conduct a basic
analysis and visualize the results. The second chapter, POY4 Commands,
describes POY4 commands and their valid syntax. It also includes exam-
ples of simple operations for every command. The third chapter discusses

9

10 CHAPTER 1. WHAT IS POY4

the heuristic procedures used in POY4. Their understanding helps creating
building efficient search strategies. More advanced operations are described
in the fourth chapter, POY4 Tutorials. In addition to the general index, this
document contains a POY3.0 Command Line Index, intended to provide a
link between the commands used in POY3 and the commands used in POY4.

Chapter 2

POY4 Quick Start

2.1 Requirements: software and hardware

2.1.1 Software

POY4 is a platform-independent, open-source program that can be compiled
for many operating systems and hardware configurations, including Mac
OSX, Microsoft Windows XP, and Linux. POY4 binaries (compiled applica-
tion file) is the only piece of software necessary to run POY4. The intuitive
graphical user interface of POY4 provides all the functionality for running
analyses using pull-down menus and field selections, as well as creating
and running POY4 scripts. Some utility programs (such as Notepad and
Ghostscript for Windows, TextEdit for Mac, or Nano for Linux), can help
preparing POY4 scripts and formatting datafiles, while others (such as Adobe
Acrobat) can facilitate viewing the graphical output in PDF (Portable Doc-
ument Format).

2.1.2 Hardware

POY4 runs on a variety of computers from laptops and desktops to Beowulf
clusters of various sizes to symmetric multiprocessing hardware. There are
no particular requirements for disk space, but XML and diagnosis report
files can be large.

2.2 Obtaining and installing POY4

POY4 installers for Linux, Windows XP, and Mac OSX, source code, and
documentation in PDF format are available from the POY4 website at the

11

12 CHAPTER 2. POY4 QUICK START

American Museum of Natural History Computational Sciences:

http://research.amnh.org/scicomp/projects/poy.php

The latest source code can also be obtained from POY4 Google Group web-
site:

http://code.google.com/p/poy4/source

The following detailed step-by-step instructions will guide you through down-
loading and installing POY4 binaries for various platforms.

Windows

• Download poy4 folder to the desktop by selecting WinXP download
link.

• Open POY Installer.exe from the poy4 folder and follow the
installation instructions. You will need Administrator privileges to
install the application. By default, POY4 is installed without parallel
execution support. If you have Windows XP SP2 or Windows Vista
and more than one core or processor, you can take advantage of your
processing power by installing the parallel components. To do so,
instead of a typical installation, select the complete installation.

Important: the complete installation includes MPICH2 1.06 p1.
MPICH is used to communicate processes during parallel execution.
If you already have MPICH2 installed (if you didn’t know what it is
you most likely don’t have it), select the custom installation option
and remove that component. During the first execution in parallel
you will be asked by the Windows Firewall to unblock POY4 and
MPICH, this is necessary for the successful execution of the program.

Mac OSX

• Download poy parallel buildXXXX.dmg disk image to the desktop.

• Drag the POY4 application from the disk poy4 and drop it into the
Applications folder on the hard drive.

Linux

• Download the gzipped file.

http://research.amnh.org/scicomp/projects/poy.php
http://code.google.com/p/poy4/source
http://research.amnh.org/scicomp/projects/poy.php
http://research.amnh.org/scicomp/projects/poy.php
http://research.amnh.org/scicomp/projects/poy.php

2.3. THE GRAPHICAL USER INTERFACE 13

• Untar and ungzip the poy4.tar.gz file.

• Run the command tar -Pxvzf poy4.tar.gz as a super user in the
newly created poy4 directory. The GUI will be installed in
/opt/poy4/Contents/POY directory and terminal binaries in
/opt/poy4/Resources/ncurses poy directory.

Compiling from the source

In order to compile POY4 the following tools are required:

1. The GNU Make 3.8 utility;

2. OCaml version 3.10.0. or later;

3. A C compiler, for example The GNU Compiler Collection;

4. The zlib compression library;

5. Optionally, the ncurses library for a nice interactive console or the read
line library. If none is available, the flat interface does not require read
line or ncurses.

Download, ungzip, and untar the POY4 source code; In order to compile
under default setting type:

./configure
make
make install

All the configuration options can be found in ./configure --help.
POY4 can also be run in parallel environments using the Message Passing

Interface. Your system administrator has likely already one installed and
should be able to provide you with proper paths to set your config file.

2.3 The Graphical User Interface

POY4 provides two working environments: the Graphical User Interface and
the Interactive Console. The Graphical User Interface has a user-friendly
appearance as other native stand-alone applications where different func-
tions are accessible through menus and windows. Thus, the entire analysis
can be carried out clicking on appropriate selections and, where necessary,
typing specifications in designated fields. The Interactive Console, however,

http://www.gnu.org/software/make/
http://www.ocaml.org
http://gcc.gnu.org/
http://www.zlib.net
http://research.amnh.org/scicomp/projects/poy.php
http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/

14 CHAPTER 2. POY4 QUICK START

requires a detailed knowledge of POY4 commands, their arguments, and the
conventions of POY4 scripting. All these features are described in the POY
Commands chapter (3.1.1).

Even though the Mac OSX version of the Graphical User Interface is
used for screen shots throughout this chapter, the Linux(GTK+) and Win-
dows versions contain the same items and functionality, differing only in the
generic window format specific to each platform.

When POY4 is first opened, two items appear on the screen: the menu
bar across the top and the POY Launcher window (Figure 2.1). (Note that
in Linux and Windows the menu bar is within the launcher window.)

Figure 2.1: The POY4 menu bar and the POY Launcher window. These
items appear when POY4 is opened.

2.3.1 POY menu bar

The menu bar contains the following drop-down menus:

POY (Mac OSX only) contains generic items as other Mac OSX applica-
tions. It includes Quit POY tab that closes the program. This menu
also allows contains selection of the About POY window (Figure 2.2)
that lists the current version of POY4, a copywrite statement, and the
address of the POY4 website.

Analyses contains options for different types of tree searches, calculation
of support values, tree diagnosis, and their respective outputs. Other
items in this menu open the POY Launcher and the Interactive Con-
sole.

Edit contains standard tools for deleting, copying, cutting, pasting, undo-
ing, and selecting.

2.3. THE GRAPHICAL USER INTERFACE 15

View opens the Output window to display the results (including warning
and error messages) and the current state of the analysis. It also
contains the About POY menu item in Windows and Linux.

Help opens the POY4 Program Documentation in PDF format (requires a
PDF viewer).

Figure 2.2: The About POY window.

2.3.2 POY Launcher

The POY Launcher is the only window that automatically opens upon start-
ing POY4. This allows the user to import a previously created script, des-
ignate a working directory, specify the number of processors, and start the
analysis.

Select the script to run Allows the user to specify the location of a POY4
script.

Select the working directory The working directory is the directory that
contains the input data and output files. By default, the working di-
rectory is set to be the same as the directory containing the selected
POY4 script.

Select the number of processors The selection of the number of pro-
cessors is disabled for Linux and Windows platforms. Once specified,

16 CHAPTER 2. POY4 QUICK START

the selection is applied to all subsequent analyses in the current POY4
session. (Parallelization is not supported in interactive sessions, see
Section 2.4.)

Run the analysis Clicking the Run button starts the execution of the
selected script. Once the script is initiated, the Run button becomes
the Cancel button that can be used to interrupt a POY4 session.

If the Run button is clicked without the selected script and working
directory, or the names of the scripts and working directory are entered
incorrectly, POY4 issues an error message in the upper part of the POY
Launcher window, such as POY finished with an error.

2.3.3 The Analyses menu

The Analyses menu is the main toolbox of the POY4 GUI interface (Fig-
ure 2.3, left). Selections are subdivided into four functional categories. The
first three deal with tree searching, support calculation, and tree diagnosis;
the fourth one is used for script management or interactive command exe-
cution that bypasses the menu-driven script generating. Each of the menu
items is described below in the order it appears on the menu.

Most options are consistently applied through different kinds of analysis.
Therefore, all the options are described in detail only for the Simple Search
analysis. The descriptions of other analyses are made with reference to the
the Simple Search and focus on unique options.

Tree searching options

Simple Search

A typical search involves a series of steps. First, initial trees are generated by
random addition sequence from the imported character data. These trees are
then subjected to branch swapping, subsequent to which a subset of trees
is selected for the report. The Simple Search window (Figure 2.3, right)
provides the most common and basic options for a standard tree search in
POY4 that must either (in some cases or) be selected by clicking appropriate
buttons or typed. Note that all the empty fields must be filled in. The
window is subdivided into four sections:

Input Files Contains the list of files that are to be input into POY4. These
include character files in nucleotide, Hennig86, and Nexus formats and

2.3. THE GRAPHICAL USER INTERFACE 17

Figure 2.3: The Simple Search window. Selecting Simple Search from the
Analysis menu (left) opens the Simple Search window options (right).

tree files. (Character data in other formats can be imported by speci-
fying additional argument in the script. See read (Section 3.3.14).)

Search Parameters Holds one field to set the number of independent ran-
dom addition replicates to be generated.

Sequence Alignment Parameters Holds fields to specify the substitu-
tion, indel, and gap opening costs. Enter 0 if no gap opening cost is
desired. If the value of a parameter is not specified, the default values
is used. (See the POY Commands chapter (3.1.1).)

Output Files Designates the names and locations of files containing differ-
ent kinds of results (implied by their respective titles) of the analysis.
If no names are specified, the default names are generated.

Once all the parameters are selected, click the Make Script button and
another window–the Script Editor –containing the generated script appears
on screen (Figure 2.4). The script can be edited by typing in the commands
directly in the Script Editor window, saved (by clicking the Save As but-
ton), or replaced with another script (using the Open button). To start the
analysis, click the Run button in the Script Editor window. When the Run
button is clicked, POY4 will issue a request to save the script. Thus, not

18 CHAPTER 2. POY4 QUICK START

Figure 2.4: The Simple Search window with specified search parameters and
output files (left) and the corresponding Script Editor window.

only does POY4 execute the script but it also creates the record of the type
of analysis (including all user-defined specifications) that was performed.

Timed Search

Timed search (Figure 2.5) implements a default search strategy that ef-
fectively combines tree building with TBR branch swapping, parsimony
ratchet, and tree fusing. The Timed Search window has the same four
parameter groups described for the Simple Search. However, the Search Pa-
rameters section (called Search and Perturb Parameters) contains four fields
specifying the search targets instead of the Repetitions field. These include
the following:

Maximum time The maximum total execution time for the search. The
time is specified as days:hours:minutes.

Minimum time The minimum total execution time for the search. The
time is specified as days:hours:minutes.

Maximum memory The maximum amount of memory allocated for the
search.

2.3. THE GRAPHICAL USER INTERFACE 19

Figure 2.5: The Timed Search window. Selecting Timed Search from the
Analysis menu (left) and viewing the Timed Search window options (right).

Minimum hits The minimum number of times that the minimum cost
must be reached before aborting the search.

Search with Ratchet

The parsimony ratchet is a heuristic strategy to escape the local optima
during tree searching [17]. The Search with Ratchet (Figure 2.6) follows
the same basic steps of a simple search but includes the ratchet step after
the swap. In addition to the same four parameter groups described for the
Simple Search window, the Search Parameters section provides the following
ratchet parameters fields:

Ratchet iterations The number of iterations for the parsimony ratchet.

Severity The severity parameter of the parsimony ratchet (the weight change
factor for the selected characters).

Percentage The percentage of characters to be reweighted during ratchet-
ing.

20 CHAPTER 2. POY4 QUICK START

Figure 2.6: The Search with Ratchet window. Selecting Search with Ratchet
from the Analysis menu (left) and viewing the Search with Ratchet window
options (right).

Search with Perturb

Search with Perturb (Figure 2.7) provides an alternative means to escape
local optima by changing the transformation cost matrix of the molecular
characters, a procedure similar in spirit to the parsimony ratchet. In ad-
dition to the same four parameter groups described for the Simple Search
window, the Search with Perturb window provides three extra fields with
the parameters for the transformation cost matrix perturbation as follows:

Perturb iterations Sets the number of perturb iterations to be performed.

Substitutions Specifies the cost of the perturbed substitutions.

Indels Specifies the cost of the perturbed indels.

Support calculation options

None of the support calculation windows include functions for tree building
and searching. Therefore, one of the input files must contain trees for which
support values are going to be calculated.

2.3. THE GRAPHICAL USER INTERFACE 21

Figure 2.7: The Search with Perturb window. Selecting Search with Perturb
from the Analysis menu (left) and viewing the Search with Perturb window
options (right).

Bootstrap

The Bootstrap window (Figure 2.8) specifies parameters for estimating the
Bootstrap support values. In addition to the Simple Search window fields,
it contains a Pseudoreplicates field to specify the number of bootstrap pseu-
doreplicates.

Bremer

The Bremer option (Figure 2.9) is divided into two windows: the Search
for Bremer window, that specifies the Bremer support [3, 13] calculation
parameters, and the Report Bremer window to format the output of the
results (Figure 2.10).

Search for Bremer The script produced in this window collects trees
visited during a search for Bremer support calculations. This search can
take a long time, as the goal of this search strategy is to broadly sample
variation among trees, and guarantee that all clades have Bremer support
values.

In addition to the standard four sections defined for the Simple Search

22 CHAPTER 2. POY4 QUICK START

Figure 2.8: The Bootstrap window. Selecting Bootstrap from the Analysis
menu (left) and viewing the Bootstrap window options (right).

Figure 2.9: Selecting the Bremer windows from the Analysis menu.

2.3. THE GRAPHICAL USER INTERFACE 23

Figure 2.10: Viewing the options of the Search for Bremer (left) and the
Report Bremer(right) windows.

window, note that one of the output files is the Temporary Trees file, which
contains all the information required to produce the bremer support tree
results in the Report Bremer window. Make sure to choose a file name that
does not overwrite this output.

If the search does not finish within the time frame amenable to the user
the search can be interrupted and the intermediate results remain stored in
the Temporary Trees file. As Bremer calculations are upper-bound values,
terminating the search prior to completion and, thus, storing a smaller pool
of visited trees may inflate support values relative to those generated by a
more exhaustive search. The trees from the Temporary Trees file can then
be reported using the Report Bremer window.

Report Bremer The script produced in this window takes the Temporary
Trees file generated in the Search for Bremer window in the File with trees
for bremer calculation field.

Jackknife

The Jackknife window (Figure 2.11) specifies parameters for estimating the
Jackknife support values. In addition to the Simple Search window fields,
Jackknife Parameters it contains fields to specify the number of Jackknife

24 CHAPTER 2. POY4 QUICK START

Figure 2.11: The Jackknife window. Selecting Jackknife from the Analysis
menu (left) and viewing the Jackknife window options (right).

pseudoreplicates (Pseudoreplicates) and the number of characters to remove
(Remove).

Pseudoreplicates Specifies the number of resampling iterations.

Remove Specifies the percentage of characters being deleted during a pseu-
doreplicate.

Diagnosis

Diagnose Tree

The Diagnose Tree window (Figure 2.12) specifies parameters for reporting
a diagnosis of the input tree. This window lacks the Search Parameters
section because the diagnosis is performed on the trees resulted from prior
searches and no new trees are generated during the diagnosis procedure.

Script editing and the Interactive Console

Open POY Script

Selecting Open POY Script (Figure 2.13) displays the POY Launcher win-
dow (Figure 2.1), the function of which is described above.

2.3. THE GRAPHICAL USER INTERFACE 25

Figure 2.12: The Diagnose window. Selecting Diagnose Tree from the An-
alysis menu (left) and viewing the Diagnose window options (right).

Figure 2.13: The Open POY script selection opens the POY Launcher win-
dow.

26 CHAPTER 2. POY4 QUICK START

Figure 2.14: The Run Interactive Console selection (left) opens POY4 in-
teractive console in a new window. The Create Script selection opens the
Script Editor window (Figure 2.4).

Run Interactive Console

Selecting Run Interactive Console (Figure 2.14) opens the ncurses interface
that enables the user to run the analysis interactively by entering POY4 com-
mands directly via the command-line interface of the Interactive Console.
Note that the Interactive Console does not run in parallel.

Create Script

The Create Script selection opens a blank Script Editor window that allows
opening, creating, modifying, saving, and executing a customized script.

2.3.4 The View menu

The View menu contains the Output window which is subdivided into two
fields: the upper Results and Errors and lower Status (Figure 2.15). These
fields display, respectively, the results (including warning and error mes-
sages) and the current state of the analysis. These fields are not updated
automatically and in order to display the current state of the analysis the
user must click the Update button. The View menu also contains the About
POY window in Windows and Linux.

2.4. USING THE INTERACTIVE CONSOLE 27

Figure 2.15: Selecting the Output window (left) and viewing the Results and
Errors and Status of Search fields.

2.4 Using the Interactive Console

This section will help you get started using the POY4 Interactive Console
and will prepare you for the more extensive, technical descriptions in the
next chapter, POY4 Commands. Now that you are acquainted with the
program’s interface, learned how to initiate, and exit or interrupt a POY4
session, and how to obtain help, you are well prepared to run your first
analysis. This chapter will teach you how to input datafiles, check the data
you are analyzing, generate a set of initial trees, do basic branch swapping
to find a local optimum, and, finally, produce and visualize the resultant
trees, their strict consensus, and generate support values.

For the purpose of this exercise, three datafiles are used available at
http://research.amnh.org/scicomp/projects/poy.php:

• 18s.fas and 28s.fas contain unaligned DNA sequences (partial 18S
and 28S ribosomal DNA) in FASTA format. [18]

• morpho.ss contains a morphological data matrix in Hennig86 for-
mat. [6]

Once POY4 has been launched and the interface (Figure 2.16) had ap-
peared on the screen, the data can be input and the analysis can proceed.
As you follow the instructions, you are encouraged to consult the help file

28 CHAPTER 2. POY4 QUICK START

by using the command help (see Section 2.6 to learn more about POY4 com-
mands and their arguments).

2.4.1 The interface

The Interactive Console provides a terminal environment with enhanced
ability to display the results and the state of the analysis. It is recommended
to use the console to explore and verify the data in the early steps of the
analysis, and to learn the scripting language. Using the console requires
familiarity with POY4 commands, their arguments, and the conventions of
POY4 scripting (which are discussed in the POY Commands chapter). It
has four windows: POY Output, Interactive Console, State of Stored Search,
and Current Job (Figure 2.16):

Figure 2.16: POY4 interface displayed in the Terminal window prior to an-
alysis. Note the cursor at the POY4 prompt in the Interactive Console and
that the State of Stored Search and Current Job windows are empty.

2.4. USING THE INTERACTIVE CONSOLE 29

POY Output (Figure 2.16, upper box) displays the status of the imported
data, outputs the results of the phylogenetic analyses (such as trees,
character diagnoses, and implied alignments), reports errors, and dis-
plays descriptions of POY4 commands.

Interactive Console (Figure 2.16, mid-left box) is used to issue the com-
mands interactively and to execute the commands by clicking the Re-
turn key. (See Section 3.1.1 on the description of POY4 commands.)

State of Stored Search (Figure 2.16, mid-right box) displays the time
(in seconds) elapsed since the initiation of the current operation. This
window also reports the number of trees currently in memory and
displays the range of their costs.

Current Job (Figure 2.16, lower box) describes the currently running op-
eration. When the operation is completed, the box is blank.

2.4.2 Starting a POY4 session using the Interactive Console

Windows
• Start>All Programs>POY>POY Interactive Console

Mac OSX

• Double-click POY4 application icon to start the program.

• Select Run Interactive Console from the Analyses menu.

Linux
• Add /opt/poy4/Resources/ to your PATH and run ncurses poy

from a terminal.

2.4.3 Entering commands

Once the POY4 interface is called, the cursor appears in the Interactive Con-
sole and POY4 is ready to accept commands. The interactive console does

30 CHAPTER 2. POY4 QUICK START

Figure 2.17: POY4 interactive console during a process. The POY Output
window displays (by default) the information on the input datafiles. The In-
teractive Console lists the commands that have been consecutively executed.
The Current Job window shows the state of the current operation and the
current tree score. The State of Stored Search shows the time elapsed since
the last command, swap, was initiated.

2.4. USING THE INTERACTIVE CONSOLE 31

Figure 2.18: Specifying the location of datafiles. The folder POY-Data is
dragged from the POY v3-4 folder directly in the Terminal window.

Figure 2.19: Starting POY4. At the folder containing datafiles, entering poy
starts a POY4 session.

not support using the mouse and, as true for most command-line applica-
tions, the cursor can be moved using the left and right arrow keys, and the
Backspace (in Windows) or Delete (in Mac) keys are used to erase individual
characters to the left of the current cursor position. To eliminate the need
of retyping commands anew during a POY4 session, keyboard shortcuts can
be used: Control-P (“previous”) and Control-N (“next”) will scroll through
the commands previously entered during the session. In addition, the inter-
active console is equipped with the autocomplete feature: it involves POY4
predicting a command, an argument, of file name that the user wants to
type from the first letter(s) entered. Upon typing the first letter or part
of the phrase, repeatedly pressing the TAB key scrolls through the list of
command, argument, and file names that begin with that letter or phrase.
Autocomplete speeds up interaction with the program.

2.4.4 Browsing the output

As more output is reported in the POY Output window, only the most
recent reports will be seen in the window. Using the Up and Down keys
allows the user to scroll up and down the POY Output window to see the

32 CHAPTER 2. POY4 QUICK START

welcome line, and previously printed reports and help descriptions. Pressing
Up and Down keys automatically places the cursor in the lower left corner
of the POY Output window indicating that you are interacting with that
window. Only 1000 lines are stored in the memory and the output that
was reported before that will not be accessible by scrolling. The number
of lines, however, can be modified by the user using the command set(),
see history (Section 3.3.24). If the user desires to keep the entire output
or specific items in the output, a log can be created using the command
set(), see log (Section 3.3.24)) or specific outputs can be redirected to files
(see report (Section 3.3.19)).

2.4.5 Switching between the windows

To return to the Interactive Console, start typing and the cursor will au-
tomatically be placed back at the POY4 prompt. When an operation is in
progress (shown in the Current Job window), the cursor stays in the upper
left corner of the State of Current Search window, and switching between
the Interactive Console and the POY Output window is disabled. There
are no user interactions in the Current Job or State of the State of Current
Search.

2.4.6 Importing data

The basic command to input data in POY4 is read(), which includes the list
of files (in quotation marks and separated by commas) enclosed in paren-
theses. Suppose that we would like to simultaneously analyze morphologi-
cal and molecular datasets, contained in separate datafiles, morpho.ss and
28s.fas, respectively. In theInteractive Console files can also be entered
by dragging them into the input window and placing them after a given
command which will provide both the correct path and filename. We can
issue a pair of read() commands (Figure 2.20):

read("morpho.ss")
read("28s.fas")

The syntax of read, like every command in POY4, contains two elements:
the name of the command (e.g. read), followed by an optional list of ar-
guments separated by commas and enclosed in parentheses. Typically, the
arguments of the command read() are names of datafiles, each being en-
closed in double quotes (as shown in the example above). Even though
there might be only one argument or none in some commands, parentheses

2.4. USING THE INTERACTIVE CONSOLE 33

Figure 2.20: Importing datafiles using the Interactive Console. Two con-
secutive read commands specify both the morphological datafile in Hen-
nig86 format (morpho.ss), and the molecular datafile in FASTA format
(28s.fas). Note that POY4 automatically reports in the POY Output win-
dow the names and types of files that have been imported.

(e.g. read()) always follow the command name. An exhaustive discussion
of POY4 command structure and detailed descriptions of all commands with
examples of their usage are provided in the POY Commands chapter (3.1.1).

In order to import data by entering the names of the files, the directory
containing these files must be identified using the commandcd; for example
cd ("/Users/username/docs/poyfiles"). Alternatively, the full path can
be included in the argument of read: read("/Users/username/docs/28s.fas").

Most of the time users are interested in importing multiple datafiles
to analyze an entire dataset. In this case, multiple datafiles can be speci-
fied as arguments for a single command. For example, importing both files,
morpho.ss and 28s.fas, can be written more succinctly: read("morpho.ss",
"28s.fas"). This is equivalent to sequentially importing each file as shown
above (Figures 2.20 and 2.21).

Figure 2.20 also illustrates an important feature that makes POY4 dif-
ferent from many other phylogenetic analysis programs: every time a file is
imported during a POY4 session, the input data are added to the current data
in memory and do not replace them. This allows additional analytical flexi-
bility. For example, if only morphological data are read and trees are built
based on these data alone, a subsequently imported molecular character
dataset will be used in conjunction with the previously imported morpho-
logical data, despite the fact that current trees in memory were generated
only from morphological data (Figure 2.21):

read("morpho.ss")
build()

34 CHAPTER 2. POY4 QUICK START

Figure 2.21: Building trees with morphological data only but continuing
analysis using combined morphological and molecular data. This example
shows how we can add data to the analysis incrementally by loading files at
different points in the search. First, the morphological data are imported
from morpho.ss file using read() the and trees are built based on these
data. Then molecular data from the 28s.fas file are loaded into memory
in addition to previously imported morphological data. Finally, subsequent
analyses, rediagnose() and swap(), are conducted using the data in mem-
ory, that is the trees based on morphological data, and both morphological
and molecular character sets.

read("28s.fas")
rediagnose()
swap()

It must be noted that if the numbers of terminals differ among datafiles,
only the data that correspond to the terminals used to generate the trees
(from the morphological datafile in our example) are used. The rest of the
character data are ignored, unless the trees are built again with the data
files containing the expanded number of terminals.

Also, because POY4 appends trees and data in memory, it is a good
practice when starting a new analysis to empty the memory using use the
command wipe().

Valid input files include nucleotide and amino acid sequence files in many
formats, and morphological data in Hennig86 and Nexus formats. (For
information on specific formats supported by POY4 and other types of input
files see help(read).)

2.4. USING THE INTERACTIVE CONSOLE 35

Figure 2.22: Inspecting imported data. The figure shows segments of a data
report generated by report(data). The left and right panels demonstrate
a typical table output the character and terminal data respectively.

2.4.7 Inspecting data

Once a dataset (or multiple datasets) is imported, POY4 automatically re-
ports a brief description of contents for each loaded file in the POY Output
(Figure 2.20). However, it may be desirable to inspect the imported data in
greater detail to ensure that the format and contents of the files have been
interpreted correctly. This practice helps to avoid common errors, such as
inconsistently spelled terminal names, which may result in bogus results,
produce error messages, and aborted jobs.

The basic command for outputting information is report(). One of its
arguments, data, outputs a set of tables showing the list of terminals, the
number and types of characters, and the lists of terminals and characters
excluded from the analysis. To produce a report of the datafiles that were
used in the previous example (morpho.ss and 28s.fas), we import the data
and execute report(data):

read("morpho.ss","28s.fas")
report(data)

This will generate an extensive, detailed output, partial views of which are
shown in Figure 2.22. Obviously, the entire report will not be visible in the
POY Output window. Therefore, the Up and Down arrow keys and Page
Up and Page Down keys can be used to scroll.

In this example, all the imported data are analyzed and, therefore, the
report fields that list excluded data will appear empty. One can, however,
exclude specific characters or terminals from the analysis using additional
commands (see the command select (Section 3.3.23)).

By default, POY4 reports the results of executed commands to the POY
Output window. However, the same output can be redirected to a file simply

36 CHAPTER 2. POY4 QUICK START

Figure 2.23: Visualizing missing data. The command cross references
displays a table showing whether a given terminal (in the left column) is
present (“+”) or absent (“-”) in each datafile. In this example, the data
for all the the taxa listed in the POY Output window are present in both
datafiles, morpho.ss and 28s.fas.

by adding the name of the output file in the list of argument of the command
report() before the argument specifying the type of the requested report (in
this case data). For instance, if we would like to output into the file “data -
analyzed.txt,” we would enter report("data analyzed.txt", data).

Another useful argument of report is cross references. This argu-
ment displays whether character data are present or absent for each terminal
in each one of the imported data files. This provides a comprehensive visual
overview of missing data. Building on the previous example, such output
can be generated by the following sequence of commands:

read("morpho.ss", "28s.fas")
report(cross references)

A typical output of cross references command is shown in Figure
2.23.

2.4.8 Building the initial trees

The command to build trees is build() (already mentioned in Section 2.4.6).
After importing morpho.ss and 28s.fas, executing the command build()

2.4. USING THE INTERACTIVE CONSOLE 37

without specifying any arguments generates 10 trees by random addition
sequence (the default setting of the command).

Many POY4 commands operate under default settings when executed
without arguments. To learn what the default settings are for a particular
command, use either help() command with the command name of interest
inserted in parentheses or consult the POY Commands chapter (3.1.1).

If the user would like to specify a number of tree building replicates
different from the default value of 10, an argument trees followed by a colon
(“:”) and an integer specifying the number of trees must be included in the
argument list of the build command: build(trees:100). This command
has a shortcut that omits the argument trees. Thus, build(trees:100)
is equivalent to build(100). As defaults, the shortcuts are fully described
in Section 3.1.1. The entire sequence of commands minimally required to
import the data and build 100 trees is the following:

read("morpho.ss","28s.fas")
build(100)

As the tree building advances, the Current Job window displays the
current status of the operation (Figure 2.24). This window shows how many
Wagner builds have been performed out of the total number requested, the
number of terminals added in the current build, the cost of the current tree
(recalculated after each terminal addition), and the estimated time for the
completion of all the builds. When all the trees are generated, the State of
Stored Search window displays the range of tree costs (the best and worst
costs), the number of trees stored in memory, and the number of trees with
the best cost (Figure 2.24).

2.4.9 Performing a local search

Now that the trees have been generated and stored in memory, a local search
can be performed to refine and improve the initial trees by examining ad-
ditional topologies of potentially better cost. The command swap() imple-
ments an efficient strategy by performing SPR and TBR branch swapping
alternately. As with other commands, the arguments of swap() allow the
customization of the swap algorithm. In the following example, branch
swapping is performed under the default settings on each of the 100 trees
build in the previous step:

read("morpho.ss","28s.fas")
build(100)
swap()

38 CHAPTER 2. POY4 QUICK START

Figure 2.24: Generating Wagner trees. During the process of tree building
(left panel), the Current Job window displays how many builds have been
performed so far (57 of 100), the number of terminals added in the current
build (13 of 17), a cost of a current tree recalculated after each terminal
addition (362), and the estimated time (in seconds) for the completion of
the operation (4 s). Because the process is not complete, the State of Stored
Search window contains no trees. Once tree building is complete, the State
of Stored Search window displays the best (451) and worst (472) costs, the
number of trees stored in memory (100), and the number of trees with the
best cost (2).

Branch swapping is performed sequentially on all trees stored in mem-
ory. During swapping, the Current Job window reports the number of the
tree that is currently being analyzed, the method of branch swapping, the
specific routine being currently performed, and the cost of the current tree
(Figure 2.25). When the process is complete, the State of Stored Search
window displays the range of tree costs (the best and worst costs), the num-
ber of trees stored in memory, and the number of trees of the best cost
(Figure 2.25). Note that the local search had reduced the costs of the initial
best (from 451 to 446) and narrowed the range of tree costs.

Using different combinations of swap() arguments allows designing a
large number of search strategies of different levels of complexity. Some sim-
ple options allow the choice between SPR and TBR. More complex strategies
allow keeping a specific number of best trees per single initial tree (gener-
ated during the building step). For example, the command swap(trees:10)
will keep up to 10 best trees generated during branch swapping on a single
initial tree. Consequently, if 100 trees were built initially, this command will
produce up to 1,000 trees. The argument threshold allows the retention of
suboptimal trees within a specified percent of cost difference from the cur-
rent best tree. For example, swap(trees:20, threshold:10) will execute
a swap considering trees within a ten percent cost difference of the current
best tree and retain the 20 minimal length swapped trees for each initial
build. Other options provide the means to sample trees as they are evalu-

2.4. USING THE INTERACTIVE CONSOLE 39

Figure 2.25: Performing a local search. When searching (left panel), the
Current Job window reports the number of the tree that is currently be-
ing analyzed (73 of 100), a method of branch swapping (Alternate), a
function being currently performed (SPR search), and a cost of the current
tree (456). When the searching is finished (right panel), the State of Stored
Search window displays the best (446) and worst (463) costs, the number
of trees stored in memory (100), and the number of trees of the best cost
cost (9) recovered from independent tree builds. Note these trees may not
necessarily have unique topologies.

ated, timeout after certain number of seconds, transform the cost regime,
and other functions in conjunction with many POY4 commands.

2.4.10 Selecting trees

Having performed the basic steps of importing character data, building ini-
tial trees, and conducting a simple local search, we obtained a set of local-
optima trees in memory. Most of the time, a user would like to select only
those trees that are optimal and topologically unique. The default setting
of the select() does exactly that. Adding select() to our example of
command sequence for the basic analysis

read("morpho.ss","28s.fas")
build(100)
swap()
select()

selects only unique trees of best cost. The remaining trees are deleted from
memory. The State of Stored Search window reports the number and the
cost of the best tree(s) (Figure 2.26).

select() is another multifunctional command the arguments of which
are also used to select (include or exclude) specific terminals, characters,
and trees.)

Comparing the output reported in the State of Stored Search before (Fig-
ure 2.25) and after (Figure 2.26) executing select() shows that swapping

40 CHAPTER 2. POY4 QUICK START

Figure 2.26: Selecting unique best trees. Executing select() keeps only
unique trees of best cost. The State of Stored Search window reports that
there is only one unique tree of best cost (446).

on 9 of 100 initial trees produced the trees of best cost (446), but these trees
are identical, because only one was retained when filtered using select().

2.4.11 Visualizing the results

There are several ways to visualize results. The command report("my -
first tree", graphtrees) outputs a cladogram in PDF format (Figure 2.27),
which can be displayed, edited, and printed using graphics software (such
as Adobe Illustrator or Corel Draw). POY4 also appends the “ps” extension
when generating graphic output to a file. A quick way to see the tree(s)
on screen is to use the command report(asciitrees) that draws a clado-
gram in the POY Output window (Figure 2.27). The ascii tree can also be
reported to a file, if the output file name is specified (in parentheses and
separated from the argument asciitrees by a comma).

report("my first trees.txt", trees) reports the trees in memory
in parenthetical notation to the file my first trees that can be imported
in other programs. Other supported tree output formats include Newick
and Hennig86. report() can also generate consensus trees in the graphical
and parenthetical formats when appropriate arguments are specified (for
example, report("strict consensus", graphconsensus)).

2.4.12 Interrupting a process

To interrupt a process, press Control-C. By default, an error, Error:
Interrupted, is reported in the POY Output window. The program does
not close, however, and a new command can be entered. Interrupting the
analysis cancels the execution of the last command requested by the user and
restores the data and trees in memory before that last command. For exam-
ple, the following two session are equivalent: (1) read(‘‘a’’) <ENTER> and
(2) read(‘‘a’’) <ENTER> read(‘‘b’’) read(‘‘c’’) <ENTER> <CONTROL-C>.

2.4. USING THE INTERACTIVE CONSOLE 41

Figure 2.27: Visualizing trees. An ascii tree (left) is generated using the
command report(asciitrees). The same tree is reported to a file in a
PDF format (right) using report("my first tree", graphtrees). Note
that both representations of trees are preceded by their costs.

42 CHAPTER 2. POY4 QUICK START

2.4.13 Reporting errors

If there is an error pertaining to wrong syntax (such as a typo in a command
name), POY4 will indicate the location of the error by underlining the prob-
lematic part of the input with “^” in the Interactive Console (Figure 2.28).
The description of the corresponding command, its syntax, and examples
of its usage from the help file are automatically printed in the POY Out-
put window. As noted above, the Up and Down keys can be used to scroll
through the output and determine the source of the error. Certain types of
errors are reported explicitly (Figure 2.28).

2.4.14 Exiting

To finish a POY4 session, enter the command exit() (Figure 2.29) or quit().
This will close the POY4 interface and resume the Terminal window (Mac
OSX) or the Command Prompt window (Windows).

2.5 Creating and running POY4 scripts

So far, we have communicated with POY4 interactively through the Graphical
User Interface or by executing commands from the Interactive Console.
Another way of conducting an analysis is to run a script, a simple-text file
containing a list of commands to be performed (Figure 2.30).

Running analyses using scripts has many advantages: not only does it
allow for the entire analysis to proceed from the beginning to the end at
one click of a button, but it also provides means to examine the logical
dependency of the commands and optimize memory consumption (see the
description of script analysis argument of the command report in the
POY Commands chapter). Submitting jobs using scripts may produce re-
sults faster because POY4 automatically optimizes the workflow of the entire
analysis by taking into account the functional relationships among various
tasks and efficiently distributing the jobs and resources (such as memory
and multiple processors).

Another advantage of using scripts is that they may contain comments
that are ignored by POY4 but can be helpful to describe the contents of the
files and provide other annotations. The comments are enclosed in paren-
thesis and asterisks. For example, (* this is a comment *). Comments
can be of any length and span multiple lines. Comments can also be entered
interactively from the Interactive Console.

2.5. CREATING AND RUNNING POY4 SCRIPTS 43

Figure 2.28: Displaying errors. POY4 displays error messages in several ways.
In the example in the left panel, the command build was entered without
parentheses, which is required for a valid POY4 command syntax; the exact
place of the error is marked by “^”, in this case following the build com-
mands. Examples of the proper usage of the command are automatically
displayed in the POY Output. In other cases (right panel), error messages
are explicitly reported in the POY Output window. The first and second
error messages indicate that the datafile SSU.seq is not present, which could
have been caused either by a mistake in the name of the file, missing file, or
the location of the file in a directory, other than the one specified prior to
starting the POY4 session. The third error message indicates that the valid
syntax of exit requires the parentheses following the command name (also
shown by “^” in the Interactive Console).

Figure 2.29: Exiting POY4

44 CHAPTER 2. POY4 QUICK START

Figure 2.30: Using POY4 scripts. The list of commands executed interactively
using the Interactive Console (left) and a script containing the same list
of commands (right). Note, that the header of the script is a comment,
enclosed in “(* *)”, that is ignored by POY4. Also note, that commands can
either be listed in a row or in a column (compare build() and swap() in the
console and in the script) and different arguments of the same command can
either be specified separately or combined in a single argument list (compare
report() in the console and in the script). (Both conventions are valid for
interactive command submission and for scripts.)

Obviously, using scripts requires the user to design the workflow of the
process prior to conducting the analysis. POY4 scripts can be created and
saved using the Script Editor window of POY4 interface or any conventional
text editor (such as TextPad, TextWrangler, BBEdit, Emacs, or NotePad).

POY4 scripts are extremely useful in cases when operations may take a
long time to complete, eliminating the need to wait for a part of the analysis
to finish in order to proceed to the next step.

There are two ways to import and run a script:

• using the POY Launcher in the Graphical User Interface;

• using the command run() of the Interactive Console; for example,
run("script.txt"), where script.txt is the name of the file con-
taining the script.

It it critical to include the command exit() at the end of the script.
Otherwise POY4 will be waiting for further instructions to be entered after
executing the script’s contents.

2.6 Obtaining help

Instructions to run POY4, command descriptions, and the theory behind
POY4 can be obtained from a variety of sources.

2.6. OBTAINING HELP 45

POY 4.1.1Program Documentation (this manual) is a comprehensive
and detailed manual on all the aspects of using POY4, from installa-
tion to output and visualization of results. Included are Quick Start,
POY4 command reference, practical guides and tutorials that make the
program immediately accessible for beginners and provide in-depth in-
formation for experienced users. The documentation in PDF format
can be accessed from the Help menu of the graphical user interface or
downloaded separately from POY4 web site at

http://research.amnh.org/scicomp/projects/poy.php

POY interactive help can be obtained by entering help() at the POY4 inter-
active console. To obtain help on a particular command, the name of
the command must be specified in the parentheses following help().
For example, to learn about the command exit, type help(exit).
(Figure 2.29.)

POY4 Mail Group is an Internet-based forum for discussing all issues
related to POY4 and provides the best way to communicate with POY4
developers on specific issues (see WWW resources below). The website
is located at http://groups.google.com/group/poy4.

POY Book (Wheeler et al., 2006 Dynamic Homology and Phylogenetic
Systematics: A Unified Approach Using POY [32]) provides a review
of the theory behind POY4, and contains formal descriptions of many
algorithms implemented in the program and the descriptions of com-
mands of the earlier version, POY3.

Figure 2.31: The POY Book.

46 CHAPTER 2. POY4 QUICK START

2.7 WWW resources

POY4 is an ongoing project and new versions are being continuously devel-
oped to include new procedures, improve performance, and eliminate re-
ported bugs. Therefore, it is imperative to keep up with the program’s
development and check regularly for updates. There are several Internet-
based resources that offer this information.

POY4 Web Site has downloadable compressed files of POY4 binaries, source
code, and documentation in PDF format. It also provides a links to
the POY Mail Group. The website is hosted by AMNH Computational
Sciences at

http://research.amnh.org/scicomp/projects/poy.php

POY4 source code repository contains has downloadable POY4 source
code. The site is powered by Google at

http://code.google.com/p/poy4/source

POY4 Mail Group informs registered users via email of new develop-
ments, such as new versions and updates. It also provides additional
resources for obtaining help and a way for reporting bugs and other
problems with POY4 and its documentation. In addition, it allows
users to receive and respond to each other’s questions thus providing
an open forum to discuss the methods and applications of POY4. The
users who choose not to register, have access to the archives of the
postings but will not be able to either submit or receive emails from
other users and POY4 developers. The POY4 Mail Group is hosted by
Google at

http://groups.google.com/group/poy4

Chapter 3

POY4 Commands

3.1 POY4 command structure

3.1.1 Brief description

POY4 interprets and executes scripts issued by the end user. These can come
from the command line in the Interactive Console of the program, or from
an input file. A script is a list of commands, separated by any number of
whitespace characters (spaces, tabs, or newlines). Each command consists of
a name in lower case (LIDENT), followed by a list of arguments separated by
commas and enclosed in parentheses. Most of the arguments are optional,
in which case POY4 has default values.

In POY4, we recognize four types of command arguments: primitive val-
ues, labeled values, commands, and lists of arguments.

Primitive values can be either an integer (INTEGER), a real number
(FLOAT), a string (STRING), or a boolean (BOOL).

Labeled values are a lowercase identifier (which are referred to as label),
and an argument, separated by the colon character. “:”.

List of arguments are several arguments enclosed in parenthesis and
separated by commas, “,”.

Commands are standard commands that can affect the behavior of an-
other command when included in its list of arguments.

47

48 CHAPTER 3. POY4 COMMANDS

Thus, certain commands can function as arguments of other commands.
Moreover, some commands share arguments. Although such compositive
use of commands might seem complex, this structure provides much more
intuitive control and greater flexibility. The fact that the same logical opera-
tion that functions in different contexts maintains the same name (typically
suggestive of its function), substantially reduces the number of commands
without limiting the number of operations. Using a linguistic analogy, POY4
specifies a large number of procedures by a more complex grammar (specific
combinations of commands and arguments), rather than by increasing the
vocabulary (the number of specific commands and arguments). For example,
the command swap specifies the method of branch swapping. This command
is used to conduct a local search on a set of trees. In addition, swap func-
tions as an argument for calculate support to specify the branch swapping
method used in each pseudoreplicate during Jackknife or Bootstrap resam-
pling. swap can also be used to set the parameters for local tree search
based on perturbed (resampled or partly weighted) data as an argument of
the command perturb. Therefore, to take the maximum advantage of POY4
functionality, it is essential to get acquainted with the grammar of POY4.

3.1.2 Grammar specification

The following is the formal specification of the valid grammar of a script in
POY4:

script: = | command
| command script

command: = LIDENT "(" argument list ")"

argument list: = |
| arguments

arguments: = |
| argument
| argument "," arguments

argument: = | primitive
| LIDENT
| LIDENT ":" argument
| command

3.1. POY4 COMMAND STRUCTURE 49

| "(" argument list ")"

primitive: = | INTEGER
| FLOAT
| BOOLEAN
| STRING

LIDENT: = [a-z_][a-zA-Z0-9_]*

INTEGER: = [0-9]+

FLOAT: = | INTEGER
| [0-9]+ "." [0-9]*

STRING: = """ [^"]* """

The following examples graphically show a typical structure of valid POY4
commands formally defined above. The Figure 3.1 illustrates the syntax of
the command swap. The name of the command, swap, is followed by a list
of two arguments, tbr and trees:2, enclosed in parentheses and separated
by a comma. Note that trees:2 is a labeled-value argument that contains
a label (trees) and a value (2) separated by a colon.

Figure 3.1: The structure of a simple POY4 command. The entire command
(highlighted in blue), consists of a command name followed by a list of
arguments (enclosed in red box). See text for details.

Figure 3.2 shows a more complex command structure, using the com-
mand perturb as an example. This is a compound command because the
list of its arguments contains another command, swap. This means that
executing perturb performs a set of specified operations that contains a
nested set of operations specified by swap. Note also, that in contrast to the
first labeled-values argument iterations, the second labeled-values argu-

50 CHAPTER 3. POY4 COMMANDS

ment ratchet has multiple values (a float and an integer). When multiple
values are specified, they must be enclosed in parentheses and separated by
a comma. The third argument is a command (swap), therefore it is syntac-
tically distinguished from other arguments, labeled and unlabeled alike, by
having parentheses following the command name. It must be emphasized
that the parentheses always follow the command name even if no arguments
are specified. (If no arguments are specified, a command is executed under
its default settings.)

Figure 3.2: A structure of a compound POY4 command. Note that the list of
arguments (enclosed in red box) includes a command (highlighted in blue).
Also, note that ratchet accepts multiple values, a float and an integer, that
are inclosed in parentheses and separated by a comma. See text for details.

3.2 Notation

Some arguments are obligatory, whereas others are not; some commands
accept an empty list of arguments, but others do not; some argument labels
have obligatory values, some have optional values. In the descriptions of
POY4 commands below, the elements of POY4 grammar are defined in the
text using the following conventions:

• A command that could be included in a POY4 script (that is can be
entered in the interactive console or included in an input file) is shown
in terminal type.

• Optional items are inclosed in [square brackets].

• Primitive values are shown in UPPERCASE.

Each command description entry contains the following sections:

• The name of the command.

• A brief description of the command’s function.

• Cross references to related commands.

3.3. COMMAND REFERENCE 51

• The valid syntax for the command.

• The list of descriptions of valid arguments.

• Description of default settings.

• Examples of the command’s usage.

NOTE

Default syntax. The default syntax for all commands is the same:
it includes the command name followed by empty parentheses. For
example, swap(). The descriptions of default settings, however, in-
clude the entire argument list for the obvious reason of showing what
is included in the omitted argument list.

NOTE

Command order. The effect of the order of arguments in a com-
mand depends on the context. If arguments are not logically inter-
connected, their order is not important. For example, the commands
build(10,randomized) and build(randomized,10) are equivalent.
However, executing the commands transform(tcm:(1,1),gap -
opening:4) and transform(gap opening:4,tcm:(1,1)) will pro-
duce different results because gap opening modifies the values set
by tcm, while tcm overrides the values set by gap opening.

NOTE

Output files. When an output file is specified, the file name (in
double quotes and followed by a comma) must precede the argument.

NOTE

Certain command arguments are mainly useful to POY4 developers,
and those arguments are preceded by an underscore.

3.3 Command reference

3.3.1 build

Syntax

build([argument list])

52 CHAPTER 3. POY4 COMMANDS

Description

Builds Wagner trees [5]. Building multiple trees with a randomized addition
of terminals allows for the evaluation of many more possible tree topologies
and generates a diversity of trees for subsequent analysis. The arguments
of the command build specify the number of trees to be generated and the
order in which terminals are added during a singe tree building procedure.
During tree building, POY4 reports in the Current Job window of the ncurses
interface which of the terminal addition strategies is currently used.

By default POY4 replaces the trees stored in memory with those gener-
ated in a subsequent build. For example, executing build(10) followed by
build(20) will replace the 10 trees generated during the first build with 20
new trees. However, it might be desirable (for example, if computer mem-
ory were limited) to generate a large number of trees by appending trees
from multiple separate builds. To keep trees from consecutive builds, a tree
output file must be specified using the command report (Section 3.3.19)
that must precede the build command. This will produce a file contain-
ing the trees appended from all builds. If the same file name is used for
reporting trees for other analysis, the new trees are going to be appended.
Alternatively, trees from different builds can be redirected to separate files
if different file names are specified.

The command build is also used as an argument for the command
calculate support.

Arguments

all Turns off all preference strategies for adding branches and simply tries
all possible addition positions for all terminals.

as is Indicates that in one of the trees to be built, the terminals are added
in the order in which they appear in the imported datafiles, and all
others are built using a random addition sequence.

branch and bound[:FLOAT] Calculates the exact solution using the Branch
and Bound algorithm [12]. By default only one optimal tree is kept
but the number of optimal trees to be retained can be specified by the
argument trees. The optional float value specifies the bound (either
tree cost or likelihood score).

constraint[:STRING] Builds trees using the set of constraints specified by
the consensus tree input file. If no input file is provided, the constraint
is calculated as the strict consensus of the trees in memory. Every

3.3. COMMAND REFERENCE 53

tree built using this method is subjected to the same randomization
as wagner builds within each constraint.

lookahead:INTEGER The number of trees that can be kept at each build
step. If the lookahead argument specifies a number n, and the best
tree found has cost c, then the best n trees with cost at most c +
threshold as specified by the threshold (Section 3.3.1) command are
held for the next build step. If no threshold command is specified,
then it is set to 0.

random Generates a tree at random. All possible trees have equal probabil-
ity.

randomized Indicates that terminals are added in random order on every
Wagner tree built. This is a default tree-building strategy.

threshold:FLOAT The numerical value specifies the extra cost over the
current best tree that makes another tree acceptable for the lookahead
list. This parameter is only useful if lookahead (Section ??)s used.

trees:INTEGER The integer value specifies the number of independent, in-
dividual Wagner tree builds. The label trees is optional: it is sufficient
to specify only the integer value. Therefore, build(5) is equivalent to
build(trees:5). Note that trees is also used as an argument of the
command swap (Section 3.3.26) but with different meaning.

The value 0 generates no trees but it retains all trees in memory. This
is useful, for example, in the bremer (Section 3.3.2) support calcula-
tion, where instead of generating new trees per each node, the searches
are performed on the trees in the neighborhood of the current trees in
memory.

INTEGER The integer argument specifies the number of independent, indi-
vidual Wagner tree builds. This is a shortcut of the argument trees.

of file:STRING Imports tree file included in the file path of the argument.
This command is useful for importing starting trees for calculating
bremer (Section 3.3.2) support. In other contexts the command read
(Section 3.3.14) can be used with the same effect.

STRING This is a shortcut of the argument of file.

54 CHAPTER 3. POY4 COMMANDS

Defaults

build(trees:10, randomized, lookahead:1, threshold:0) By default,
POY4 will build 10 trees using a random addition sequence for each of them.

Examples

• build(20)
Builds 20 Wagner trees randomizing the order of terminal addition
(note that because the argument randomized is specified by default,
it can be omitted).

• build(trees:20, randomized)
A more verbose version of the previous example. By default a build
is randomized, but in this case the addition sequence is explicitly set.
For the total number of trees, rather than simply specifying 20, the
label trees is used. The verbose version might be desirable to improve
the readability of the script.

• build(15, as is)
Builds the first Wagner tree using the order of terminals in the first
imported datafile and generates the remaining 14 trees using random
addition sequences.

• build(branch and bound, trees:5)
Builds trees using branch and bound method and keeps up to 5 optimal
trees in memory.

3.3.2 calculate support

Syntax

calculate support([argument list])

Description

Calculates the requested support values. POY4 implements support estima-
tion based on resampling methods (Jackknife [8] and Bootstrap [9]) and
Bremer support [3, 13]. The Jackknife and Bootstrap support values are
computed as frequencies of clades recovered in strict consensus trees built
in each resampling iteration. The consensus trees are based on best trees
recovered in each replicate with zero-length branches collapsed. All the ar-
guments of calculate support command are optional and their order is

3.3. COMMAND REFERENCE 55

arbitrary. For examples of scripts implementing support measures see tuto-
rials 4.3 and 4.4.

The calculate support command does not output support values by
default. The output of support values must be requested using the com-
mand report (Section 3.3.19). This is particularly important for Jackknife
and Bootstrap support values, as these sampling techniques do not require
the presence of trees in memory. Therefore, it is possible to perform the
sampling for support values before the tree of interest has been found.

NOTE

In the context of dynamic homology, the characters being sampled
during pseudoreplicates are entire sequence fragments, not individ-
ual nucleotides. Consequently, the bootstrap and jackknife support
values calculated for dynamic characters are not directly comparable
to those calculated based on static character matrices. If it is desired
to perform character sampling at the level of individual nucleotides,
the dynamic characters must be transformed into static characters
using static approx argument of the command transform (Sec-
tion 3.3.26) prior to executing calculate support. Alternatively,
an output file in the Hennig86 format can be generated based on
an implied alignment using phastwinclad (Section 3.3.19) that can
subsequently be analyzed using other programs.
It is important to remember that the local optimum for the dynamic
homology characters can differ from that for the static homology
characters based on the same sequence data. Therefore, it is recom-
mended to perform an extra round of swapping on the transformed
data to reach the local maximum for the static homology characters
prior to calculating support values.

Arguments

Support calculation methods The following commands allow selecting
among several methods for calculating support.

bremer Calculates Bremer support [3, 13] for each tree in memory by per-
forming independent constrained searches for each node. The parame-
ters for the searches can be modified using arguments described under
Search strategy.

56 CHAPTER 3. POY4 COMMANDS

NOTE

The placement of the root affects calculation of Bremer sup-
port values. Therefore, it is critical to specify the root prior
to executing calculate support. See the description of the
command set (Section 3.3.24) on how to specify the root.

bootstrap[:INTEGER] Calculates Bootstrap support [9]. The integer value
specifies the number of resampling iterations (pseudoreplicates). If the
value is omitted, 5 pseudoreplicates are performed by default.

jackknife[:([argument list])] Calculates Jackknife support [8] using
the sampling parameters specified by the arguments. The arguments
of jackknife are optional and their order is arbitrary. If both values
are omitted, the default values of each argument is used.

remove:FLOAT The value of the argument remove specifies the per-
centage of characters being deleted during a pseudoreplicate. The
default of remove is 36 percent.

resample:INTEGER The value of the argument resample specifies
the number of resampling pseudoreplicates. The default of
resample is 5.

Search strategy The calculation of the support values requires a local
search, that is performed under the default settings unless the values of the
following arguments are specified.

build For calculating Bremer support, the integer value of build specifies
the number of independent Wagner tree builds per node. The integer
value 0 (build:0) specifies that Bremer support values are calculated
on the starting trees currently in memory, rather than on newly gener-
ated trees. The initial trees for calculating Bremer support can also be
imported using the argument of file of the command build (Sec-
tion 3.3.1).

For calculating Jackknife and Bootstrap supports, it specifies the num-
ber of Wagner tree builds per pseudoreplicate. Single best trees from
all psudoreplicates are used to calculate the support values. If mul-
tiple best trees are recovered in a pseudoreplicate, one is selected.
If build is omitted from the argument list of calculate support, a

3.3. COMMAND REFERENCE 57

single random addition Wagner tree per pseudoreplicate is built by de-
fault. This is equivalent to build(trees:1, randomized). See build
(Section 3.3.1) for a detailed discussion of arguments of the command
build.

swap Specifies the method and parameters for local tree search. If searching
parameters are not specified, the search is performed under the default
settings of swap (Section 3.3.26).

Defaults

calculate support(bremer, build(trees:1, randomized),
swap(trees:1)) By default POY4 will calculate the bremer support for each
tree in memory node by node. However, if no trees stored in memory,
executing the command calculate support() does not have any effect.

Examples

• calculate support(bremer)
Calculates Bremer support values by performing independent searches
for every node for every tree in memory. This is equivalent to executing
calculate support() (the default setting.)

• calculate support(bremer, build(trees:0), swap(trees:2))
Calculates Bremer support values by performing swapping on each
tree in memory for every node and keeping up to two best trees per
search round.

• calculate support(bremer, build(of file:"new trees"),
swap(tbr, trees:2))
Calculates Bremer support values by performing TBR swapping on
each tree in the file new trees located in the current working directory
for every node and keeping up to two best trees per search round.

• calculate support(bootstrap)
Calculates Bootstrap support values under default settings. This com-
mand is equivalent to calculate support(bootstrap:5,
build(trees:1, randomized), swap(trees:1)).

• calculate support(bootstrap:100, build(trees:5),
swap(trees:1))

58 CHAPTER 3. POY4 COMMANDS

Calculates Bootstrap support values performing one random resam-
pling with replacement, followed by 5 Wagner tree builds (by random
addition sequence) and swapping these trees under the default set-
tings of the command swap, and keeping one minimum-cost tree. The
procedure is repeated 100 times.

• calculate support(jackknife:(resample:1000), build(),
swap(tbr, trees:5))
Calculates Jackknife support values randomly removing 36 percent of
the characters (the default of jackknife), building 10 Wagner trees
by random addition sequence (the default of build), swapping these
trees using tbr, and keeping up to 5 minimum-cost tree in the final
swap per swap (totaling up to 50 stored trees per replicate). The
procedure is repeated 1000 times.

See also

• report (Section 3.3.19)

• supports (Section 3.3.19)

• graphsupports (Section 3.3.19)

3.3.3 clear memory

Syntax

clear memory([argument list])

Description

Frees unused memory. Rarely needed, this is a useful command when the
resources of the computer are limited. The arguments are optional and their
order is arbitrary.

Arguments

m Includes the alignment matrices in the freed memory.

s Includes the unused pool of sequences in the freed memory.

3.3. COMMAND REFERENCE 59

Defaults

clear memory() By default POY4 clears all memory except for the pool of
unused sequences and the matrices used for the alignments.

Examples

• clear memory(s)
This command frees memory including all alignment matrices but
keeping unused pool of sequences.

See also

• wipe (Section 3.3.30)

3.3.4 cd

Syntax

cd(STRING)

Description

Changes the working directory of the program. This command is useful
when datafiles are contained in different directories. It also eliminates the
need to navigate into the working directory before beginning a POY4 ses-
sion. To display the path of the current directory, use the command pwd
(Section 3.3.12).

Arguments

STRING The value specifies a path to a directory.

Examples

• cd ("/Users/username/docs/poyfiles")
Changes the current directory to the directory in a Mac environment
(when using a PC, the forward slashes will be replaced with back-
slashes.)

See also

• pwd (Section 3.3.12)

60 CHAPTER 3. POY4 COMMANDS

3.3.5 echo

Syntax

echo(STRING, output class)

Description

Prints the content of the string argument into a specified type of output.
Several types of output are generated by POY4 which are specified by the
“output class” of arguments (see below). If no output-class arguments are
specified, the command does not generate any output.

Arguments

Output class

error Outputs the specified string as an error message (stderr in the flat
interface).

info Outputs the specified string as an information message (stderr in the
flat interface).

output[:STRING] Reports a specified string (stdout in the flat interface)
to screen or file, if the filename string (enclosed in parentheses) is
specified following output and separated from it by a colon, “:”.

Examples

• echo("Building with indel cost 1", info)
Prints to the output window in the ncurses interface and to the stan-
dard error in the flat interface the message Building with indel
cost 1.

• echo("Final trees", output:"trees.txt")
Prints the string Final trees to the file trees.txt.

• echo("Initial trees", output)
Prints the string Initial trees to the output window in the ncurses
interface, and to the standard output (stdout in the flat interface).

See also

• report (Section 3.3.19)

3.3. COMMAND REFERENCE 61

3.3.6 exit

Syntax

exit()

Description

Exits a POY4 session. This command does not accept any argument. exit
is equivalent to the command quit.

NOTE

To interrupt a process without quitting a POY4 session, use Control-
C. It aborts a currently running operation but keeps all the previ-
ously accumulated data in memory. It does not abort the current
session permitting entering new command and continuing the ses-
sion.

Examples

• exit()
Quits the program.

See also

• quit (Section 3.3.13)

3.3.7 fuse

Syntax

fuse([argument list])

Description

Performs Tree Fusing [10] on the trees in memory. Tree Fusing method
to escape local optima by exchanging clades with identical composition of
terminals between pairs of trees. Only one pair of trees is evaluated during
a single iteration. The size of the clades being exchanged is not specified.

62 CHAPTER 3. POY4 COMMANDS

Arguments

keep:INTEGER Specifies the maximum number of trees to keep between
iterations. By default, the number of trees retained is the same as the
number of starting trees.

iterations:INTEGER Specifies the number of iterations of tree fusing to
be performed. The number of iterations is effectively the number of
pairwise clade exchanges. The default number of iterations is four
times the number of retained trees (as specified by keep).

replace:argument Specifies the method for tree selection. Acceptable ar-
guments are:

better Replaces parent trees with trees of better cost produced during
a fusing iteration.

best Keeps a set of trees of the best cost regardless their origin.

The default is best.

swap Specifies tree swapping strategy to follow each iteration of tree fusing.
No swapping is performed under default settings. See the description
of the command swap (Section 3.3.26).

Defaults

fuse(replace:best) By default POY4 performs fusing keeping the same
number of trees per iterations as the number of the starting trees. The
number of iterations is four times the number starting trees. During the
procedure, only the best trees are retained. No swapping is performed sub-
sequent to tree fusing.

Examples

• fuse(iterations:10, replace:best, keep:100, swap())
This command executes the following sequence of operations. In the
first iteration, clades of the same composition of terminals are ex-
changed between two trees from the pool of the trees in memory. The
cost of the resulting trees is compared to that of the trees in memory
and a subset of the trees containing up to 100 trees of best cost is
retained in memory. These trees are subjected to swapping under the
default settings of swap. The entire procedure is repeated nine more
times.

3.3. COMMAND REFERENCE 63

• fuse(swap(constraint))
This command performs tree fusing with modified settings for swap-
ping that follows each iteration. Once a given iteration is completed,
a consensus tree of the files in memory is computed and used as
constraint file for subsequent rounds of swapping (see the argument
constraint (Section 3.3.26) of the command swap).

See also

• swap (Section 3.3.7)

3.3.8 help

Syntax

help([argument])

Description

Reports the requested contents of the help file on screen.

Arguments

LIDENT Reports the description of the command, the name of which is spec-
ified by the LIDENT value.

STRING Reports every occurrence in the help file of the expression specified
by the string value.

Defaults

help() By default POY4 displays the entire content of the help file on screen.

Examples

• help(swap)
Prints the description of the command swap in the POY Output win-
dow of the ncurses interface or to the standard error in the flat inter-
face.

• help("log")
Finds every command with text containing the substring log and

64 CHAPTER 3. POY4 COMMANDS

prints them in the POY Output window of the ncurses interface or
to the standard error in the flat interface.

3.3.9 inspect

Syntax

inspect(STRING)

Description

Retrieves the description of a POY4 file produced by the command save
(Section 3.3.21). If the description was not specified by the user, inspect
reports that the description is not available. If the file is not a proper POY4
file format, a message is printed in the POY Output window of the ncurses
interface or to the standard error of the flat interface.

POY4 files are not intended for permanent storage. They are recom-
mended for temporary storage of a POY4 session, checkpointing the current
state of the search (to avoid losing data in case the computer or the pro-
gram fails), or reporting bugs. POY4 also automatically generates POY4 files
in cases of terminating errors (important exceptions are out-of-memory er-
rors).

Examples

• inspect("initial search.poy")
Prints the description of the POY4 file initial search.poy located
in the current working directory in the POY Output window of the
ncurses interface or to the standard error in the flat interface. If,
for example, the file was saved using the command save ("initial -
search.poy", "Results of Total Analysis"), then the output mes-
sage is: Results of Total Analysis.

See also

• save (Section 3.3.21)

• load (Section 3.3.10)

• cd (Section 3.3.4)

• pwd (Section 3.3.12)

3.3. COMMAND REFERENCE 65

3.3.10 load

Syntax

load(STRING)

Description

Imports and inputs POY4 files created by the command save. The name of
the file to be loaded is included in the string argument. All the information
of the current POY4 session will be replaced with the contents of the POY4
file. If the file is not in proper POY4 file format, an error message is printed
in the POY Output window of the ncurses interface, or the standard error in
the flat interface. See the description of the command save (Section 3.3.21)
on the POY4 file and its usage.

POY4 files are not intended for permanent storage: they are recommended
for temporary storage of a POY4 session, checkpointing the current state of
the search (to avoid losing data in case the computer or the program fails),
or reporting bugs. POY4 also automatically generates POY4 files in cases of
terminating errors (an important exception is out-of-memory error).

Examples

• load("initial search.poy")
Reads and imports the contents of the POY4 file initial search.poy,
located in the current working directory.

• load("/Users/andres/test/initial.poy")
Reads and imports the contents of the POY4 file initial.poy in the
absolute path described by the argument.

See also

• save (Section 3.3.21)

• inspect (Section 3.3.9)

• cd (Section 3.3.4)

• pwd (Section 3.3.12)

66 CHAPTER 3. POY4 COMMANDS

3.3.11 perturb

Syntax

perturb([argument list])

Description

Performs branch swapping on the trees currently in memory using a tem-
porarily modified (“perturbed”) characters. Once a local optimum is found
for the perturbed characters, a new round of swapping using the original
(non-modified) characters is performed. Subsequently, the costs of the ini-
tial and final trees are compared and the best trees are selected. If there are
n trees in memory prior to searching using perturb, then the n best trees
are selected at the end. For example, if there are 20 trees currently in mem-
ory, 20 individual perturb procedures will be performed (each procedure
starting with one of the 20 initial trees), and 20 final trees are produced.
This command allows for movement from a local search optimum in the tree
space by perturbing the character space (hence the name). The arguments
specify the type of perturbation (ratchet, resample, and transform), the
parameters of the subsequent search (swap), and the number of iterations
of the perturb operation (iterations).

No new Wagner trees are generated following the perturbation of the
data; the search is performed by local branch swapping (specified by swap).
If perturb is executed with no trees in memory, an error message is gener-
ated. The arguments of perturb are optional and their order is arbitrary.

Arguments

iterations:INTEGER Repeats (iterates) the perturb procedure for the
number of times specified by the integer value. The number of itera-
tions is reported in the Current Job window of the ncurses interface
and to the standard error in the flat interface.

ratchet[:(FLOAT, INTEGER)] Perturbs the data by implementing a vari-
ant of the parsimony ratchet [17] by reweighting characters listed in
report(data). For unaligned data,ratchet randomly selects and
reweighs a fraction of sequence fragments (not individual nucleotides)
specified by the float (decimal) value, upweighted by a factor spec-
ified by the integer value (severity). Thus, the number of sequence
fragments into which the data is partitioned will impact the effective-
ness of using the ratchet on dynamic character matrices. For static

3.3. COMMAND REFERENCE 67

matrices, such as those obtained using the command transform (Sec-
tion 3.3.27),ratchet randomly selects and reweights individual nu-
cleotide positions (column vectors), as in Nixon’s original implemen-
tation [17].

Under default settings, ratchet selects 25 percent of characters and
upweights them by a factor of 2. Unless ratchet is performed under
default settings (that does not require the specification of the fraction
of data to be reweighted and the severity value), both values must
be specified in the proper order and separated by a comma. This
argument is only used as an argument for perturb.

resample:(INTEGER, LIDENT) Resamples the data (characters or termi-
nals) in random order with replacement. The resample string consists
of an integer value specifying the number of items to be resampled (fol-
lowed by a comma) and a lident value specifying whether characters or
terminals (values characters and terminals, respectively) are to be
resampled. Specifying both values is required. No default settings are
available for resample. This command is only used as an argument of
perturb.

swap Specifies the method of branch swapping for a local tree search based
on perturbed data. If the argument swap is omitted, the search is per-
formed under default settings of the command swap (Section 3.3.26).

transform Specifies a type of character transformation to be performed
before executing a perturb procedure. See the command transform
(Section 3.3.27) for the description of the methods of character type
transformations and character selection.

Defaults

perturb(ratchet, swap (trees:1)) When no arguments specified, POY4
performs the ratchet procedure under default settings.

Examples

• perturb(resample:(50,terminals), iterations:10)
Performs 10 successive repetitions of random resampling of 50 percents
of terminals with replacement. Branch swapping is performed using
alternating SPR and TBR, and and keeping one minimum-cost tree
(the default of swap).

68 CHAPTER 3. POY4 COMMANDS

• perturb(iterations:20, ratchet:(0.18,3))
Performs 20 successive repetitions of a variant of the ratchet (see
above) by randomly selecting 18 percent of the characters (sequence
fragments) and upweighting them by a factor of 3. Branch swapping is
performed using alternating SPR and TBR, and keeping one optimal
tree (the default of swap).

• perturb(iterations:1, transform (tcm:(4,3)))
Transforms the cost regime of all applicable characters (i.e. molecular
sequence data) to the new cost regime specified by transform (cost
of substitution 4 and cost of indel 3). Subsequently a single round of
branch swapping is performed using alternating SPR and TBR, and
and keeping one optimal tree (the default of swap).

• perturb(ratchet:(0.2,5), iterations:25, swap(tbr, trees:5))
Performs 25 successive repetitions of a variant of the ratchet (see
above) by randomly selecting 20 percent of the characters (sequence
fragments) and upweighting them by a factor of 5. Branch swapping
is performed using TBR and keeping up to 5 optimal trees in each
iteration.

• perturb(transform(static approx), ratchet:(0.2,5),
iterations:25, swap(tbr, trees:5))
Transforms all applicable (i.e. dynamic homology sequence charac-
ters) using transform into static characters. Therefore, the subse-
quent ratchet is performed at the level of individual nucleotides (as in
the original implementation), not sequence fragments. Thus, ratchet
is performed by selecting 20 percent of the characters (individual nu-
cleotides) and upweighting them by a factor of 5. Branch swapping
is performed using TBR and keeping up to 5 optimal trees in each
iteration as in the example above.

See also

• swap (Section 3.3.26)

• transform (Section 3.3.27)

3.3.12 pwd

Syntax

pwd()

3.3. COMMAND REFERENCE 69

Description

Prints the current working directory in the POY Output window of the
ncurses interface and the standard error (stderr) of the flat interface. The
command pwd does not have arguments. The default working directory is
the shell’s directory when POY4 started.

Examples

• pwd()
This command generates the following message: “The current work-
ing directory is /Users/myname/datafiles/”. The actual reported di-
rectory will vary depending on the directory of the shell when POY4
started, or if it has been changed using the command cd().

See also

• cd (Section 3.3.4)

3.3.13 quit

Syntax

quit()

Description

Exits POY4 session. This command does not have any arguments quit is
equivalent to the command exit.

NOTE

To interrupt a process without quitting a POY4 session, use Control-
C. It aborts a currently running operation but keeps all the previ-
ously accumulated data in memory. It does not abort the current
session permitting entering new commands and continuing the ses-
sion.

Examples

• quit()
Quits the program.

70 CHAPTER 3. POY4 COMMANDS

See also

• exit (Section 3.3.6)

3.3.14 read

Syntax

read([argument list])

Description

Imports data files and tree files. Supported formats are ASN1, Clustal,
FASTA, GBSeq, Genbank, Hennig86, Newick, NewSeq, Nexus, PHYLIP,
POY3, TinySeq, and XML. Filenames should be enclosed in quotes and, if
multiple filenames are specified, they must be separated by commas. All
filenames read into POY4 should include the appropriate suffix (e.g. .fas, .ss,
.aln). read automatically detects the type of the input file. read can use
wildcard expressions (such as *) to refer to multiple files in a single step. For
example, read("biv*") imports all data files the names of which start with
biv or read("*.ss") imports all files with the extension .ss (given that the
data files are in the current directory). Specifying filename(s) is obligatory:
an empty argument string, read(), results in no data being read by POY4.
The list of imported files and their content can be reported on screen or to
a file using report(data).

If a file is loaded twice, POY4 issues an error message but this will not
interfere with subsequent file loading and execution of commands.

POY4 automatically reports in the POY Output window of the ncurses
interface or to the standard error in the flat interface the names of the
imported files, their file type, and a brief description of their contents. A
more comprehensive report on the contents of the imported files can be
requested (either on screen or to a file) using the argument data of the
command report (Section 3.3.19).

3.3. COMMAND REFERENCE 71

NOTE

Although POY4 recognizes multiple data file formats, it does not in-
terpret all of their contents. Instead, it will recognize and import
only character data and ignore other content (such as blocks of com-
mands, etc.). For certain data file formats, POY4 will interpret ad-
ditional information as detailed for each file type below. It is im-
portant, however, to verify that the data was interpreted properly
(using the command report).
The terminal names, as well as input file names, must not contain
spaces, “at” or percentage symbols.

NOTE

Unlike many phylogenetic programs, POY4 does not clear the memory
upon reading a second file. Instead, any subsequently read files will
be added to the total data being analyzed. If a new taxon appears
in a file, then it is be assigned missing data for all previously loaded
characters. If a taxon does not appear in a file, missing data are
assigned for the characters that appearing in it.
To eliminate the imported data and then to input a new data the
wipe() command must be issued first.

NOTE

If one of the terminal names in an imported molecular file contains a
space, “ ”, POY4 issues a warning. This also occurs if a taxon name
appears to match a nucleotide sequence.
If one of the terminal names in an imported molecular file contains
an “at” or a percentage symbols, the file will not be loaded because
it may cause the program to crash when reporting results.

Arguments

Data file types To import data files, individual data file names must be
included in the list of read arguments, enclosed in quotes, and separated by
commas. If no data file types are specified, the types of the imported files
are recognized automatically. To specify the data type, an additional argu-
ment explicitly denoting the data type, is included; it is followed by a colon
(“:”) and the list of data file names (enclosed in parentheses), separated
by commas and enclosed in quotes. This format prevents any ambiguity

72 CHAPTER 3. POY4 COMMANDS

in importing multiple data file types simultaneously (i.e. included in an
argument list of a single read) command.

STRING Reads the file specified in the path included in the string argument.
A path can be absolute or relative to the current working directory
(as printed by pwd()). The file type is recognized automatically.

Molecular files are assumed to contain nucleotide sequences. Valid files
to read using this command are: tree files using parenthetical notation
(newick, POY4 trees), Hennig86 files, Nona files, Sankoff character files
as used in POY 3, FASTA files (and virtually any file generated by
Genbank), and NEXUS files. Only taxon names, trees, characters,
and cost regimes will be imported from each one of this files, no other
commands are currently recognized.

NOTE

POY4 recognizes the characters x and n as representing any
nucleotide base (a,c,t, or g). The ? symbol inserted in sequence
data signifies missing data, a gap, or any nucleotide base may
occur in that matrix position. For prealigned data sequence
gaps are recognized by dashes.

NOTE

Continuous characters can be treated as such by assigning the
lower and upper bounds of the range as polymorphic additive
character states. Because additive characters are integers, such
characters need to be re-scaled using the weightfactor of the
transform(). Consider a continuous character winglength,
the states of which are ranges of measurements in hundredth
of a millimeter, for example 2.53-3.68 mm for a given terminal.
A corresponding character state in the additive character ma-
trix (in Hennig86 format) is [253,368]. To scale the values, a
transformation is applied to the character winglength as fol-
lows: transform((characters,names:("winglength")),
(weightfactor:0.01)).

aminoacids:(STRING list) Specifies that the data listed in the string ar-
gument are amino acid sequences in FASTA format.

3.3. COMMAND REFERENCE 73

NOTE

Currently, IUPAC ambiguity codes for aminoacids are not sup-
ported and inputing files that contain aminoacid data with
ambiguities results in an error message.

annotated:(STRING list) Specifies that the data listed in the string ar-
gument are chromosomal sequences with pipes (“ ”) separating in-
dividual loci. This data type allows for locus-level rearrangements
specified by the argument dynamic pam (Section 3.3.27) of the com-
mand transform (Section 3.3.27). Locus homologies are determined
dynamically, but based on annotated regions [23] (for a sample script
using this data type see tutorial 4.7.

breakinv:(STRING, STRING, [orientation:BOOL, init3D:BOOL]) An
enhancement of the data file type custom alphabet allowing rear-
rangement events specified using dynamic pam(). Syntactically, break-
inv data type is identical to custom alphabet data type.

chromosome:(STRING list) Specifies that the data in the files listed in
the string argument are chromosomal sequences without predefined lo-
cus boundaries. Specifying that imported sequences are chromosome
type data enables the application of parameter options that optimize
chromosome-level events such as rearrangements, inversions, and large-
scale insertions and deletions (including duplications). These param-
eter options (e.g. inversion cost) are specified using the argument
dynamic pam in the command transform (Section 3.3.27). Unlike
when using annotated data type, both locus-level and nucleotide-level
homologies are determined dynamically [22] (see tutorial 4.6). If chro-
mosome sequences were imported as nucleotide type data, they can be
converted to chromosome type data using the argument seq to chrom
of transform (Section 3.3.27).

custom alphabet:(STRING, STRING, [orientation:BOOL, init3D:BOOL])
Reads the data in the user-defined alphabet format. The first string
argument is the name of a datafile that contains custom-alphabet se-
quences in FASTA format. The characters can be (but are not required
to be) separated by spaces.

The second string argument is the name of a custom-alphabet input
file that contains two parts: an alphabet itself, where the alphabet

74 CHAPTER 3. POY4 COMMANDS

elements are separated by spaces, and a transformation cost matrix.
The elements in an alphabet can be letters, digits, or both, as long as
one element is not a prefix of another (“prefix-free”). For example, the
following pairs of custom-alphabet elements are not valid because the
first is a prefix of the second (which would prevent the proper parsing
of an input file): AB and ABBA or 122 and 122X. The transformation
cost matrix contains the rows and columns in which the positions
from left to right and top to bottom correspond to the sequence of
the elements as they are listed in the alphabet. An extra rightmost
column and lowermost row correspond to a gap. It is impotant that
the cost matrix must be symmetrical. An example of a valid custom
alphabet input file is provided below:

alpha beta gamma delta
0 2 1 2 5
2 0 2 1 5
1 2 0 2 5
2 1 2 0 5
5 5 5 5 0

In this example, the cost of transformation of alpha into beta is 2,
and cost of a deletion or insertion of any of the four elements costs 5.

An example of a corresponding input file:

>Taxon1
alphabetagammadelta
>Taxon2
alphabetabetagammadelta
>Taxon3
alphabetabetadelta

The optional arguments of custom alphabet include orientation
and init3D, both of which require obligatory boolean values. The
argument orientation allows the user to specify the orientation of
custom-defined alphabet characters. The tilde symbol (“∼”) preceding
an alphabet character indicates the negative orientation. The options
are orientation:true or orientation:false. The default option is
true.

The argument init3D indicates that if program will calculate in ad-
vance the medians for all triplets of characters (a, b, c). The options
are init3D:true or init3D:false. The default option is true.

3.3. COMMAND REFERENCE 75

custom alphabet can be transformed into breakinv using transform.

genome:(STRING list) Specifies that the data listed in the string argument
are multichromosomal nucleotide sequences with the “@” sign separat-
ing individual chromosomes. This data type allows for chromosome-
level rearrangements specified by the argument dynamic pam (Sec-
tion 3.3.27) of the command transform (Section 3.3.27). Chromosome
homologies are determined dynamically using distance threshold lev-
els specified by the argument chrom hom (Section 3.3.27) of transform
(Section 3.3.27)(for a sample script using this data type see tutorial
4.9.

nucleotides:(STRING list) Specifies that the data in the list of files hold
nucleotide sequences in FASTA format. The sequences can be divided
in smaller fragments using a pound sign, and each fragment is visible
as an individual character.

NOTE

By default, upon importing prealigned sequence data, all the
gaps are removed and the sequences are treated as dynamic
homology characters. To preserve the alignment the data must
be imported using the prealigned argument of the command
read.

prealigned:(read argument, tcm:STRING) Specifies that
the input sequences are prealigned and should be assigned the transfor-
mation cost matrix from the input file defined by the string argument.
(See the argument tcm (Section 3.3.27) of the command transform.)

prealigned:(read argument, tcm:(INTEGER, INTEGER)) Specifies that
the input sequences are prealigned and should be assigned substitution
and indel costs as defined by the tcm argument. (See the argument tcm
(Section 3.3.27) of the command transform.)

Defaults

read() If no data files are specified, POY4 does nothing. If however, data
files are listed but character type is not indicated, POY4 automatically detects
data file types and interprets sequence files as nucleotides-type data.

76 CHAPTER 3. POY4 COMMANDS

Examples

• read("/Users/andres/data/test.txt")
Reads the file test.txt located in the path “/Users/andres/data/”.

• read("28s.fas", "initial trees.txt")
Reads the file 28s.fas and loads the trees in parenthetical notation
of the file initial trees.txt.

• read("SSU*", "*.txt")
Reads all the files the names of which start with SSU, and all the files
with the extension .txt. The types of the datafiles are determined
automatically.

• read(nucleotides:("chel.FASTA", "chel2.FASTA"))
Reads the files chel.FASTA and chel2.FASTA, containing nucleotide
sequences.

• read(aminoacids:("a.FASTA", "b.FASTA", "c.FASTA"))
Reads the amino acid sequence files a.FASTA, b.FASTA, and c.FASTA.

• read("hennig1.ss", "chel2.FASTA", aminoacids:("a.FASTA"))
Reads the Hennig86 file hennig1.ss, the FASTA file chel2.FASTA
containing nucleotide sequences, and the amino acid sequence file
a.FASTA.

• read(custom alphabet:("my data", "alphabet"))
Reads the first file, my data, containing data in the format of a cus-
tom alphabet, which is defined in the second input file, alphabet.
By default, the forward and reverse orientation (orientation:true)
of custom-alphabet characters is considered and prior calculation of
medians for their triplets (init3D:true) is performed.

• read(annotated:("filea.txt", "fileb.txt"),
chromosome:("filec.txt"))
Reads three files containing chromosome-type sequence data. The se-
quences in two files, filea.txt and fileb.txt, contain pipes (“ ”)
separating individual loci, whereas the sequences in the third, are with-
out predefined boundaries.

• read(genome:("mt genomes", "nu genomes")
Reads two files containing genomic (multi-chromosomal) sequence data.

3.3. COMMAND REFERENCE 77

• read(prealigned:("18s.aln", tcm:(1,2)))
Reads the prealigned data file 18s.aln generated from the nucleotide
file 18s.FASTA using the the transformation costs 1 for substitutions
and 2 for indels.

• read(prealigned:(nucleotides:("*.nex"), tcm:"matrix1"))
Reads character data from all the Nexus files as prealigned data using
the the transformation cost matrix from the file matrix1.

See also

• report (Section 3.3.19)

3.3.15 rediagnose

Syntax

rediagnose()

Description

Performs a re-optimization of the trees currently in memory. This function
is only useful for sanity checks of the consistency of the data. Its main usage
is for the POY4 developers. This command does not have arguments.

Examples

• rediagnose()
See the description of the command.

3.3.16 recover

Syntax

recover()

Description

Recovers the best trees found during swapping, even if the swap was can-
celled. This command functions only if the argument recover (Section 3.3.26)
was included in a previously executed (in the current POY4 session) command
swap. Otherwise, it has no effect.

78 CHAPTER 3. POY4 COMMANDS

The trees imported by recover are appended to those currently stored
in memory.

Note that using recovered trees is not intended for temporary storage of
trees. It is useful only as an intermediary operation in a given part of a POY4
session. When other commands that require clearing memory are executed
(such as build, calculate support, or another swap), the trees stored by
recover can no longer be retrieved.

Examples

• recover()
If the command swap (executed earlier in the current POY4 session)
contained the argument recover, for example, swap(tbr,recover),
this command will restore the best trees recovered during swapping.

See also

• swap (Section 3.3.26)

• recover (Section 3.3.26)

3.3.17 redraw

Syntax

redraw()

Description

Redraws the screen of the terminal. This command is only used in the
ncurses interface, other interfaces ignore it. redraw clears the contents of the
Interactive Console window but retains the contents of the other windows.
It does not affect the state of the search and the data currently in memory.

Examples

• redraw()
See the description of the command.

3.3. COMMAND REFERENCE 79

3.3.18 rename

Syntax

rename([argument list])

Description

Replaces the name(s) of specified item(s) (characters or terminals). This
command allows for substituting taxon names and helps merging multiple
datasets without modifying the original datafiles. More specifically, it can
be used, for example, (1) for housekeeping purposes, when it is desirable to
maintain long verbose taxon names (such as catalog or GenBank accession
numbers) associated with the original datafiles but avoid reporting these
names on the trees; (2) to provide a single name for a terminal in cases where
the corresponding data is stored in different files under different terminal
names; and (3) to simply change an outdated or invalid terminal name.

The command consists of a terminal or character identifier followed by
a comma and then by either a string containing a synonymy file or a pair
(or pairs) of strings containing the names of items being renamed.

NOTE

In order to change taxon names, the command rename must be
executed before importing the datafiles (see command read (Sec-
tion 3.3.14)) that contain character data the taxa to be renamed.

NOTE

Once the command rename is applied, subsequent commands must
refer to the terminals using the new, substitute names. This is crit-
ical, for example, when importing a terminals file using the com-
mand select (Section 3.3.23) or specifying a root using the com-
mand set (Section 3.3.24).

Arguments

Identifiers The identifiers specify whether terminals or characters are be-
ing renamed. An identifier must precede the subsequent arguments.

characters Specifies that the subsequently items to be renamed are char-
acters.

80 CHAPTER 3. POY4 COMMANDS

terminals Specifies that the subsequently items to be renamed are termi-
nals.

Specifying items to be renamed These arguments allow to specify the
items to be renamed either individually (by using a pair of string arguments)
or in a group (by importing a synonymy file. The latter is useful when there
are multiple items to be renamed and/or when it is desirable to substitute
a single name for multiple ones.

STRING Specifies the name of the file (a synonymy file) that contains the
list of terminals or characters to be renamed. The synonymy file has
the following structure: each line contains a list of synonyms (two or
more) separated by spaces. The name of the item listed first is going
to be substituted for all the subsequently listed names. Consider, for
example, a two-line synonymy file below:

alpha beta gamma
delta 1

When this file is imported, the items beta and gamma will be renamed
as alpha and the item 1 will be renamed as delta in all subsequently
imported datafiles.

(STRING, STRING) Specifies the names of individual items to be renamed.
The first item is renamed as the second item: specifying ("alpha",
"beta") renames the character or taxon alpha to beta. To specify
multiple pairwise name substitution, several name pairs can be listed:
("alpha","beta"),("gamma","delta").

NOTE

Note that when rename is applied by specifying pairs of syn-
onyms in the command’s argument, the substitute name is
listed second. However, the substitute name appears first in a
synonymy file, followed by one or more synonyms.

Examples

• rename(terminals,"synfile")
This command renames terminal names contained in the synonymy
file synfile in all subsequently imported datafiles.

3.3. COMMAND REFERENCE 81

• rename(terminals,("Mytilus sp","Mytilus edulis"))
This command renames terminal taxon Mytilus sp as Mytilus edulis
in all subsequently imported datafiles.

3.3.19 report

Syntax

report([argument list])

Description

Outputs the results of current analysis or loaded data in the POY Output
window of the ncurses interface, the standard output of the flat interface,
or to a file. To redirect the output to a file, the file name in quotes and
followed by a comma must be included in the argument list of report. All
arguments for report are optional.

Arguments

Reporting to files

STRING Specifies the name of the file to which all the specific types of re-
port outputs, designated by additional arguments, are printed. If no
additional arguments are specified, the data, trees, and diagnosis are
reported to that file by default.

A string (text in quotes) argument is interpreted as a filename. There-
fore, "/Users/andres/text" represents the file text in the directory
/Users/andres (in Windows C:\users\andres). If no path is given,
the path is relative to the current working directory as printed by
pwd(). usage.

Terminals and characters This set of arguments reports the current
status of terminals and characters from the imported data files.

compare:(BOOL, identifiers, identifiers) If the boolean argument is
set to false, the command reports the ratios of all pairwise distances
to their maximum length for the characters specified by character
identifiers. If the boolean argument is set to true, the complement
sequences for the characters specified by the second identifier are com-
puted prior to reporting the distance.

82 CHAPTER 3. POY4 COMMANDS

cross references[:identifiers[:STRING]] Reports a table with termi-
nals being analyzed in rows, and the data files in columns. A plus
sign (“+”) indicates that data for a given terminal is present in the
corresponding file; a minus sign (“-”) indicates that it is not. cross -
references is a very useful tool for visual representation of missing
data.

Under default settings, cross-references are reported for all imported
datafiles. To report cross-references for some of the fragments within
a given file, a single character, or a subset of characters, optional
arguments must be specified. A combination of a character identifier
(see command select (Section 3.3.23)) and the file names (specified
in the the string value) is used to select specific datafiles to be cross-
referenced. For example, if a command cross references:names:
("file1") is executed, the output is produced only for file1.

The argument cross references:all generates a table that shows
presence and absence of fragments contained within each file. If each
datafile contains a single fragment, executing cross references:all
is equivalent to executing cross references.

By default, the cross-reference table is printed on screen or to an out-
put file, if specified.

data Outputs a summary of the input data. More specifically, POY4 will
report the number of terminals to be analyzed, a list of included termi-
nals with numerical identification numbers, list of synonyms (if spec-
ified), a list of excluded terminals, a number of included characters
in each character-type category (i.e. additive, non-additive, Sankoff,
and molecular) with the corresponding cost regimes, a list of excluded
characters, and a list of input files.

searchstats Outputs a summary of the results of the last search command,
including the number of builds, fuse, ratchet, and the costs of the trees
found.

searchstats Outputs a summary of the results of the last search command,
including the number of builds, fuse, ratchet, and the costs of the trees
found.

seq stats:identifiers Outputs a summary of the sequences specified in
the argument value, for all taxa. The summary includes the maximum,
minimum, and average length and distance for all terminals.

3.3. COMMAND REFERENCE 83

terminals Reports a list and number of terminals included and excluded
per input file. Use the command select (Section 3.3.23) for including
and excluding terminals .

treestats Reports the number of trees in memory per cost.

treescosts Reports the cost of each tree separated by colons. The output
contains no formatting for easy processing by any scripting language.

Trees This set of arguments outputs tree representations in parenthetical,
ascii (simple text), or PDF formats. The arguments specify the types of
tree outputs. They include actual trees resulting from current searches, or
imported from files, their consensus trees, or trees displaying support values.

To select the root terminal in the tree representation, the command set
(Section 3.3.24) is used.

Most analyses produce more than a single tree and it is often desirable
to report only some of them. To report particular trees (for instance all
optimal trees, randomly-selected trees, or all unique trees, etc.), first the
command select (Section 3.3.23) must be applied to specify (select) the
desired trees from all those stored in memory.

all roots In a tree with n vertices (and therefore n− 1 edges), calculates
the cost of the n − 1 rooted trees as implied by a root located in the
subdivision vertex at each edge in the unrooted tree in memory.

asciitrees[:collapse[:BOOL]] Draws ascii character representations of
trees stored in memory. The argument collapse collapses the zero
length branches if the boolean value is true (the default); if the
boolean value is false, the zero length branches are not collapsed.

clades Output a set of Hennig86 files. Each file, named file.hen, where
“file” is whatever string you pass to this function contains information
on each clade for one of the trees currently stored. This is similar to
the utility jack2hen of POY3.

consensus[:INTEGER] Reports the consensus of trees in memory in par-
enthetical notation. If no integer value is specified, a strict consensus is
calculated [19]; if integer value is specified, a majority rule consensus is
computed, collapsing nodes with occurrence frequencies less than the
specified integer [16]. If a value less than 51 is specified, POY4 reports
an error.

84 CHAPTER 3. POY4 COMMANDS

graphconsensus[:INTEGER] Same as consensus except for consensus trees
are reported in graphical format, either in the ascii format on screen
or in the PDF format if redirected to a file.

graphdiagnosis Output the diagnosis in PDF format. The PDF is com-
pressed, and contains the trees and links to see the diagnosis of each
vertex in the tree.

graphsupports[:argument] This command outputs a tree with support
values that have been previously calculated using the calculate -
support (Section 3.3.2) either on screen in ascii format, or, if specified,
to a file in PDF format. The argument values are the same as for
supports (i.e. bremer, jackknife, and bootstrap).

graphtrees[:collapse[:BOOL]] If POY4 has been compiled with graphics
support, it will display a window in which you can browse graphical
representations of all the trees in memory. When working in this
window, using “j” and “k” keys displays the previous or next tree
respectively. If no graphical support available, the output is similar
to that generated by the asciitrees argument. Pressing “q” key
returns to the Interactive Console window. The argument collapse
will collapse the zero length branches if true, otherwise not (default is
true.)

supports[:argument] Outputs a newick format representation of a tree
with the support values has previously been calculated using the com-
mand calculate support (Section 3.3.2), either to the screen or to a
file (if specified). If no argument is given, all calculated support val-
ues are printed. The arguments bremer, jackknife, and bootstrap
specify which type of support tree to report.

bremer accepts an optional string argument (as in report(supports:
bremer:"file.txt"), or a list of strings encloed in parentheses (as in
report(supports:
bremer:("file1.txt", "file2.txt")), which specifies the files con-
taining lists of trees and costs (as those generated by visited (Sec-
tion 3.3.26)), that should be used with their annotated cost to assign
the bremer support values. If no input file is given, or if bootstrap or
jackknife are requested, then the necessary information must have
been calculated using calculate support (Section 3.3.2).

jackknife and bootstrap accept an optional argument with two pos-
sible values: individual, consensus, or a STRING. individual re-

3.3. COMMAND REFERENCE 85

ports the support value for each tree held in memory: if there are a
hundred trees stored in memory, for each one, the support values for
each tree are reported. consensus generates a “consensus” tree, with
the clades that have support higher than 50 percent. STRING labels
the branches in the input trees contained in the inputfile located in
the path of the STRING (e.g. to assign support values to the branches
of a consensus tree). The default behavior, when no individual or
consensus value is provided, is individual.

trees:(argument list) Outputs the trees in memory in parenthetical no-
tation. The argument trees receives an optional list of values speci-
fying the format of the tree that has to be generated. Unless hennig
is specified in the list of values, trees uses newick format in the tree
output. The valid optional arguments are:

total Includes the total cost of a tree in square brackets after each
tree.

cost Include the cost in square brackets for every subtree in the tree.
(These are not branch lengths.)

hennig Prepends the tread command to the list of trees and separates
them with a star; this format is suitable for Hennig86, NONA,
and TNT files.

newick Outputs the trees in the Newick format, with the terminals
separated with commas, and trees separated with semicolons.

NOTE

The hennig and newick arguments are mutually exclu-
sive.

margin:INTEGER Sets the margin width of the generated trees.

nomargin Outputs the trees in a single line. This is useful for some
programs (such as TreeView) that cannot read trees broken in
several lines.

collapse[:BOOL] If true, zero length branches are collapsed (the
default), but if false–no branches are collapsed.

Implied alignments This set of arguments outputs implied alignments [30].

86 CHAPTER 3. POY4 COMMANDS

fasta:identifiers The same as implied alignments (Section 3.3.19) but
no additional headers are added, producing a valid FASTA file. In-
tended for easy automation, by producing a file that other programs
can read immediately.

implied alignments[:identifiers] Outputs the implied alignments of
the specified set of characters in FASTA format. The optional value
of the argument specifies the characters included in the output, using
the same identifiers described for the character specification in the
entry for the command select (Section 3.3.23). If no characters are
specified, then the implied alignment of all the sequence characters
is generated. The output is reported on screen unless a name of an
output file (in parentheses) is specified, preceding the command name
and separated from it by a comma. This argument is synonymous
with the argument ia.

ia[:identifiers] Synonym of implied alignments.

Exporting static homology data The following commands export the
static homology characters currently in memory.

phastwinclad Produces a file in the Hennig86 format that contains the ad-
ditive and nonadditive characters currently in memory. In order to
export an implied alignment as a Hennig86 file, the characters must
first be transformed into static characters using the transform com-
mand (see example in tutorial 4.2):

transform ((all, static approx))
report ("report.ss", phastwinclad)

3.3. COMMAND REFERENCE 87

NOTE

To generate a file that contains implied alignments only for
a subset of fragments, an identifier must be included in the
argument list of transform. For example,

transform ((names:("fragment 1", "fragment 2"),
static approx))
report ("myfile.ss", phastwinclad)

will produce Hennig86 files only for fragment 1 and
fragment 2. The resulting file can be imported into other
programs, such as WinClada. This is equivalent to the
phastwincladfile command in POY3.

diagnosis This set of arguments will output the diagnosis.

diagnosis Outputs the diagnosis of each tree on screen or redirects it to a
file, if specified. If the extension .xml is appended to the name of the
output file, the diagnosis is reported in XML format, rather than in
simple text format.

Other arguments

ci Calculates the ensemble consistency index (CI [7, 15]) for additive, non-
additive, and Sankoff characters. Dynamic homology characters are
ignored in calculating the CI, therefore, the dynamic homology char-
acters must be converted to static homology characters using the argu-
ment static approx of the command transform (Section 3.3.27).

memory Reports on screen, the statistics of the garbage collector. For a
precise description of each memory parameter, see the Objective Caml
documentation.

ri Calculates the ensemble retention index (RI; [7]) for additive, nonad-
ditive, and Sankoff characters. Dynamic homology characters are ig-
nored in calculating the RI, therefore, the dynamic homology charac-
ters must be converted to static homology characters using the argu-
ment static approx of the command transform (Section 3.3.27).

script analysis:STRING Reports the order in which commands listed of
the imported script (specified by the string argument) are going to be

88 CHAPTER 3. POY4 COMMANDS

executed. Unlike executing individual commands interactively, when
commands are submitted in a script, POY4 determines the logical in-
terdependency of operations and processes the commands in the order
that yields the same results as if they were executed sequentially. This
substantially optimizes parallelization and reduces memory consump-
tion.

The colored output in the POY Output window of the ncurses in-
terface facilitates reading the output of script analysis: red lines
mark hard constraints that allow neither parallelization nor memory
optimizations, blue lines mark constraints that allow the program to
pipeline commands in parallel, and green lines mark fully parallelizable
commands. When POY4 is compiled with parallel off, all the operations
are sequential, therefore, each potentially parallel operation is done as
sequential repetitions of the subscripts described in the output of the
command, reducing memory consumption.

timer:STRING Reports the value and the user time (in seconds) elapsed
between two consecutive timer reports. The string value provides a
label (typically a textual description) that precedes the time report in
the output produced. The first timer report displays the time elapsed
since the beginning of the POY4 session. This command is useful for
monitoring the execution time of specific tasks.

xslt:(STRING, STRING) Applies a user-defined xslt stylesheet to the XML
output. The first string is the filename of the output, the second string
is the name of the stylesheet requested to generate it.

NOTE

Extensible Stylesheet Language Transformations (XSLT) are
used for the transformation of XML output into other formats.
Because the XML output contains all the information regard-
ing data and trees, using XSLT stylesheets greatly expand the
capabilities of POY4 to use and display results. Examples of
potential applications includes graphical display of trees with
proportional branch lengths, integration of tree topologies with
geographical coordinate data for spatial mapping, and gener-
ating input files for other programs.

3.3. COMMAND REFERENCE 89

Defaults

report(data, diagnosis, trees) By default, POY4 will print on screen
the following items: the tree(s) in parenthetical notation with corresponding
tree cost(s), diagnosis of each tree, and a graphical representation on the
tree(s) in ascii format. This output can be re-directed to a file by specifying
a file name enclosed in quotation marks, for example: report("filename").

Examples

• report("my results")
This commands outputs the data, trees, and diagnosis (the default) to
the file my results. Because no path is specified, the file is located in
the current working directory.

• report(data)
This command displays on screen a list of included and excluded ter-
minals, their names and codes, gene fragments, file names, and other
relevant data.

• report(treestats)
This example displays on screen the costs of all trees in memory and
the number of trees for each cost.

• report("filename", treestats)
This commands outputs the costs of all trees in memory and the num-
ber of trees for each cost to a file filename.

• report(cross references:names("file1", "file3"))
This command produces a table showing presence and absence of data
corresponding to all terminals contained in files file1 and file3.
Because an output file is not specified, the table is displayed on screen.

• report("taxa", terminals)
This command generates a file taxa that contains the lists and num-
bers of excluded and included terminals for each of the previously
imported datafiles.

• report(trees)
This command displays on screen the trees in memory in parenthetical
notation with zero-length branches collapsed and terminals separated
by spaces.

90 CHAPTER 3. POY4 COMMANDS

• report(trees:(total))
This command produces the same output as the example above but
also includes the total tree cost in square brackets following each tree.

• report("filename", trees:(collapse:false, newick))
This command produces a file filename that contains all trees in
Newick format with zero-length branches not collapsed.

• report("filename", graphtrees)
This command saves all trees in memory in PDF format to the file
filename.pdf.

• report(asciitrees, "file1", trees:(newick, nomargin),
"file2", graphtrees)
This command displays a tree in ascii format on screen and outputs to
file1 trees with zero-length branches collapsed in Newick format in
a single line (using no margin, the format compatible with TreeView).
It also writes to file2 the graphical representation of these trees in
PDF format.

• report("hennig.ss", phastwinclad, trees:(hennig, total))
This command outputs all the static homology characters, including
their cost regime, in the file hennig.ss; then append to the same file
the trees currently in memory using the Hennig format, including the
total cost of each tree in square brackets. The generated hennig.ss
is compatible with NONA, TNT, and Hennig86.

• report("my results", data, diagnosis, consensus,
consensus:75, "consensus", graphconsensus)
This command reports the requested types of outputs (i.e. reports on
the data, diagnosis, and strict consensus and 75 percent majority-rule
consensus trees in parenthetical notation) to the file my results. In
also outputs a strict consensus tree to the file consensus.

• report(graphsupports, "bremertree", graphsupports:bremer)
This command reports on screen all previously calculated support val-
ues placed at the nodes of ascii trees and outputs to file the bremertree
only the tree(s) with bremer support values.

• report(implied alignments)
This command reports the implied alignments for all dynamic homo-
logy characters on screen.

3.3. COMMAND REFERENCE 91

• report("align file", ia:names:("SSU", "LSU"))
This command generates the file align file that contains the implied
alignments only for characters contained in datafiles SSU and LSU.

• report("scipt1 analysis", script analysis:"/users/datafiles/
script1.poy")
This command produces the file scipt1 analysis that lists the com-
mands from the input script file script1.poy in the order that opti-
mizes parallelization and memory consumption. In this example the
complete path (/users/datafiles/script1.poy) is provided, which
is not necessary if the directory containing the file script1.poy has
already been assigned using the command cd (Section 3.3.4) in the
same POY4 session.

• report("swapping", timer:"swap end")
This command generates the file swapping that contains the string
swap end followed by the number of seconds (in decimals) elapsed
since the execution of the previous timer argument.

• report("new tree diagnosis.xml", diagnosis)
This command reports the diagnosis to the new tree diagnosis.xml
file in XML format.

See also

• calculate support (Section 3.3.2)

3.3.20 run

Syntax

run(STRING)

Description

Runs POY4 script file or files. The filenames must be included in quotes and,
if multiple files are included, they must be separated by commas. The script-
containing files are executed in the order in which they are listed in the string
argument. Executing scripts using run is useful in cases when operations
take take long time or many scripts need to be executed automatically, for
example, when conducting sensitivity analysis[24]. There are no default
settings of run.

92 CHAPTER 3. POY4 COMMANDS

NOTE

Note that if any of the scripts contain the commands exit() or
quit(), POY4 will quit after executing that file. Therefore, if multiple
files are submitted, only the last one must contain exit() or quit().

Examples

• run("script1", "script2")
This command executes POY4 command scripts contained in the files
script1 and script2 in the same order as they are listed in the list
of arguments of run.

See also

• exit (Section 3.3.6)

• quit (Section 3.3.13)

3.3.21 save

Syntax

save(STRING [, STRING])

Description

Saves the current POY4 state of the program to a file (POY4 file). The first,
obligatory string argument specified the name of the POY4 file. The second,
optional string argument specifies a string included in the POY4 file, that can
be retrieved using the command inspect (Section 3.3.9).

POY4 files are not intended for permanent storage: they are recommended
for temporary storing of a POY4 session by a user, checkpointing the current
state of a search to avoid loss work in case the computer or the program
itself fails, or to report bugs. POY4 will also automatically generate the file
in many cases when a terminating error occurs (an important exception is
out-of-memory errors). The format of these files might differ among differ-
ent versions of POY4; consequently, these files might not be interchangeable
between all the versions of the program.

3.3. COMMAND REFERENCE 93

Examples

• save("alldata.poy")
This command stores all the memory contents of the program in the
file alldata.poy located in the current working directory, as printed
by pwd().

• save("alldata.poy", "My total evidence
data")
This command performs the same operation as described in the exam-
ple above, but, in addition, it includes the string My total evidence
data with the file alldata.poy, which can later be retrieved using the
command inspect (Section 3.3.9).

• save("/Users/andres/test/alldata.poy", "My total evidence
data")
This command performs the same operation as the command described
above with the important difference that the file alldata.poy gener-
ated in the directory /Users/andres/test/ instead of the current
working directory.

See also

• inspect (Section 3.3.9)

• load (Section 3.3.10)

3.3.22 search

Syntax

search([argument list])

Description

search implements a default search strategy that includes tree building,
swaping using TBR, perturbation using ratchet, and tree fusing. The strat-
egy involves specifying targets for a driven search, such as maximum and
minimum execution times, maximum allowed memory consumption for tree
storage, minimum number of times the shortest tree is found, and an ex-
pected cost for the shortest tree. When executing search using parallel
processing trees are exchanged upon the completion of the command (after
fusing). Because the lowest cost unique trees generated are selected and

94 CHAPTER 3. POY4 COMMANDS

stored at the end of a search (defined by the user with max time), aggres-
sive use of this command in a parallel environment consists of including
few sequential search commands that will allow the processes to exchange
trees and add the pool of selected best trees to subsequent iterations of the
command (see the example for parallel processing).

Trees that exists in memory prior the search command are included in
the set of trees available for the fuse but are not swapped.

Arguments

constraint:STRING For a complete description see constraint (Section 3.3.1).

hits:INTEGER Specifies the minimum number of times that the minimum
cost must be reached before aborting the search. The hits argument
is not used in parallel processing

max time:FLOAT:FLOAT:FLOAT Maximum total execution time for the search.
The time is specified as days:hours:minutes. For example, executing
the search for 1.5 days can be expressed as 1:12:00 or 1.5:00:00.

memory:LIDENT:FLOAT Specifies the maximum amount of memory allo-
cated for the stored trees during the search per processor. POY4 at-
tempts to consume memory within the specified limit, but it may sur-
pass it in certain operations (most notably during the ratchet). The
lident value expresses the units of memory (gb for Gigabytes and mb for
Megabytes), whereas the float value specifies the actual value. Keep-
ing memory consumption within the limit is approximate and is used
as a rough guide to POY4, preventing the program from overflowing the
memory. Furthermore, it is important to note that when running POY4
in parallel the maximum amount of memory specified by the user is
allocated to each processor being used. Under certain circumstances,
however, it might be required to use more memory to avoid program
failures.

min time:FLOAT:FLOAT:FLOAT Specifies the minimum total execution time
for the search. The time is specified as days:hours:minutes. This com-
mand is useful when the number of hits is specified but the actual
cost of the tree is unknown. In this case, POY4 performs the search for
at least the time specified by this argument.

3.3. COMMAND REFERENCE 95

target cost:FLOAT Specifies the upper limit for the cost of the shortest
tree.

visited[:STRING] For a complete description see visited (Section 3.3.26).
Note that this argument has a tremendous execution time cost, as
printing the trees becomes a bottleneck for the application.

Defaults

search(max time:0:1:0, min time:0:1:0, memory:gb:2) Under default
parameters, the program performs a search for at most one hour using at
most 2 GB of memory. If the user does not specify the value of max time,
the search will be aborted after one hour.

NOTE

In order to maximize computational efficiency when using search
in parallel processing environments the hits argument is ignored.
However, a diverse set of trees which include the current best trees
found among all the processes is desirable to improve the potential
of tree fusing.
POY will only exchange trees between processes at the end of each
search command. Therefore, to guarantee that separate processes
seed each other with the best trees they have found every number of
hours, it is advisable to use few successive search commands when
executing the program in parallel. Each search will still be run in
parallel, but after each one, trees will be exchanged between proces-
sors, to initiate each successive round of search.

Examples

• search(hits:100, target cost:385, max time:1:12:13)
This command will attempt as many builds, swaps, ratchets, and tree
fusings as possible within the specified time of 1 day, 12 hours, and
13 minutes, finding at least 100 hits (whichever occurs first, the time
limit or the number of hits), knowing that the expected cost of the
best hits is at most 385 steps.

• For Parallel Implementation of search
search(max time:0:6:0)
search(max time:0:6:0)
search(max time:0:4:0)

96 CHAPTER 3. POY4 COMMANDS

This series of commands will attempt as many builds, swaps, ratchets,
and tree fusings as possible within the specified total time of 16 hours.
Trees are exchanged among processors at the end of each search and
the best unique trees are then selected and included in the following
search command.

See also

• build (Section 3.3.1)

• swap (Section 3.3.26)

• transform (Section 3.3.27)

3.3.23 select

Syntax

select([argument])

Description

Specifies a subset of terminals, characters, or trees from those currently
loaded in memory to use in subsequent analysis.

Arguments

Select terminals and characters Specifies terminals and characters to
use in subsequent analysis. The arguments in this group specify whether
terminals or characters are being selected. Identifiers are used to specify
which characters or terminals are being selected (see the Character and
terminal identifiers argument group below for the description of methods
for selecting specific terminals or characters).

terminals Specifies that the subsequently listed identifiers refer to termi-
nals to be selected. By default, POY4 assumes that the specification
refers to terminals. For example, to analyze only those terminals
listed in the file opiliones using the character data currently loaded
in memory, use the command select(files:("opiliones")). This
command is equivalent to select(terminals,files:("opiliones")).

When the command is executed, the list of selected terminals is printed
on screen. terminals is only valid as an argument of commands
select and rename (Section 3.3.18).

3.3. COMMAND REFERENCE 97

NOTE

Note that once specific terminals and/or characters are se-
lected, the excluded data cannot be restored. To be able to
reconstitute the original data set or to experiment with vari-
ous character and terminal selections within a given POY4 ses-
sion, use the commands store (Section 3.3.25) and use (Sec-
tion 3.3.28).

characters Specifies that the subsequently listed identifiers refer to char-
acters to be selected.

STRING Selects terminals listed in the file specified by the string argument.

Character and terminal identifiers Identifiers specify which charac-
ters or terminals are analyzed. In addition to the command select, iden-
tifiers are used as arguments for other commands that require selection of
specific terminals or characters, such as commands report (Section 3.3.19)
and transform (Section 3.3.27).

all Specifies all characters or terminals.

names:(STRING list) Specifies the names of the characters or terminals.

codes:(INTEGER list) Specifies the codes of characters or terminals. The
codes are unique numbers that are generated by POY4 when data files
are first imported. The codes can be reported using the argument data
(Section 3.3.19) of the command report. The codes are generated
anew when a given data file is reloaded; therefore, they can effectively
be used only within a current POY4 session.

files:(STRING list) Specifies the filename list containing lists of termi-
nals or characters.

missing:INTEGER Selects terminals or characters to be included in the
analysis based on the proportion of missing data. The integer value
sets the maximum percentage of missing data. Terminals or characters
that have more missing data than defined by the value are included in
the analysis.

not missing:INTEGER Selects terminals or characters to be included from
the analysis based on the proportion of missing data. The integer value

98 CHAPTER 3. POY4 COMMANDS

sets the minimum percentage of missing data. Terminals or characters
that have less missing data than defined by the value are included
in the analysis. In effect, this selects a complement of data to the
argument missing.

NOTE

For dynamic homology characters, the missing data refers to
sequence fragments, whereas for static characters it refers to
individual matrix positions. Therefore, when excluding termi-
nals with missing data, the resulting set of selected terminals
depends on the character type and might, or might not, be
identical. For example, if a data file (containing sequences
corresponding to a single fragment) includes a very short se-
quence, this sequence is not treated as missing data regardless
of its length. This is because in the context of dynamic homo-
logy a fragment, rather than an individual nucleotide position,
constitutes a character. On the other hand, if the same data
are treated as static characters, the taxon represented by a very
short sequence might be excluded if the length of the sequence
exceeds the threshold defined by the value of missing.

static Specifies the static homology characters.

dynamic Specifies the dynamic homology characters.

not names:(STRING list) Specifies the characters or terminals other than
those the names of which are listed in the string list.

not codes:(STRING list) Specifies the characters or terminals other than
those the codes of which are listed in the string list.

Select trees The following arguments are used to select trees from the
pool of trees currently in memory.

optimal Selects all trees of minimum cost.

best:INTEGER Selects the number of best trees specified by the integer
value. Best trees are not equivalent to optimal trees because best
trees can include suboptimal trees in case the value of best exceeds
the number of optimal (minimal-cost) trees. If the number of optimal

3.3. COMMAND REFERENCE 99

trees exceeds the value of best, only a subset of optimal trees (equal
to the value of best is selected in an unspecified order).

NOTE

There is no special command in POY4 to clear trees from mem-
ory. However, selecting zero best trees using the command
select(best:0) effectively removes all trees currently stored
in memory.

within:FLOAT Selects all optimal and suboptimal trees the costs of which
do not exceed the current optimal cost by the float value. For example,
if the current optimal cost is 507 and the float value of within is 3.0,
all trees with costs 507–510 are selected.

random:INTEGER Randomly selects the number of trees specified by the
integer value irrespective of cost.

unique Selects only topologically unique trees (after collapsing zero-length
branches) irrespective of their cost.

Defaults

select(unique, optimal) By default POY4 selects all unique trees of opti-
mal (best) cost. The rest of the trees are removed from memory.

Examples

• select(terminals,names:("t1", "t2", "t3", "t4", "t5"),
characters, names:("chel.aln:0"))
This command selects only terminals t1, t2, t3, t4, and t5 and use
data only from the fragment 0 contained in the file chel.aln.

• select(terminals, missing:50)
This command excludes from subsequent analyses all the terminals
that have more than 50 percent of characters missing. The list of
included and excluded terminals is automatically reported on screen.

• select(optimal)
Selects all optimal (best cost) trees and discards suboptimal trees from
memory. The pool of optimal trees might contain duplicate trees (that
can be removed using unique).

100 CHAPTER 3. POY4 COMMANDS

• select(unique, within:2.0)
This command selects all topologically unique optimal and suboptimal
trees the cost of which does not exceed that of the best current cost
by more than 2. For example, if the best current cost is 49, all unique
trees that fall within the cost range 49–51 are selected.

See also

• characters (Section 3.3.23)

• transform (Section 3.3.27)

3.3.24 set

Syntax

set([argument list])

Description

Changes the settings of POY4. This command performs diverse auxiliary
functions, from setting the seed of the random number generator to selecting
a terminal for rooting output trees.

There is no default setting for set and the order of its arguments is
arbitrary.

Arguments

Application settings Some generic application settings. Have no effect
in the analyses themselves.

history:INTEGER Sets the size of the POY4 output history displayed in the
POY Output window to the number of lines specified by the integer
value. The size of the history must be greater than zero. This com-
mand has effect only in the ncurses interface. The default size of the
output history is 1000 lines.

log:STRING Directs a copy of a partial output to the file specified by the
string argument. The output includes the information in the POY
Output, Interactive Console, and State of Stored Search windows of
ncurses interface. Timers and current state of the search are not in-
cluded in the log. If the log file already exists, POY4 will append the

3.3. COMMAND REFERENCE 101

text to it; if the log file does not exist, then POY4 creates a new file.
If the user would like to delete the contents of a pre-existing file, then
the argument log:new:"logfile" creates a new initially empty file
named logfile.

nolog Stops outputting the log to any previously selected file. See the
description of the argument log above.

root:LIDENT Specifies the terminal to root output trees. The terminal can
either be indicated as a taxon name (a STRING, which must appear in
quotes, such as "Genus species") or the code, that is automatically
assigned to the taxon by POY4 at the beginning of each POY4 session
(for example, set(root:45). The codes can be obtained using the
command report(data)). The terminal codes, however, are unique
only within a current session.

timer:INTEGER Specifies the lapse of time in seconds that should have
passed between reporting the total execution time of a swap and build
command. If the timer is set to 0, then no time messages are gener-
ated.

Cost calculation These arguments set the tree cost estimation routines
and are applied to all character types. The arguments are mutually exclu-
sive: only the argument of set specified last is used.

normal do Applies a standard Direct Optimization algorithm for the tree
cost estimation. This is the default and fastest technique.

exhaustive do Applies a standard Direct Optimization algorithm for the
tree cost estimation [25, 29]. The difference with normal do is that
the calculation of the tree costs during a search is much more intense,
always looking for the best possible alignment for every single topology
(instead of a lazy and greedy strategy used by the normal do).

iterative:LIDENT Applies the Iterative Pass optimization for the tree
cost calculations. There are two forms of iterative pass: if the argu-
ment value is exact (the default), then a complete three dimensional
alignment is computed, as described for POY 3.0 in [31]. Otherwise, if
the argument value is approximate, then the iterations approximate
the three dimensional alignment using pairwise alignments. For chro-
mosome characters, the three dimentional alignment for three chro-
mosomes is computed by separating into smaller three dimentional

102 CHAPTER 3. POY4 COMMANDS

alignments of short sequences whose lengths are smaller or equal to
max 3d len. The default value is 200.

If the argument value is exact, this method improves the tree cost
estimation but at the expense of a tremendous execution time. When
approximate the execution time footprint is much smaller, and far less
memory consumption. A heuristic strategy is to apply iterative at
the very end of an analysis to polish the final set of trees and perform
a final search.

Both arguments accept an optional integer, stating the maximum num-
ber of iterations that can be performed. If no integer is given, then
the procedure iterates until no further tree cost improvement can be
made.

NOTE

Due to the complexity of heuristics of the iterative pass op-
timization, there is no guarantee that the tree cost recovered
from the search would be exactly the same as produced by
the diagnosis of the same tree. However, the cost of the tree
found during the search can be verified by outputting the me-
dians from the diagnosis (see the description of the argument
diagnosis (Section 3.3.19)) of the command report and de-
termining edge costs by hand. The cost of the tree found during
the search might differ from that obtained by the rediagnos-
ing the same tree (see rediagnose (Section 3.3.15)), but will
recover the same tree cost in subsequent rediagnoses.

Randomized routines

seed:INTEGER Sets the seed for the random number generator using the
integer value. If unspecified, POY4 uses the system’s time as seed.

NOTE

It is critical to set a seed value to insure reproducibility of
the results of the analyses that require randomization routines
(such as tree building).

3.3. COMMAND REFERENCE 103

Defaults

set(history:1000, normal do) Under default settings the size of the his-
tory buffer is limited to 1,000 lines, the Direct Optimization is used for tree
cost calculation, and the current time is used to specify the seed.

Examples

• set(history:1500, seed:45, log:"mylog.txt")
This command increases the size of the history in the ncurses interface
to 1,500 lines, sets the random number generator to 45, and initiates
a log file mylog.txt, located in the current working directory.

• set(root:"Mytilus edulis")
This commands selects terminal Mytilus edulis as a root for the
output trees.

• set (iterative:exact)
Turns on the iterative exact algorithm in all the nucleotide sequence
characters. The program will iterate on each vertex of the tree until
no further tree cost improvements can be made.

• set (iterative:approximate:2)
Turns on the iterative approximate algorithm in all the nucleotide
sequence characters. The program will iterate either two times, or until
no further tree cost improvements can be made, whichever happens
first.

• set (iterative:exact:2)
Same as the previous, but using the exact algorithm insted.

See also

• report (Section 3.3.19)

3.3.25 store

Syntax

store(STRING)

104 CHAPTER 3. POY4 COMMANDS

Description

Stores the current state of POY4 session in memory. The stored information
includes character data, trees, selections, everything. Specifying the name of
the stored state of the search (using the string argument) does not, however,
generate a file under this name that can be examined; the name is used only
to recover the stored state using the command use.

In combination with use, the command store is extremely useful when
exploring alternative cost regimes and terminal sets within a single POY4
session.

Arguments

STRING Specifies the name of the stored search state of the current POY4
session.

Examples

• store("initial tcm")
transform(tcm:(1,1))
use("initial tcm")
The first command, store, stores the current characters and trees
under the name initial tcm. The second command, transform,
changes the cost regime of molecular characters, effectively changing
the data being analyzed. However, the third command, use, recovers
the initial state stored under the name initial tcm.

See also

• use (Section 3.3.28)

• transform (Section 3.3.26)

3.3.26 swap

Syntax

swap([argument list])

Description

swap is the basic local search function in POY4. This command implements
a family of algorithms collectively known in systematics as branch swapping

3.3. COMMAND REFERENCE 105

and in combinatorial optimization as hill climbing. They proceed by clipping
parts of a given tree and attaching them in different positions. It can be
used to perform a local search from a set of trees loaded in memory.

Swapping is performed on all trees in memory. During a search, swap
can collect information about the visited trees and perform various kinds of
checkpoints to reduce information loss in case if POY4 crashes.

swap is also used as an argument for other commands to specify a local
search strategy in other contexts, for example, in calculating support values
using the command calculate support (Section 3.3.2).

All arguments of swap are optional and their order is arbitrary. The
argument of different groups can be combined to tune the search heuristics,
but the arguments within each group of are mutually exclusive. (If more
than one arguments of one group is listed, only the last one is executed.)

Arguments

Neighborhood A neighborhood is a subset of topologies reachable from
a given one by a given search method. The basic standard procedures for
local search in phylogenetic analysis are SPR and TBR [21]. The nearest-
neighbor interchanges (NNI) swapping strategy is implemented by combin-
ing the arguments spr and sectorial (see Join method group of argu-
ments): swap(spr, sectorial:1).

alternate Performs spr and tbr swapping iteratively until a local optimum
is found. This is a specific strategy of performing tbr, as the trees
visited by spr are a subset of those visited by tbr.

spr[:once] This argument performs spr swapping, starting from the cur-
rent trees in memory and subsequently repeating the SPR procedure
until a local optimum is found. If the optional value once is specified,
spr stops once the first tree with better cost is found.

tbr[:once] This argument performs tbr swapping, starting from the cur-
rent trees in memory and subsequently repeating the TBR procedure
until a local optimum is found. If the optional value once is specified,
tbr will stop once the first tree with better cost is found.

Trajectory The following arguments define the direction of the search in
the defined neighborhood.

106 CHAPTER 3. POY4 COMMANDS

around Changes the trajectory of a search by completely exploring the
neighborhood of the current tree in memory and choosing the best
swap position before continuing. The default in POY4 is to choose the
first one available that shows a better cost than the current best cost.

annealing:(FLOAT, FLOAT) Uses simmulated annealing [14]. If the ar-
gument’s value is (a, b), POY4 accepts a tree with cost c when the
best known tree has cost d with probability exp (−(c− d)/t), where
t = a × exp−i/b and i is the number of tree evaluated in the local
search.

drifting:(FLOAT, FLOAT) Uses POY4 drifting function [10]. If the argu-
ment’s value is (a, b), then POY4 always accepts a tree with better cost
than the current best cost, with probability a a tree with equal cost,
and with probability 1/b+d a tree with cost d greater than the current
best cost.

Branch break order During the local search, a branch is broken and
local branch swapping is performed (see Neighborhood group of arguments),
the precise choice of which branches should be broken first can affect both
the speed and the local optimum found by the program. The following
arguments select among the different strategies available in POY4.

once Breaks each branch only once during a local search; that is, if a broken
branch does not yield a better tree, it is never broken again, no matter
how many changes occur along the search trajectory.

randomized Chooses branches uniformly at random for breakages.

distance Gives higher priority to those branches with the greatest length.

Join method After breaking a tree (using SPR or TBR), the following
arguments control the selection of the positions to join the broken clades.

constraint[:INTEGER | (depth:INTEGER, file:STRING)] Sets constraints
on the join locations during the search using both a tree and an op-
tional maximum distance from the break branch. Only sets defined
either in the input file, or in the strict consensus of the files in memory
to consider during swapping. An integer value of depth specifies the
maximum distance from the break branch to attempt joins. The string
value for file specifies an input file containing a single tree that de-
fines topological constraints. Under default settings, constraint will

3.3. COMMAND REFERENCE 107

use a consensus tree from the files in memory and perform swapping
with the value of depth set to 0 (no maximum distance is specified).

all[:INTEGER] Turns off all preference strategies to make a join, simply
try all possible join positions for each pair of clades generated after a
break, in a randomized order.

sectorial[:INTEGER] Join in edges at distance equal or less than the
value of the argument from the broken edge, where the distance is the
number of edges in the path connecting them. If no argument is given,
then no distance limit is set.

Reroot order During TBR, the following options control the order of the
rerooting.

bfs[:INTEGER] Reroots using breath first search [4] from the broken edge,
within the arguments value distance from the root of the clade. If no
value is given, there is no limit distance for the rerooting. By default,
bfs is used with no limit distance for the rerooting.

Trajectory samples During the search, POY4 visits a large number of
trees. For some applications it might be desirable to collect information
about the trees examined during a search: for example, to provide backups of
the state of a search (in an unlikely crash), or to examine the characteristics
of the alignments. The difference from the swap arguments is that the user
can choose any combination of trajectory samples, and that can be used
during the search. None of the trajectory samples is used by default.

recover Stores the current best tree in memory that can be recovered in
case of failure. If it is necessary to recover such trees after an aborted
command, use recover (Section 3.3.16). If the program terminates
normally, the stored trees are exactly those produced at the end of
the swap. Using recover, however, requires twice as much memory
compared to swapping without it.

timeout:INTEGER Specifies the number of seconds after which tree branch
swapping is stopped. The current best tree is the result of the swap
after the timeout.

timedprint:(INTEGER, STRING) timedprint:(n, "trees.txt") prints the
current best tree in memory to the file trees.txt, at least every n sec-
onds. However, POY4 typically underestimates the amount of time and,

108 CHAPTER 3. POY4 COMMANDS

therefore, the samples can be slightly sparcer. timedprint can only
be used in combination with the argument recover.

trajectory[:STRING] trajectory:"better.txt" will store every new
tree found with a better score during the local search in the file
better.txt. The string is the filename where the trajectory is to
be stored, which is optional (indicated by brackets); if not added, the
trees are printed in the standard output (flat interface) or the output
window (ncurses interface).

visited[:STRING] visited:"visited.txt" will store every visited tree
and its cost during the local search in the file visited.txt. The (op-
tional) string is the filename where the trajectory is to be stored. If not
included, the trees are printed in the standard output (flat interface)
or the output window (ncurses interface).

Character transformation

transform Specifies a type of character transformation to be performed
prior to swapping. See the command transform (Section 3.3.27) for
the description of the methods of character type transformations and
character selection.

Tree selection As the tree search proceeds, a tree may or may not be
selected to continue the search or to return as a result. The following argu-
ments determine under what conditions can a tree be acceptable during the
search.

threshold:FLOAT Sets the percentage cost for suboptimal trees that are
more exhaustively evaluated during the swap, meaning that trees within
the threshold are subject to an extra round of swapping. For example,
if the current optimal tree has cost 450, and threshold:10 is specified,
trees with cost at most 495 are swapped. threshold is equivalent to
slop of POY3.

trees:INTEGER Maximum number of best trees that are retained in a
search round, per tree in memory.

Defaults

swap(trees:1, TBR, threshold:0, bfs) By default, current trees are sub-
mitted to a round of TBR using breadth first search and one best tree per
starting tree is kept.

3.3. COMMAND REFERENCE 109

Examples

• swap()
This command performs swapping under default settings.

• swap(trees:5)
Submits current trees to a round of SPR followed by TBR. It keeps
up to 5 minimum cost trees for each starting tree.

• swap(transform((all, static approx)))
Submits current trees to a round of SPR followed by TBR, using static
approximations for all sequence characters.

• swap(trees:4, transform((all, static approx)))
Submits current trees to a round of SPR followed by TBR, using static
approximations for all characters, keeping up to 4 minimum cost trees
for each starting tree.

• swap(constraint:(depth:4))
Calculates a consensus tree of the files in memory and uses it as con-
straint file, then joins at distance at most 4 from the breaking branch.
This is equivalent to swap(constraint:(4)).

• swap(constraint:(file:"bleh"))
Reads the tree in file bleh and use it as constraint for the search. This
is equivalent to swap(constraint:("bleh")).

• swap(constraint:(file:"bleh", depth:4))
Uses the tree in the file bleh as a constraint tree and joins at distance
at most 4 from the breaking branch during the swap.

• swap(recover, timedprint:(5, "timedprint.txt"))
Saves the current best tree to file timedprint.txt every 5 seconds.

See also

• transform (Section 3.3.27)

3.3.27 transform

Syntax

transform([argument list])

110 CHAPTER 3. POY4 COMMANDS

Description

Transforms the properties of the imported characters from one type into an-
other type. This includes changing in costs for indels and substitution, mod-
ifying character weights, converting dynamic into static homology charac-
ters, and transforming nucleotide into chromosomal characters among other
operations.

The essential arguments of the command transform include identifiers
and methods. The methods specify what type of transformation is applied
to the set of characters specified by identifiers as defined in the description of
the command select (Section 3.3.23). Identifiers and methods are included
in parentheses and separated by a comma. It is important to remember
that only identifiers of characters (such as names, codes, among others) can
be used. The parentheses separate these essential arguments from all other
optional arguments that might be included in the list. Thus, if only identi-
fiers and methods are specified, the argument list of transform is included
in double parentheses. For example, the command transform((all, gap -
opening:1)) contains only an identifier (all) and a method (gap opening).
Minimally, only methods can be specified; in that case, the transformation is
applied to all characters to which the transformation method can be applied
and only a single set of parentheses is used. For instance, transform(gap -
opening:1), where gap opening defines the transformation method.

There are no default values for transform, that is if no methods are
specified (transform()), the command does nothing.

Arguments

Identifiers Identifiers specify which characters are transformed. Only
identifiers of characters (not terminals) can be used. If identifiers are omit-
ted, the transformation to is applied to all applicable characters. For exam-
ple, transform((all,tcm:(1,1))) is equivalent to transform((tcm:(1,1))).
See the command select (Section 3.3.23) for detailed description of identi-
fiers.

Methods This set of arguments specifies different transformations that
can be applied to selected characters. If multiple transformation methods are
applied sequentially in the same list of arguments, the effect of the methods
listed earlier might be altered or canceled by methods listed after that.
Thus, caution must be used in designing complex strategies with multiple
character transformations. See the note on command order (Section 3.2).

3.3. COMMAND REFERENCE 111

auto static approx Evaluates each selected fragment and, if the number
of indels appear to be low and stable between topologies, then the
character is transformed to the equivalent character using static ho-
mologies with the implied alignment [30]. This method greatly accel-
erates searching and is applicable only to nucleotide sequences under
dynamic homology analysis.

auto sequence partition Evaluates each fragment and if a long region
appears to have no indels, then the fragment is broken inside that
region. Any number of partitions can occur along a fragment. Frag-
menting long sequences greatly accelerates searching. This method is
applicable only to dynamic homology characters, and requires a tree
in memory.

direct optimization Transforms the characters specified so that the ini-
tial assignment of sequences to the internal vertices of a tree use direct
optimization [25]. This method is recommended for small alphabets
(less than 7 elements). Otherwise fixed states is recommended. It is
only applicable to dynamic homology characters.

fixed states Transforms the characters specified in fixed state charac-
ters [26] where the initial assignment of sequences to the internal ver-
tices of the tree is one of the observed sequences. If the observed
sequences contain ambiguities, only those that resolve closest to an-
other sequence are added to the set of valid states. This method is
recommended for large alphabets (more than or equal to 7 elements).
It is only applicable to dynamic homology characters.

gap opening:INTEGER Sets the cost of opening a block of gaps to the spec-
ified value. Note that this cost is in addition to the standard cost of
the insertion as specified by a given transformation cost matrix. The
default in POY4 is not to have extension gap cost (gap opening:0).
If the gap opening cost is a, and indel(x) is the cost of inserting
(or deleting) a base x according to the tcm assigned to the charac-
ter, the total cost of inserting (or deleting) the sequence s[0...n] is
a + indel(s[0]) + indel(s[1]) + ... + indel(s[n − 1]) + indel(s[n]). This
method is applicable only to dynamic homology characters with the
nucleotide alphabet.

multi static approx Calculates the implied alignment for each tree in
memory and convert them to static homology characters using the
alignment’s cost regime. The new character set will be the union of

112 CHAPTER 3. POY4 COMMANDS

all those characters generated for all the trees [33]. This option is
intended only for heuristic search purposes and is applicable only to
dynamic homology characters.

prealigned Treats the sequences as prealigned and uses the cost regime
according to the specified transformation cost matrix. All other cost
parameters are ignored (including affine gap costs). This command
requires that all the specified sequences have the same length.

sequence partition:INTEGER Partitions the sequences in the argument’s
value number of fragments of roughly the same length. This method
is applicable only to dynamic homology characters.

static approx[:LIDENT] Transforms the sequences to the static homo-
logy characters corresponding to their implied alignments and their
transformation cost matrix [30]. The resulting characters and their
number will vary depending on the characteristic of transformation
coGst matrix assigned to each sequence. For example, if the cost of
both substitutions and indels is 1, then one non-additive character is
created per each homologous position in the implied alignment. If the
cost of substitutions is 1 and the cost of indels is 2, then one character
is created for each homologous position, and one extra character for
each homologous position with gaps. In more complex cases, a Sankoff
character is created.

The LIDENT value remove excludes all uninformative characters in-
formation (except autapomorphies), whereas the value keep retains
these characters. The default is remove. This method is applicable
only to dynamic homology characters. If a non-metric transforma-
tion cost matrix is in use, this transformation will assume that the
non-metricity is due to the individual insertion and deletion cost.

3.3. COMMAND REFERENCE 113

NOTE

The transformation of dynamic into static homology characters
cannot be reverted. Therefore, caution must be taken when the
transformation is applied. For example, if sequence charac-
ters have been transformed into static characters at top level
using the command transform((all, static approx)), all
commands executed subsequently will be applied to the trans-
formed data. However, if the transformation has been ap-
plied within another command (as an argument of swap,
for instance, swap(transform((all, static approx)))), the
characters will transformed only for that specific operation.

NOTE

It is important to remember that the local optimum for the dy-
namic homology characters can differ from that for the static
homology characters based on the same sequence data. There-
fore, performing additional searches on the transformed data
(for example, in calculating support values based on individual
nucleotides rather than on sequence fragments) can produce a
discrepancy in tree costs.

trailing insertion:STRING/(INTEGER list) The tail and prepend costs
specify the cost of having an insertion of each element in the alphabet
at the beginning or end of a sequence. The string is the name of a file
containing the cost of a trailing insertion corresponding to each of the
elements in the alphabet separated by spaces. The last element in the
list is the cost of the indel of a gap (should be 0). Instead of a file, the
list can be the input of the argument, in the same order, separated
by commas. Synonym of the argument ti. This method is applicable
only to dynamic homology characters.

trailing deletion:STRING/(INTEGER list) The tail and prepend costs
specify the cost of having a deletion of each element in the alphabet
at the beginning or end of a sequence. The string is the name of a file
containing the cost of a trailing deletion corresponding to each of the
elements in the alphabet separated by spaces. The last element in the
list is the cost of the indel of a gap (should be 0). Instead of a file, the
list can be the input of the argument, in the same order, separated

114 CHAPTER 3. POY4 COMMANDS

by commas. Synonym of the argument td. This method is applicable
only to dynamic homology characters.

tcm:(INTEGER, INTEGER) Defines transformation cost matrix. The first in-
teger value specifies substitution cost, the second integer value defines
indel cost. By default, the cost of substitution is 1, and the cost of an
indel is 2 (tcm:(1,2)).

tcm:STRING Defines the transformation cost matrix by importing a file
(specified by the string value) that contains a user defined nucleotide
transformation cost matrix. This method is applicable only to dynamic
homology characters. The transformation cost matrix file contains five
rows and columns with values listed in the following order (left to right
and top to bottom): adenine, cytosine, guanine, thymine/uracil, and
indel. A similar pattern is followed for amino acids where the matrix
columns and rows reflect all the amino acid names in alphabetical
order (read left to right and top to bottom) with the last row and
column containing a gap cost. The costs must be symmetrical (that
is, the cost of the A to T substitution is equal to the cost of T to A
substitution). For example:

0 2 1 2 4
2 0 2 1 4
1 2 0 2 4
2 1 2 0 4
4 4 4 4 0

weight:argument Changes the cost of specified characters by a constant
value (weight) which is specified by either a float or an integer value.
This method is applicable to any character type.

weightfactor:argument Changes the cost of specified characters by a mul-
tiplicative factor (weight factor) which is specified by either a float or
an integer value. This method is applicable to any characters.

Chromosomal transformation methods For chromosome and genome
character types, POY4 optimizes nucleotide-, locus-, and chromosome-level
variation simultaneously. The arguments in this group transform nucleotide
characters into chromosomal character to allow for translocations, inver-
sions, and indel events both at the locus-level for chromosomal data and at
the chromosome-level for genomic data.

3.3. COMMAND REFERENCE 115

The functions to calculate breakpoint and inversion distances between
two sequences of gene orders are taken from GRAPPA, Genome Rearrange-
ments Analysis under Parsimony and other Phylogenetic Algorithms [1],
available at http://www.cs.unm.edu/~moret/GRAPPA/.

breakinv to custom Transforms breakinv character type into custom -
alphabet characters. This transformation prevents the use of rear-
rangement operations.

custom to breakinv:([argument list]) Transforms custom alphabet char-
acters into the breakinv character type to allow for rearrangement op-
erations (translocations and inversions; duplications are not currently
supported). This argument is useful, for example, when custom -
alphabet characters are used to define a sequence of individual genes
and one is interested in detecting potential change in their order within
a chromosome. See the command read (Section 3.3.14) for the descrip-
tion on how to load the custom alphabet and breakinv character
types. The optional list of arguments includes the arguments of the
dynamic pam that can also be specified subsequently, as a separate
step (for a sample script using this character transformation see tuto-
rial 4.8).

seq to chrom:([argument list]) Transforms nucleotide type data into
chromosome type data to allow rearrangements, inversions, and locus-
level indel operations. The chromosome-specific options (e.g. locus -
breakpoint, locus inversion, and locus indel) can be specified by
the argument dynamic pam If no dynamic pam values are specified, its
default values are applied.

dynamic pam:([argument list]) Specifies parameters for creating chro-
mosome- and genome-level HTUs (medians). The arguments of dynamic -
pam define homologous blocks within unannotated chromosome se-
quences using (min seed length, min loci len, and min rearranged -
len); specify the cost of locus-level transformation events: (i.e. locus -
inversion or locus breakpoint, and locus indel); specify the cost
of chromosome-level transformation events: (i.e. chrom breakpoint,
and chrom indel); take into account whether the chromosome is lin-
ear or circular (circular); and implement a number of heuristic pro-
cedures to accelerate computations (median, swap med, and med -
approx). Under default settings, the pairwise distance between two

116 CHAPTER 3. POY4 COMMANDS

chromosome segments or two chromosomes is determined using break-
point rather than inversion calculations and the rest of the arguments
are executed under their default settings.

g
1

g
2 g

3 g
4

g
5

g
1

g
2

g
5

g
3

g
4 g

1
g
2

g
1

g
2

−g −g−g
5 4 3

−g −g −g
5 4 3Translocation and inversion

Translocation

Inversion

Original order of gene

Figure 3.3: Examples of gene rearrangements: inversions and translocations.

g
1

g
2

g
3

g
4

g
5

g
1

g
2

−g −g−g
5 4 3

Figure 3.4: Rearrangement calculations between chromosomal or genomic
data of six genes g1, . . . , g6, where the rearrangement events are detected as
either two breakpoints (g2, g3), (g5, g6) or a single inversion (g1, g2, g3).

med approx:BOOL Approximates chromosome medians using a fixed-
states approach. This is most useful to accelerating tree building
and searching operations for large chromosomal data sets. The
boolean value true applies the fixed-states optimization. The
default value is false.

locus breakpoint:INTEGER Calculates the breakpoint distance [2]
between two pairs of chromosomes given the cost for rearrange-
ment specified by an integer value. The breakpoint distance cal-
culation considers a chromosome or genome G = (x1, . . . , xn)of n
gene, wherein each gene appears exactly once and its orientation
is either positve or negative. Gene orders are altered by gene re-
arrangement operations: gene inversion, gene translocation, gene
inversion and translocation (see Figure 3.3). The breakpoint
distance takes into account rearrangements but not inversions.
Given G and G′, a pair of genes (gi, gj) is a breakpoint if (gi, gj)
occur consecutively in G but neither (gi, gj) nor (−gj ,−gi) oc-

3.3. COMMAND REFERENCE 117

cur consectively in G′ [20]. The breakpoint distance between G
and G′ is the number of breakpoints between them. Figure 3.4
shows two breakpoints between G and G′. The breakpoint can be
calculated easily in linear time. This argument cannot be used
in conjunction with inversion. The default value of locus -
breakpoint is 10.

locus inversion:INTEGER Calculates the inversion distance [11] be-
tween two chromosome segments given the cost for inversion spec-
ified by the integer value. The inversion distance takes in con-
sideration rearrangements and inversions. Given G and G′, the
inversion distance between them is the number of inversions to
convert chromosome or genome G into G′ [11]. Figure 3.4 shows
one inversion between G and G′. The inversion can be calculated
in linear time. The breakpoint distance is normally larger than
inversion distance. This argument cannot be used in conjunction
with breakpoint.

locus indel:(INTEGER, FLOAT) Specifies the cost for insertion/deletion
of a chromosome segment. The integer value sets the gap opening
cost (o), whereas the float value sets the gap extension cost (e).
The indel cost for a fragment of length l is specified by the follow-
ing formula: o + l × e. The default values are o = 10, e = 1.0.

min seed length:INTEGER Specifies the minimum length of identi-
cal (invariant, completely conserved) contiguous sequence frag-
ments during comparison between two chromosomes. The inte-
ger value of min seed length is the number of nucleotides. Cor-
rect identification of such fragments facilitates detecting chro-
mosome rearrangement events and accelerates other operations
(such as tree building and swapping). However, if min seed -
length value is set too low (detecting many short fragments) or
too high (such that no identical fragments are detected) the time
required for subsequent searching procedures may significantly
increase. The optimal min seed length value depends on the
specifics of a given dataset (see Figure 3.5). The default value of
min seed length is 9.

min loci len:INTEGER Creates a pairwise alignment between two
chromosomes to detect conserved areas (“blocks”). However, only
blocks of lengths (in number of nucleotides) greater or equal to the
specified min loci len value are considered as hypothetically ho-
mologous blocks and used as anchors to divide chromosomes into

118 CHAPTER 3. POY4 COMMANDS

fragments. Thus, increasing the value of min loci len decreases
the chance of inferring small-size rearrangements (see Figure 3.5).
The default value is 100.

min rearrangement len:INTEGER Two seeds are said to be non-rearranged,
if their distance is less than the predefined threshold value set for
min rearrangement len. In other words, it is unlikely that re-
arrangement operations can occur between two non-rearranged
seeds if they are connected (see Figure 3.5). The default value is
100

max 3d len:INTEGER The three dimentional alignment for three chro-
mosomes is computed by separating into smaller three dimen-
tional alignments of short sequences whose lengths are smaller or
equalt to max 3d len. The default value is 200

chrom breakpoint:INTEGER Calculates the breakpoint distance [2]
between two sequences of multiple chromosomes given the cost
for rearrangement specified by an integer value. The breakpoint
distance takes into account locus rearrangements between non-
homologous chromosomes (translocations) but not inversions. For
further discussion on how breakpoint distance is calculated see
the argument locus breakpoint. The default value of chrom -
breakpoint is 100.

NOTE

Note that the arguments locus breakpoint and chrom -
breakpoint cannot be used simultaneously with the ar-
guments locus inversion and chrom inversion as they
designate alternative methods of calculating distance be-
tween two chromosomes. If both arguments are specified,
the latter will be executed. The order of other arguments
of dynamic pam is arbitrary.

chrom hom:(FLOAT) Specifies the lower limit of distance between two
chromosomes beyond which the chromosomes are not considered
to be homologous. The default value of chrom hom is 0.75.

chrom indel:(INTEGER, FLOAT) Specifies the cost for insertion and
deletion of a chromosome in analysis of multiple chromosomes.
The integer value sets gap opening cost (o), whereas the float
value sets gap extension cost (e). The indel cost for a fragment

3.3. COMMAND REFERENCE 119

Figure 3.5: The effect of dynamic parameter arguments (seed length,
min rearrangement len, and min loci len) on determining homologous
blocks in unannotated chromosomal sequences. Case A allows for rear-
rangements between the short homologous blocks within the blue brackets
constructed upon six nucleotide seeds (red and green), Case B restricts rear-
rangement between seeds that are less than 28 nucleotides apart. Case C re-
stricts rearrangement by requiring homologous blocks at least 50 nucleotides
in length. Case D restricts recognition of homology between sequences by
setting seed length of conserved seeds at 15.

120 CHAPTER 3. POY4 COMMANDS

of length l is specified by the following formula: o + l × e. The
default values are o = 10, e = 1.0.

circular:BOOL Specifies if chromosome is circular (boolean value
true) or linear (boolean value false). The default value of
circular is false (linear chromosome).

median:INTEGER Specifies the number alternative locus and chromo-
some rearrangements of the best cost selected (randomly) for each
HTU (hypothetical taxon unit) or median. Limiting the number
of rearrangements stored in memory (smaller value of median)
is heuristic strategy to accelerate calculations at the expense of
thoroughness of the search. By default, only 1 rearrangement is
retained (the first one found). If more than one rearrangement
is specified, the selected number of rearrangements is selected in
random order from the pool of all generated rearrangements.

max kept wag:INTEGER Defines the maximum number of Wagner-
based possible ancestral sequence alignments kept to create the
next set of alignments during the pairwise alignment with re-
arrangement process. The default value of max kept wag is 1,
however, at every step in the pairwise alignment with rearrange-
ment process, the original order (1...n) is always considered as a
potential solution.

swap med:INTEGER Specifies the maximum number of swapping iter-
ations to search for best pairwise alignment of two chromosomes
taking into account locus-level rearrangement events. Limiting
the number of swapping iterations accelerates the search at the
expense of thoroughness. The default value is 1.

Defaults

transform() If no arguments are given, this command does nothing.

Examples

• transform((all, tcm:(1,1)))
Applies the transformation cost matrix (1,1) to all characters, meaning
that substitutions and gaps receive the same weight.

• transform((all, tcm:"molmatrix"))
Applies the character transformation matrix ”molmatrix” to all char-
acters.

3.3. COMMAND REFERENCE 121

• transform((all, tcm:(1,1)))
This command is equivalent to transform((dynamic, tcm:(1,1))).

• transform(tcm:(1,1), gap opening:1)
Applies the transformation cost matrix and the gap opening cost to
all characters. In this example the cost for substitutions is 1, the gap
opening cost is 2 (1 set by gap opening + 1 set by tcm), and the gap
extension cost is 1 (set by tcm).

• transform(tcm:(2,2), ti:(1,1,1,1,0), td:(1,1,1,1,0))
Assigns to all characters the symmetric transformation cost matrix
with cost 2 for every indel and substitution, but for those insertions
and deletions at the ends of the sequences, the cost assigned will only
be 1.

• transform((static, weightfactor:2))
This command reweights all the static homology characters by a mul-
tiplicative factor of 2, while keeping the weighting scheme that has
been specified before.

• transform((static, weight:4.2))
Applies the same weight (a float value 4.2) to all static homology
characters.

• transform((dynamic, weight:4))
Applies the same weight (an integer value 4) to all dynamic homology
characters.

• transform((all, tcm:(1,1)), (names:("gen1", "gen2"),
static approx), (names:("gen3"), tcm:"molmatrix"))
Applies the substitution and indel costs 1 to all characters, then ap-
plies static approximation using that tcm to characters in files gen1
and gen2, and for file gen3, it invokes a different transformation cost
matrix, contained in the file molmatrix. Beware that the file name
should be exactly as it was reported with report(data), which differs
from the actual file name (report (data) reports files as fileX:N).

• transform((all, tcm:(1,1)), (names:("gen1:3", "gen2:10",
"gen3:1", "gen4:5"), static approx), (names:("gen5",
"gen6"), tcm:"Molmatrix1"))
Applies tcm (1,1) to all characters, then applies static approximation
to the sequence data contained in files gen1, gen2, gen3, and gen4

122 CHAPTER 3. POY4 COMMANDS

according to this transformation cost matrix, and applies the custom
transformation cost matrix contained in the file Molmatrix1 to the
sequence data contained in files gen5 and gen6.

• transform(fixed states)
Transformed all sequence characters into fixed states characters.

• transform((names:("gen1", "gen4"), fixed states))
Transformed only specified sequence characters (gen1 and gen4) into
fixed states characters.

• transform(custom to breakinv:(circular:true))
In this example all custom alphabet data is transformed into the break-
inv data type and is treated as a circular chromosome.

• transform(seq to chrom:(locus indel:(50, 1.0), min seed length:15))
All applicable (i.e. sequence) data are transformed into chromosome
data with the minimum length of identical contiguous sequence frag-
ments which form the seeds of homologous blocks set at 15 nucleotides
and the locus-level gap opening cost is set at 50 with a gap extension
cost at 1.0.

• transform((all, dynamic pam:(locus breakpoint:10, max kept -
wag:2, min rearrangement len:60, median:1, circular:false)))
This example shows the transformation of chromosomal data using the
argument dynamic pam to set the locus rearrangement (breakpoint)
cost at 10, and only strings of 60 or more nucleotides are considered
in determining possible rearrangements between identified seeds. The
chromosome data are treated as linear and only a single set of median
rearrangements are stored.

3.3.28 use

Syntax

use(STRING)

Description

Restores from memory the state of a POY4 session (that includes character
data, selections, trees, all other data and specifications) that had previously
been saved during the session using the command store (Section 3.3.25).

3.3. COMMAND REFERENCE 123

The recalled session replaces the current session. The string argument spec-
ifies the name of the stored state.

In combination with store (Section 3.3.25), the command use is very
useful for exploring alternative cost regimes and terminal sets within a single
POY4 session.

Examples

• store("initial tcm")
transform(tcm:(1,1))
use("initial tcm")
The first command, store, stores the current characters and trees
under the name initial tcm. The second command, transform,
changes the cost regime of molecular characters, effectively changing
the data being analyzed. However, the third command, use, recovers
the initial state stored under the name initial tcm.

See also

• store (Section 3.3.25)

• transform (Section 3.3.26)

3.3.29 version

Syntax

version()

Description

Reports the POY4 version number in the output window of the ncurses in-
terface, or to the standard error in the flat interface.

Examples

• version ()

124 CHAPTER 3. POY4 COMMANDS

3.3.30 wipe

Syntax

wipe()

Description

Eliminates the data stored in memory (all character data, trees, etc.).

Examples

• wipe ()

Chapter 4

POY4 Tutorials

These tutorials are intended to provide guidance for more sophisticated ap-
plications of POY4 that involve multiple steps and a combination of different
commands. Each tutorial contains a POY4 script that is followed by detailed
commentaries explaining the rationale behind each step of the analysis. Al-
though these analyses can be conducted interactively using the Interactive
Console or running separate sequential analyses using the Graphical User
Interphace, the most practical way to do this is to use POY4 scripts (see
POY4 Quick Start for more information on POY4 scripts).

It is important to remember that the numerical values for most command
arguments will differ substantially depending on type, complexity, and size
of the data. Therefore, the values used here should not be taken as optimal
parameters.

The tutorials use sample datasets that are provided with POY4 installa-
tion but can also be downloaded from the POY4 site at

http://research.amnh.org/scicomp/projects/poy.php

The minimal required items to run the tutorial analyses are the POY4 ap-
plication and the sample datafiles. Running these analyses requires some
familiarity with POY4 interface and command structure that can be found
in the preceding chapters.

4.1 Combining search strategies

The following script implements a strategy for a thorough search. This is
accomplished by generating a large number of independent initial trees by
random addition sequence and combining different search strategies that aim

125

126 CHAPTER 4. POY4 TUTORIALS

at thoroughly exploring local tree space and escape the effect of composite
optima by effectively traversing the tree space. In addition, this script shows
how to output the status of the search to a log file and calculate the duration
of the search.

(* search using all data *)
read("9.fas","31.ss", aminoacids:("41.aa"))
set(seed:1,log:"all_data_search.log",root:"t1")
report(timer:"search start")
transform(tcm:(1,2),gap_opening:1)
build(250)
swap(threshold:5.0)
select()
perturb(transform(static_approx),iterations:15,ratchet:(0.2,3))
select()
fuse(iterations:200,swap())
select()
report("all_trees",trees:(total),"constree",graphconsensus,
"diagnosis",diagnosis)
report(timer:"search end")
set(nolog)
exit()

• (* search using all data *) This first line of the script is a com-
ment. While comments are optional and do not affect the analyses,
they provide are useful for housekeeping purposes.

• read("9.fas","31.ss", aminoacids:("41.aa")) This command im-
ports all the nucleotide sequence datafiles (all files with the extension
.seq), a morphological datafile morph.ss in Hennig86 format, and an
aminoacid datafile myosin.aa.

• set(seed:1,log:"all data search.log",root:"t1") The set com-
mand specifies conditions prior to tree searching. The seed is used
to ensure that the subsequent randomization procedures (such as tree
building and selecting) are reproducible. Specifying the log produces a
file, all data search.log that provides an additional means to mon-
itor the process of the search. The outgroup (taxon1) is designated
by the root, so that all the reported trees have the desired polarity.
By default, the analysis is performed using direct optimization.

4.1. COMBINING SEARCH STRATEGIES 127

• report(timer:"search start") In combination with report(timer:
"search end"), this commands reports the amount of time that the
execution of commands enclosed by timer takes. In this case, it re-
ports how long it takes for the entire search to finish. Using timer is
useful for planning a complex search strategy for large datasets that
can take a long time to complete: it is instructive, for example, to know
how long a search would last with a single replicate (one starting tree)
before starting a search with multiple replicates.

• transform(tcm:(1,2),gap opening:1) This command sets the
transformation cost matrix for molecular data to be used in calculating
the cost of the tree. Note, that in addition to the substitution and indel
costs, the transform specifies the cost for gap opening.

• build(250) This commands begins tree-building step of the search
that generates 250 random-addition trees. A large number of inde-
pendent starting point insures that a large portion of tree space have
been examined.

• swap(threshold:5.0) swap specifies that each of the 250 trees is sub-
jected to alternating SPR and TBR branch swapping routine (the
default of POY4). In addition to the most optimal trees, all the subop-
timal trees found within 5% of the best cost are thoroughly evaluated.
This step ensures that the local searches settled on the local optima.

• select() Upon completion of branch swapping, this command re-
tains only optimal and topologically unique trees; all other trees are
discarded from memory.

• perturb(transform(static approx),iterations:15,ratchet:
(0.2,3)) This command subjects the resulting trees to 15 rounds of
ratchet, re-weighting 20% of characters by a factor of 2. During ratch-
eting, the dynamic homology characters are transformed into static
homology characters, so that the fraction of nucleotides (rather than
of sequence fragments) is being re-weighted. This step, that begins at
multiple local maxima, is intended to further traverse the tree space
in search of a global optimum.

• fuse(iterations:200,swap()) In this step, up to 200 swappings of
subtrees identical in terminal composition but different in topology,
are performed between pairs of best trees recovered in the previous
step. This is another strategy for further exploration of tree space.

128 CHAPTER 4. POY4 TUTORIALS

Each resulting tree is further refined by local branch swapping under
the default parameters of swap.

• select() Upon completion of branch swapping, this command re-
tains only optimal and topologically unique trees; all other trees are
discarded from memory.

• report("all trees",trees:(total),"constree",
graphconsensus,"diagnosis",diagnosis) This command produces
a series of outputs of the results of the search. It includes a file contain-
ing best trees in parenthetical notation and their costs (all trees),
a graphical representation (in PDF format) of the strict consensus
(constree), and the diagnoses for all best trees (diagnosis).

• report(timer:"search end") This command stops timing the du-
ration of search, initiated by the command report(timer:"search
start").

• set(nolog) This command stops reporting any output to the log file,
all data search.log.

• exit() This commands ends the POY4 session.

4.2 Searching under iterative pass

The following script implements a strategy for a thorough search under
iterative pass optimization. The iterative pass optimization is a very time
consuming procedure that makes it impractical to conduct under this kind
of optimization (save for very small datasets that can be analyzed within
reasonable time). The iterative pass, however, can be used for the most
advanced stages of the analysis for the final refinement, when a potential
global optimum has been reached through searches under other kinds of
optimization (such as direct optimization). Therefore, this tutorial begins
with importing an existing tree (rather than performing tree building from
scratch) and subjecting it to local branch swapping under iterative pass.

(* search using all data under ip *)
read("9.fas","31.ss",aminoacids:("41.aa"))
read("inter_tree.tre")
transform(tcm:(1,2),gap_opening:1)
set(iterative:approximate:2)

4.2. SEARCHING UNDER ITERATIVE PASS 129

swap(around)
select()
report("all_trees",trees:(total),"constree", graphconsensus,
"diagnosis",diagnosis)
transform ((all, static_approx))
report ("phastwinclad.ss", phastwinclad)
exit()

• (* search using all data under ip *) This first line of the script
is a comment. While comments are optional and do not affect the
analyses, they provide are useful for housekeeping purposes.

• read("9.fas","31.ss",aminoacids:("41.aa")) This command im-
ports all the nucleotide sequence datafiles (all files with the extension
.seq), a morphological datafile morph.ss in Hennig86 format, and an
aminoacid datafile myosin.aa.

• read("inter tree.tre") This command imports a tree file, inter -
tree.tre, that contains the most optimal tree from prior analyses.

• transform(tcm:(1,2),gap opening:1) This command sets the trans-
formation cost matrix for molecular data to be used in calculating the
cost of the tree. Note, that in addition to the substitution and indel
costs, the transform specifies the cost for gap opening.

• set(iterative:approximate:2) This command sets the optimiza-
tion procedure to iterative pass such that approximated three dimen-
sional alignments generated using pairwise alignments will be consid-
ered. The program will iterate either two times, or until no further
tress cost improvements can be made.

• swap(around) This commands specifies that the the imported tree is
subjected to alternating SPR and TBR branch swapping routine (the
default of POY4) following the trajectory of search that completely
evaluates the neighborhood of the tree (by using around).

• select() Upon completion of branch swapping, this command re-
tains only optimal and topologically unique trees; all other trees are
discarded from memory.

• report("all trees",trees:(total),"constree",
graphconsensus,"diagnosis",diagnosis) This command produces

130 CHAPTER 4. POY4 TUTORIALS

a series of outputs of the results of the search. It includes a file contain-
ing best trees in parenthetical notation and their costs (all trees),
a graphical representation (in PDF format) of the strict consensus
(constree), and the diagnoses for all best trees (diagnosis).

• transform ((all, "static approx")) This command transforming
all data into static homology characters corresponding to their implied
alignments is necessary before reporting the data in the Hennig86 for-
mat.

• report ("phastwinclad.ss", phastwinclad) This command pro-
duces a file in the Hennig86 format which can be imported into other
programs, such as WinClada.

• exit() This commands ends the POY4 session.

4.3 Bremer support

This tutorial builds on the previous tutorials to illustrate Bremer support
calculation on trees constructed using dynamic homology characters

(* Bremer support part 1: generating trees *)
read("18s.fas","28s.fas")
set(root:"Americhernus")
build(200)
swap(all,visited:"tmp.trees", timeout:3600)
select()
report("my.tree",trees)
exit()

(* Bremer support part 2: Bremer calculations *)
read("18s.fas","28s.fas","my.tree")
report("support_tree.pdf",graphsupports:bremer:"tmp.trees")
exit()

• (* Bremer support part1: generating trees *) This first line
of the script is a comment. While comments are optional and do not
affect the analyses, they provide are useful for housekeeping purposes.

• read("18s.fas","28s.fas") This command imports the nucleotide
sequence files 18s.fas, 28s.fas.

4.3. BREMER SUPPORT 131

• set(root:"Americhernus") The set command specifies conditions
prior to tree searching. The outgroup (Americhernus) is designated
by the root, so that all the reported trees have the desired polarity.

• build(200) This commands initializes tree-building and generates 200
random-addition trees.

• swap(all,visited:"tmp.trees", timeout:3600) The swap command
specifies that each of the trees be subjected to an alternating SPR
and TBR branch swapping routine (the default of POY4). The all
argument turns offf all swap heuristics. The visited:"tmp.trees"
argument stores every visited tree in the file specified. Although the
visited tree file is compressed to accommodate the large number of
trees it will accumulate, the argument timeout can be used to limit
the number of seconds allowed for swapping also limiting the size of
the file. Alternately the swap command can be performed as a sepa-
rate analysis and terminated at the users discretion to maximize the
number of trees generated.

• select() Upon completion of branch swapping, this command re-
tains only optimal and topologically unique trees; all other trees are
discarded from memory.

• report("my.tree",trees) This command will save the swapped tree,
my.tree to a file.

• exit() This commands ends the POY4 session.

• (* Bremer support part 2: Bremer calculations *) A comment
indicating the intent of the commands which follow.

• read("18s.fas","28s.fas","my.tree") This command imports the
nucleotide sequence files 18s.fas, 28s.fas and the tree file, my.tree
for which the support values will be generated. It is important to only
read the selected "my.tree" file rather than the expansive "tmp.trees"
file which will be used in bremer calculations.

• report("support tree.pdf",graphsupports:bremer:"tmp.trees")
The report command in combination with a file name and the
graphsupports generates a pdf file designated by the name support -
tree.pdf with bremer values for the selected trees held in tmp.trees.
It is strongly recommended that this more exhaustive approach is used

132 CHAPTER 4. POY4 TUTORIALS

for calculating Bremer supports rather than simply using the
graphsupports default s.

• exit() This commands ends the POY4 session.

4.4 Jackknife support

This tutorial illustrates calculating Jackknife support values for trees con-
structed with static homology characters. Although it is possible to calculate
both Jackknife and Bootstrap support values for trees constructed using dy-
namic homology characters, it is not recommended because resampling of
dynamic characters occurs at the fragment (rather than nucleotide) level.
Alternately dynamic homology characters can be converted to static char-
acters using the transform argument static approx, as it is common for
biologists to want to compute support values by resampling the characters
from a fixed alignment. In jackknife support a specified number of pseudo-
repicates are performed independently such that in each one a percentage
of characters is selected at random, without replacement. The frequency of
clade occurrence is its jackknife value.

(* Jackknife support using static nucleotide characters *)
read ("28s.fas")
search (max_time:0:0:5)
select ()
report ("tree_for_supports.tre", trees)
transform(static_approx)
calculate_support (jackknife:(remove:0.50, resample:1000))
report (supports:jackknife)
report ("jacktree", graphsupports:jackknife)
exit()

• (* Jackknife support using static nucleotide characters *)
This first line of the script is a comment. While comments are optional
and do not affect the analyses, they provide are useful for housekeeping
purposes.

• read("28s.fas") This command imports nucleotide sequence file 28s.fas.

• search(max time:0:0:5) This command performs a search (i.e. build,
swap, perturb, fuse) of the data 28s.fas for a maximum of 5 min (note
that the short search time was selected for demonstration purposes to

4.5. SENSITIVITY ANALYSIS 133

expedite the tutorial and not as a general time recommendation for
actual data analyses).

• select() This command retains only optimal and topologically unique
trees; all other trees are discarded from memory.

• report("tree for supports.tre", trees) This command outputs
a parenthetical representation of the tree "tree for supports.tre".

• transform(static approx) This command transforms the data (i.e.
build, swap, perturb, fuse) of the data 28s.fas for a maximum of 2
hours.

• calculate support(jackknife,(remove:0.50,resample:1000) The
calculate support command generates support values as specified by
the jackknife argument for each tree held in memory. During each
pseudoreplicate half of the characters will be deleted as specified in
the argumentremove:0.50.

• report(supports:jackknife) This command outputs a parentheti-
cal representation of a tree with the support values previously calcu-
lated with the calculate support command.

• report("jacktree",graphsupports:jackknife) The report com-
mand in combination with a file name and the graphsupports gener-
ates a pdf file with jackknife values designated by the name specified
(i.e. jacktree).

• exit() This commands ends the POY4 session.

4.5 Sensitivity analysis

This tutorial demonstrates how data for parameter sensitivity analysis is
generated. Sensitivity analysis [24] is a method of exploring the effect of
relative costs of substitutions (transitions and transversions) and indels (in-
sertions and deletions), either with or without taking gap extension cost into
account. The approach consists of multiple iterations of the same search
strategy under different parameters, (i.e combinations of substitution and
indel costs. Obviously, such analysis might become time consuming and
certain methods are shown here how to achieve the results in reasonable
time. This tutorial also shows the utility of the command store and how
transformation cost matrixes are imported and used.

134 CHAPTER 4. POY4 TUTORIALS

POY4 does not comprehensively display the results of the sensitivity an-
alysis or implements the methods to select a parameter set that produces
the optimal cladogram, but the output of a POY4 analysis (such as the one
presented here) generates all the necessary data for these additional steps.

For the sake of simplicity, this script contains commands for generating
the data under just two parameter sets. Using a larger number of parameter
sets can easily be achieved by replicating the repeated parts of the script
and substituting the names of input cost matrixes.

(* sensitivity analysis *)
read("9.fas")
set(root:"t1")
store("original_data")
transform(tcm:"111.txt")
build(100)
swap(timeout:3600)
select()
report("111.tre",trees:(total) ,"111con.tre",consensus,
"111con.pdf",graphconsensus)
use("original_data")
transform(tcm:"112.txt")
build(100)
swap(timeout:3600)
select()
report("112.tre",trees:(total),"112con.tre",consensus,
"112con.pdf",graphconsensus)
exit()

• (* sensitivity analysis *) This first line of the script is a com-
ment. While comments are optional and do not affect the analyses,
they provide are useful for housekeeping purposes.

• read("9.fas") This command imports all dynamic homology nu-
cleotide data.

• set(root:"t1") The outgroup (taxon1) is designated by the root,
so that all the reported trees have the desired polarity.

• store("original data") This commands stores the current state of
analysis in memory in a temporary file, original data.

4.5. SENSITIVITY ANALYSIS 135

• transform(tcm:"111.txt") This command applies a transformation
cost matrix from the file 111.txt to for subsequent tree searching.

• build(100) This commands begins tree-building step of the search
that generates 250 random-addition trees. A large number of inde-
pendent starting point insures that thee large portion of tree space
have been examined.

• swap(timeout:3600) swap specifies that each of the 100 trees build
in the previous step is subjected to alternating SPR and TBR branch
swapping routine (the default of POY4). The argument timeout spec-
ifies that 3600 seconds are allocated for swapping and the search is
going to be stopped after reaching this limit. Because sensitivity an-
alysis consists of multiple independent searches, it can take a tremen-
dous amount of time to complete each one of them. In this example,
timeout is used to prevent the searches from running too long. Using
timeout is optional and can obviously produce suboptimal results due
to insufficient time allocated to searching. A reasonable timeout value
can be experimentally obtained by the analysis under one cost regime
and monitoring time it takes to complete the search (using the argu-
ment timer of the command set). The advantage of using timeout
is saving time in cases where a local optimum is quickly reached and
the search is trapped in its neighborhood.

• select() Upon completion of branch swapping, this command re-
tains only optimal and topologically unique trees; all other trees are
discarded from memory.

• report("111.tre",trees:(total) ,"111con.tre",consensus,
"111con.pdf", graphconsensus) This command produces a file con-
taining best tree(s) in parenthetical notation and their costs (111.tre),
a a file containing the strict consensus in parenthetical notation
(111con.tre), and a graphical representation (in PDF format) of the
strict consensus (111con.pdf).

• use("original data") This command restored the original (non-trans-
formed) data from the temporary file original data generated by
store.

• transform(tcm:"112.txt") This command applies a different trans-
formation cost matrix from the file 112.txt to for another round of
tree searching under this new cost regime.

136 CHAPTER 4. POY4 TUTORIALS

• build(100) This commands begins tree-building step of the search
that generates 100 random-addition trees. A large number of inde-
pendent starting point insures that thee large portion of tree space
have been examined.

• swap(timeout:3600) swap specifies that each of the 100 trees build
in the previous step is subjected to alternating SPR and TBR branch
swapping routine (the default of POY4) to be interrupted after 3600
seconds (see the description in the previous iteration of the command
above).

• select() Upon completion of branch swapping, this command re-
tains only optimal and topologically unique trees; all other trees are
discarded from memory.

• report("112.tre",trees:(total),"112con.tre",consensus,
"112con.pdf", graphconsensus) This command produces a set of
the same kinds of outputs as generated during the first search (see
above) but under a new cost regime.

• exit() This commands ends the POY4 session.

4.6 Chromosome analysis: unannotated sequences

This tutorial illustrates the analysis of chromosome-level transformations
using unannotated sequences, i.e., contiguous strings of sequences with-
out prior identification of independent regions. Prior to attempting an
analysis of unannotated chromosomes it is necessary to enable the "long
sequences" option when compiling the POY4 program.

(* Chromosome analysis of unannotated sequences *)
read(chromosome:("ua15.fas"))
transform((all,dynamic_pam:(locus_breakpoint:20,locus_indel:
(10,1.5),circular:true,median:2, min_seed_length:15,
min_rearrangement_len:45, min_loci_len:50,median:2,swap_med:1)))
build()
swap()
select()
report("chrom",diagnosis)
report("consensustree",graphconsensus)
exit()

4.6. CHROMOSOME ANALYSIS: UNANNOTATED SEQUENCES 137

• (* Chromosome analysis of unannotated sequences *) This first
line of the script is a comment. While comments are optional and
do not affect the analyses, they provide are useful for housekeeping
purposes.

• read(chromosome:("ua15.fas")) This command imports the unan-
notated chromosomal sequence file ua15.fas. The argument chromosome
specifies the characters as unannotated chromosomes.

• transform((all,dynamic pam:(locus breakpoint:20,locus indel:
(10,1.5),circular:true,seed length:15,rearranged len:50,sig -
block len:50,median:2,swap med:1))) The transform followed by
the argument dynamic pam specifies the conditions to be applied when
calculating chromosome-level HTUs (medians). The argument locus -
breakpoint:20 applies a breakpoint distance between chromosome
loci with the integer value determining the rearrangement cost. The
argument locus indel:10,1.5 specifies the indel costs for the chro-
mosomal segments, whereby the integer 10 sets the gap opening cost
and the float 1.5 sets the gap extension cost. As the type of chromo-
somal sequences being analyzed are of mitochondrial origin, the argu-
ment circular:true treats each chromosome sequence as a continu-
ous rather than linear. The argument min seed length:15 sets the
minimum length of identical continuous fragments (seeds) at 15. As
seeds are the foundation for larger homologous blocks setting the seed
length to an integer appropriate for the data is critical to optimizing
the efficiency with which the program correctly identifies chromosomal
fragments and detects rearrangements. The min rearrangement len
argument sets the lower limit for number of nucleotides between two
seeds such that each is considered independent of the other. Inde-
pendent seeds belong to separate homologous blocks such that re-
arrangement events between blocks can be detected. The argument
min loci len provides the integer value determining the minimum
number of nucleotides constituting an homologous block. In this ex-
ample, because the data are mitochondrial containing relatively short
homologous tRNA sequences, both the min rearrangement len and
the min loci len were set to values below the defaults for these argu-
ments. The median specifies the number of best cost locus-rearrangements
which will be considered for each HTU (median), while the swap med
argument specifies the maximum number of swapping iterations per-
formed in searching for the best pairwise alignment between two chro-

138 CHAPTER 4. POY4 TUTORIALS

mosomes. Because values for the median and swap med arguments set
above the default (1) will significantly increase the calculation time,
the default values are recommended for larger chromosomal data sets.

• build() This commands begins the tree-building step of the search
that generates by default 10 random-addition trees. It is highly rec-
ommended that a greater number of Wagner builds be implemented
when analyzing data for purposes other than this demonstration.

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY4).

• select() Upon completion of branch swapping, this command re-
tains only optimal and topologically unique trees; all other trees are
discarded from memory.

• report("chrom",diagnosis) The report command in combination
with a file name and the diagnosis outputs the optimal median states
and edge values to a specified file (chrom).

• report("consensustree",graphconsensus) The report command
in combination with a file name and the graphconsensus generates a
pdf strict consensus file of the trees generated (consensustree).

• exit() This commands ends the POY4 session.

4.7 Chromosome analysis: annotated sequences

This tutorial illustrates the analysis of chromosome-level transformations
using annotated sequences, i.e., contiguous strings of sequences with prior
identification of independent regions delineated by pipes "|".

(* Chromosome analysis of annotated sequences *)
read(annotated:("aninv2"))
transform((all,dynamic_pam:(locus_inversion:20,locus_indel:(10,
1.5),circular:false,median:1,swap_med:1)))
build()
swap()
select()
report("Annotated",diagnosis)
report("consensustree",graphconsensus)

4.7. CHROMOSOME ANALYSIS: ANNOTATED SEQUENCES 139

exit()

• (* Chromosome analysis of annotated sequences *) This first line
of the script is a comment. While comments are optional and do not
affect the analyses, they provide are useful for housekeeping purposes.

• read(annotated:("aninv2")) This command imports the annotated
chromosomal sequence file aninv2. The argument annotated specifies
the characters.

• transform((all,dynamic pam:(inversion:20,locus indel:
(10,1.5),median:1,swap med:1))) The transform followed by the
argument dynamic pam specifies the conditions to be applied when cal-
culating chromosome-level HTUs (medians). The argument locus -
inversion:20 applies an inversion distance between chromosome loci
with the integer value determining the rearrangement cost. The argu-
ment locus indel:10,1.5 specifies the indel costs for the chromoso-
mal segments, whereby the integer 10 sets the gap opening cost and the
float 1.5 sets the gap extension cost. The default values are applied to
the arguments circular median and swap med arguments to minimize
the time require for these nested search options. To more exhaustively
perform these calculations trees generated from initial builds can be
imported to the program and reevaluated with values greater than 1
designated for the median and swap med arguments.

• build() This commands begins the tree-building step of the search
that generates by default 10 random-addition trees. It is highly rec-
ommended that a greater number of Wagner builds be implemented
when analyzing data for purposes other than this demonstration.

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY4).

• select() Upon completion of branch swapping, this command re-
tains only optimal and topologically unique trees; all other trees are
discarded from memory.

• report("Annotated",diagnosis) The report command in combina-
tion with a file name and the diagnosis outputs the optimal median
states and edge values to a specified file (Annotated).

• exit() This commands ends the POY4 session.

140 CHAPTER 4. POY4 TUTORIALS

4.8 Custom alphabet break inversion characters

This tutorial illustrates the analysis of the break inversion character type.
Break inversion characters are generated by transforming user-defined custom -
alphabet characters. For example, observations of developmental stages
could be represented in a corresponding array such that for each terminal
taxon there is a sequence of observed developmental stages which are repre-
sented by a user-defined alphabet. To allow rearrangement as well as indel
events to be considered among alphabet elements, requires either reading in
the data with the breakinv argument or transforming the custom alphabet
sequences read to breakinv characters.

(* Custom Alphabet to Breakinv characters *)
read(custom_alphabet:("ca1.fas","m1.fas"))
transform((all,custom_to_breakinv:()))
transform((all,dynamic_pam:(locus_breakpoint:20,
locus_indel:(10,1.5),median:1,swap_med:1)))
build()
swap()
select()
report("breakinv",diagnosis)
report("consensustree",graphconsensus)
exit()

• (* Custom Alphabet to Breakinv characters *) This first line of
the script is a comment. While comments are optional and do not
affect the analyses, they provide are useful for housekeeping purposes.

• read(custom alphabet:("ca1.fas","m1.fas")) This command im-
ports the user-defined custom alphabet character file ca1.fas and
the accompanying transformation matrix m1.fas.

• transform((all,custom to breakinv:())) This command transforms
custom alphabet characters to breakinv characters which allow for
rearrangement operations.

• transform((all,dynamic pam:(locus breakpoint:20,locus
indel:(10,1.5),median:1,swap med:1))) The transform followed
by the argument dynamic pam specifies the conditions to be applied
when calculating medians. The argument locus breakpoint:20 ap-
plies a breakpoint distance calculation where the integer value specifies

4.9. GENOME ANALYSIS: MULTIPLE CHROMOSOMES 141

the rearrangement cost of breakinv elements. The argument locus -
indel:10,1.5 specifies the indel costs for each breakinv element,
whereby the integer 10 sets the gap opening cost and the float 1.5 sets
the gap extension cost. The default values are applied to the median
and swap med arguments to minimize the time require for these nested
search options. To more exhaustively perform these calculations trees
generated from initial builds can be imported to the program and
reevaluated with values greater than 1 designated for the median and
swap med arguments

• build() This commands begins the tree-building step of the search
that generates by default 10 random-addition trees. It is highly rec-
ommended that a greater number of Wagner builds be implemented
when analyzing data for purposes other than this demonstration.

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY4).

• select() Upon completion of branch swapping, this command re-
tains only optimal and topologically unique trees; all other trees are
discarded from memory.

• report ("breakinv",diagnosis) The report command in combina-
tion with a file name and the diagnosis outputs the optimal median
states and edge values to a specified file (breakinv).

• exit() This commands ends the POY4 session.

4.9 Genome analysis: multiple chromosomes

This tutorial illustrates the analysis of genome-level transformations using
data from multiple chromosomes. Prior to attempting an analysis of unan-
notated chromosomes it is necessary to enable the "long sequences" option
when compiling the POY4 program.

(* Genome analysis of multiple chromosomes *)
read (genome:("gen5bp"))
transform((all,dynamic_pam:(chrom_breakpoint:80, chrom_indel:
(15,2.5),locus_inversion:20,locus_indel:(10,1.5), median:1,
swap_med:1)))

142 CHAPTER 4. POY4 TUTORIALS

build()
swap()
select()
report("genome",diagnosis)
report("genconsensus",graphconsensus)
exit()

• (* Genome analysis of multiple chromosomes*) This first line of
the script is a comment. While comments are optional and do not
affect the analyses, they provide are useful for housekeeping purposes.

• read(genome:("gen5bp")) This command imports the genomic se-
quence file mit5.txt. The argument genome specifies the characters
as data consisting of multiple chromomsomes.

• transform((all,dynamic pam:(chrom breakpoint:80,chrom indel:(15,
2.5),locus breakpoint:20,locus indel:(10,1.5),median:1,swap -
med:1))) The transform followed by the argument dynamic pam spec-
ifies the conditions to be applied when calculating genome-level HTUs
(medians). The argument chrom breakpoint:80 applies a breakpoint
distance between chromosomes with the integer value determining the
rearrangement cost. The argument chrom indel:15,1.5 specifies the
indel costs for each entire chromosome, whereby the integer sets the
gap opening cost and the float sets the gap extension cost. The ar-
gument locus inversion:20 applies an inversion distance between
loci with the integer value determining the rearrangement cost. The
argument locus indel:10,1.5 specifies the indel costs for the chro-
mosomal segments, whereby the integer 10 sets the gap opening cost
and the float 1.5 sets the gap extension cost. The default values are
applied to the median and swap med arguments to minimize the time
require for these nested search options. To more exhaustively perform
these calculations trees generated from initial builds can be imported
to the program and reevaluated with values greater than 1 designated
for the median and swap med arguments

• build() This commands begins the tree-building step of the search
that generates by default 10 random-addition trees. It is highly rec-
ommended that a greater number of Wagner builds be implemented
when analyzing data for purposes other than this demonstration.

• swap() The swap command specifies that each of the trees be subjected

4.9. GENOME ANALYSIS: MULTIPLE CHROMOSOMES 143

to an alternating SPR and TBR branch swapping routine (the default
of POY4).

• select() Upon completion of branch swapping, this command re-
tains only optimal and topologically unique trees; all other trees are
discarded from memory.

• report("genome",diagnosis) The report command in combination
with a file name and the diagnosis outputs the optimal median states
and edge values to a specified file (genome).

• report("genconsens",graphconsensus) The report command in
combination with a file name and the graphconsensus generates a
pdf strict consensus file of the trees generated (genconsensus).

• exit() This commands ends the POY4 session.

144 CHAPTER 4. POY4 TUTORIALS

Bibliography

[1] D. A. Bader, B. M. E. Moret, T. Warnow, S. K. Wyman, M. Yan,
J. Tang, A. C. Siepel, and A. Caprara. Grappa, version 2.0.
http://www.cs.unm.edu/ moret/grappa. Technical report, University
of New Mexico, 2002.

[2] M. Blanchette, G. Bourque, and D. Sankoff. Genome Informatics, chap-
ter Breakpoint phylogenies, pages 25–34. Universal Academy Press,
Tokyo, 1997. S. Miyano and T. Takagi–eds.

[3] K. Bremer. The limits of amino acid sequence data in angiosperm
phylogenetic reconstruction. Evolution, 42:795–803, 1988.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 2nd edition, 2001.

[5] J. S. Farris. A method for computing Wagner trees. Systematic Zoology,
19:83–92, 1970.

[6] J. S. Farris. Hennig86, 1988.

[7] J. S. Farris. The retention index and the rescaled consistency index.
Cladistics, 5:417–419, 1989.

[8] J. S. Farris, V. A. Albert, M. Källersjö, Lipscomb, and A. G. Kluge. Par-
simony jackknifing outperforms neighbor-joining. Cladistics, 12(2):99–
124, 1996.

[9] J. Felsenstein. Confidence limits on phylogenies: An approach using
the bootstrap. Evolution, 39(4):783–791, 1985.

[10] P. Goloboff. Analyzing large data sets in reasonable times: solutions
for composite optima. Cladistics, 15(4):415–428, 1999.

145

146 BIBLIOGRAPHY

[11] S. Hanenhalli and P. A. Pevzner. Transforming a cabbage into a turnip
(polynomial algorithm for sorting signed permutations by reversals). In
Proceedings of the 27th Annual ACM-SIAM Symposium on the Theory
of Computing, pages 178–189, 1995.

[12] M. D. Hendy and D. Penny. Branch and bound algorithms to deter-
mine minimal evolutionary trees. Mathematical Biosciences, 60:133–
142, 1982.

[13] M. Källersjö, J. S. Farris, A. G. Kluge, and C. Bult. Skewness and
permutation. Cladistics, 8:275–287, 1992.

[14] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simu-
lated annealing. Science, 220(4598):671–680, May 1983.

[15] A. G. Kluge and J. S. Farris. Quantitative phyletics and the evolution
of anurans. Systematic Zoology, 30:1–32, 1969.

[16] T. Margush and F. R. McMorris. Consensus n-trees. Bulletin of Math-
ematical Biology, 43:239–244, 1981.

[17] K. C. Nixon. The parsimony ratchet, a new method for rapid parsimony
analysis. Cladistics, 15(4):407–414, 1999.

[18] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence
comparison. PNAS, 85:2444–2448, 1988.

[19] F. J. Rohlf. Consensus indices for comparing classifications. Mathe-
matical Biosciences, 59:131–144, 1982.

[20] D. Sankoff and M. Blanchette. Multiple genome rearrangement and
breakpoint phylogeny. J. Comput. Biol., 5:555–570, 1998.

[21] D. L. Swofford and G. J. Olsen. Phylogeny reconstruction. In D. Hillis
and C. Moritz, editors, Molecular Systematics, chapter 11, pages 411–
501. Sinauer Ass. Inc., Sunderland, Massachusetts, USA, 1990.

[22] L. S. Vinh, A. Varon, D. Janies, and W. C. Wheeler. Towards phyloge-
nomic reconstruction. In Proceedings of the International Conference on
Bioinformatics and Computational Biology, pages 98–104, Las Vegas,
Nevada, USA, 2007. CSREA Press.

[23] L. S. Vinh, A. Varon, and W. C. Wheeler. Pairwise alignment with
rearrangements. Genome informatics, 17(2):141–151, 2006.

BIBLIOGRAPHY 147

[24] W. C. Wheeler. Sequence alignment, parameter sensitivity, and the
phylogenetic analysis of molecular data. Systematic Biology, 44(3):321–
331, 1995.

[25] W. C. Wheeler. Optimization alignment: The end of multiple sequence
alignment in phylogenetics? Cladistics, 12(1):1–9, 1996.

[26] W. C. Wheeler. Fixed character states and the optimization of mole-
cular sequence data. Cladistics, 15(4):379–385, 1999.

[27] W. C. Wheeler. Homology and DNA sequence data. In G.P. Wagner,
editor, The Character Concept in Evolutionary Biology, pages 303–318.
Academic Press, New York, 2001.

[28] W. C. Wheeler. Homology and the optimization of DNA sequence data.
Cladistics, 17:S3–S11, 2001.

[29] W. C. Wheeler. Optimization Alignment: down, up, error, and
improvements. Techniques in Molecular Systematics and Evolution.
Birkhäuser, Basel, Boston, Berlin, 2002.

[30] W. C. Wheeler. Implied alignment. Cladistics, 19:261–268, 2003.

[31] W. C. Wheeler. Iterative pass optimization. Cladistics, 19:254–260,
2003.

[32] W. C. Wheeler, L. Aagesen, C. P. Arango, J. Faivoich, T. Grant,
C. D’Haese, D. Janies, W. L. Smith, A. Varón, and G. Giribet. Dynamic
Homology and Systematics: A Unified Approach. American Museum of
Natural History, 2006.

[33] W. C. Wheeler, J. Gatesy, and R. DeSalle. Elision: A method for ac-
commodating multiple molecular sequence alignments with alignment-
ambiguous sites. Molecular Phylogenetics and Evolution, 4(1):1–9, 1995.

148 BIBLIOGRAPHY

General Index

(STRING, STRING), 80
cost, 85

all roots, 83
all, 52, 97, 107
alternate, 105
aminoacids, 72
annealing, 106
annotated, 73
around, 105
as is, 52
asciitrees, 83
auto sequence partition, 111
auto static approx, 110
best, 98
bfs, 107
bootstrap, 56
branch and bound, 52
breakinv to custom, 115
breakinv, 73
bremer, 55
build, 56
characters, 79, 97
chrom breakpoint, 118
chrom hom, 118
chrom indel, 118
chromosome, 73
circular, 120
ci, 87
clades, 83
codes, 97
collapse, 85
compare, 81
consensus, 83
constraint, 52, 94, 106
cross references, 81
custom alphabet, 73
custom to breakinv, 115

data, 82
diagnosis, 87
direct optimization, 111
distance, 106
drifting, 106
dynamic pam, 115
dynamic, 98
error, 60
exhaustive do, 101
fasta, 85
files, 97
fixed states, 111
gap opening, 111
genome, 75
graphconsensus, 83
graphdiagnosis, 84
graphsupports, 84
graphtrees, 84
hennig, 85
history, 100
hits, 94
ia, 86
implied alignments, 86
info, 60
iterations, 62, 66
iterative, 101
jackknife, 56
keep, 62
locus breakpoint, 116
locus indel, 117
locus inversion, 117
log, 100
lookahead, 53
margin, 85
max 3d len, 118
max kept wag, 120
max time, 94

GENERAL INDEX 149

med approx, 116
median, 120
memory, 87, 94
min loci len, 117
min rearrangement len, 118
min seed length, 117
min time, 94
missing, 97
multi static approx, 111
m, 58
names, 97
newick, 85
nolog, 101
nomargin, 85
normal do, 101
not codes, 98
not missing, 97
not names, 98
nucleotides, 75
of file, 53
once, 106
optimal, 98
output, 60
phastwinclad, 86
prealigned, 75, 112
randomized, 53, 106
random, 53, 99
ratchet, 66
recover, 107
remove, 56
replace, 62
resample, 56, 67
ri, 87
root, 101
script analysis, 87
searchstats, 82
sectorial, 107
seed, 102
seq stats, 82
seq to chrom, 115

sequence partition, 112
spr, 105
static approx, 112
static, 98
supports, 84
swap med, 120
swap, 57, 62, 67
s, 58
target cost, 94
tbr, 105
tcm, 114
terminals, 79, 82, 96
threshold, 53, 108
timedprint, 107
timeout, 107
timer, 88, 101
total, 85
trailing deletion, 113
trailing insertion, 113
trajectory, 108
transform, 67, 108
treescosts, 83
treestats, 83
trees, 53, 85, 108
unique, 99
visited, 95, 108
weightfactor, 114
weight, 114
within, 99
xslt, 88

binaries, 11
build, 51

all, 52
as is, 52
branch and bound, 52
constraint, 52
INTEGER, 53
lookahead, 53
of file, 53

150 BIBLIOGRAPHY

random, 53
randomized, 53
STRING, 53
threshold, 53
trees, 53

calculate support, 54
bootstrap, 56
bremer, 55
build, 56
jackknife, 56
remove, 56
resample, 56
swap, 57

cd, 59
STRING, 59

clear memory, 58
m, 58
s, 58

echo, 60
error, 60
info, 60
output, 60

exit, 61
export

hennig, 90
nona, 90
tnt, 90

fuse, 61
iterations, 62
keep, 62
replace, 62
swap, 62

help, 63
LIDENT, 63
STRING, 63

inspect, 64

jack2hen, see clades

load, 65

nearest-neighbor interchanges, see
swap

NNI, see swap

perturb, 66
iterations, 66
ratchet, 66
resample, 67
swap, 67
transform, 67

pwd, 68

quit, 69

read, 70
aminoacids, 72
annotated, 73
breakinv, 73
chromosome, 73
custom alphabet, 73
genome, 75
nucleotides, 75
prealigned, 75
STRING, 72

recover, 77
rediagnose, 77
redraw, 78
rename, 79

(STRING, STRING), 80
characters, 79
STRING, 80
terminals, 79

report, 81
cost, 85

all roots, 83
asciitrees, 83
ci, 87

GENERAL INDEX 151

clades, 83
collapse, 85
compare, 81
consensus, 83
cross references, 81
data, 82
diagnosis, 87
fasta, 85
graphconsensus, 83
graphdiagnosis, 84
graphsupports, 84
graphtrees, 84
hennig, 85
ia, 86
implied alignments, 86
margin, 85
memory, 87
newick, 85
nomargin, 85
phastwinclad, 86
ri, 87
script analysis, 87
searchstats, 82
seq stats, 82
STRING, 81
supports, 84
terminals, 82
timer, 88
total, 85
trees, 85
treescosts, 83
treestats, 83
xslt, 88

run, 91

save, 92
search, 93

constraint, 94
hits, 94
max time, 94

memory, 94
min time, 94
target cost, 94
visited, 95

select, 96
all, 97
best, 98
characters, 97
codes, 97
dynamic, 98
files, 97
missing, 97
names, 97
not codes, 98
not missing, 97
not names, 98
optimal, 98
random, 99
static, 98
STRING, 97
terminals, 96
unique, 99
within, 99

set, 100
exhaustive do, 101
history, 100
iterative, 101
log, 100
nolog, 101
normal do, 101
root, 101
seed, 102
timer, 101

store, 103
STRING, 104

swap, 104
all, 107
alternate, 105
annealing, 106
around, 105

152 BIBLIOGRAPHY

bfs, 107
constraint, 106
distance, 106
drifting, 106
once, 106
randomized, 106
recover, 107
sectorial, 107
spr, 105
tbr, 105
threshold, 108
timedprint, 107
timeout, 107
trajectory, 108
transform, 108
trees, 108
visited, 108

transform, 109
auto sequence partition, 111
auto static approx, 110
breakinv to custom, 115
chrom breakpoint, 118
chrom hom, 118
chrom indel, 118
circular, 120
custom to breakinv, 115
direct optimization, 111
dynamic pam, 115
fixed states, 111
gap opening, 111
locus breakpoint, 116
locus indel, 117
locus inversion, 117
max 3d len, 118
max kept wag, 120
med approx, 116
median, 120
min loci len, 117
min rearrangement len, 118

min seed length, 117
multi static approx, 111
prealigned, 112
seq to chrom, 115
sequence partition, 112
static approx, 112
swap med, 120
tcm, 114
trailing deletion, 113
trailing insertion, 113
weight, 114
weightfactor, 114

use, 122

version, 123

wipe, 124

POY 3.0 COMMANDS INDEX 153

POY 3.0 Commands Index

agree, see constraint

bremer, see calculatesupports
bremerspr, see calculatesupports,

swap
build, see build
buildmaxtrees, see trees
buildslop, see threshold
buildspr, see spr
buildtbr, see tbr

cat commandbrowsing, see help
cat helptopics, see help
characterweights, see report
commandfile, see run
commandfiledir, see cd

datadir, see cd
defaultweight, see weight
diagnose, see report
disagree, see constraint
driftequallaccept, see drifting
driftlengthbase, see drifting
driftspr, see drifting
drifttbr, see drifting
drifttrees, see drifting
dropconstraints, see constraint

extensiongap, see gapopening, see
tcm

finalrefinement, see swap

gap, see gapopening, see tcm
gc, see memory

holdmaxtrees, see trees
hypancfile, see diagnosis
hypancname, see diagnosis

iafiles, see implied alignment
impliedalignment, see implied align-

ment
indices, see treestats
intermediate, see trajectory

jackboot, see jackknife
jackfrequencies, see jackknife
jackoutgroup, see outgroup
jackstart, see jackknife

leading, see trailing insertion

maxtrees, see trees
molecularmatrix, see tcm

newstates, see fixed states
noiafiles, see report
numdriftchanges, see repeat
numdriftspr, see repeat
numdrifttbr, see repeat

phastwincladfile, see phastwinclad
plotechocommandline, see echo
plotfile, see graphtrees
plotfrequencies, see graphtrees
plotmajority, see graphconsensus
plotoutgroup, see outgroup
plotstrict, see graphconsensus
plottrees, see graphtrees
poybintreefile, see trees
poystrictconsensustreefile, see con-

sensus
poytreefile, see trees
printtree, see asciitrees

random, see trees
ratchetinseq, see perturb
ratchetoverpercent, see ratchet

154 BIBLIOGRAPHY

ratchetpercent, see ratchet
ratchetseverity, see ratchet
ratchetslop, see perturb
ratchetspr, see perturb
ratchettbr, see perturb
ratchettrees, see perturb
replicatebuild, see trees
replicaterefinement, see trees
replicates, see trees

slop, see threshold
sprmaxtrees, see trees
staticapprox, see static approx
staticapproxbuild, see build

tbrmaxtrees, see trees
topodiagnoseonly, see read
topofile, see read
topolist, see trees
topology, see read
topooutgroup, see outgroup
trailinggap, see trailingdeletion, see

trailinginsertion
treefuse, see fuse
treefusespr, see fuse
treefusetbr, see fuse

	What is POY4
	The structure of POY4 documentation

	POY4 Quick Start
	Requirements: software and hardware
	Software
	Hardware

	Obtaining and installing POY4
	The Graphical User Interface
	POY menu bar
	POY Launcher
	The Analyses menu
	The View menu

	Using the Interactive Console
	The interface
	Starting a POY4 session using the Interactive Console
	Entering commands
	Browsing the output
	Switching between the windows
	Importing data
	Inspecting data
	Building the initial trees
	Performing a local search
	Selecting trees
	Visualizing the results
	Interrupting a process
	Reporting errors
	Exiting

	Creating and running POY4 scripts
	Obtaining help
	WWW resources

	POY4 Commands
	POY4 command structure
	Brief description
	Grammar specification

	Notation
	Command reference
	build
	calculate_support
	clear_memory
	cd
	echo
	exit
	fuse
	help
	inspect
	load
	perturb
	pwd
	quit
	read
	rediagnose
	recover
	redraw
	rename
	report
	run
	save
	search
	select
	set
	store
	swap
	transform
	use
	version
	wipe

	POY4 Tutorials
	Combining search strategies
	Searching under iterative pass
	Bremer support
	Jackknife support
	Sensitivity analysis
	Chromosome analysis: unannotated sequences
	Chromosome analysis: annotated sequences
	Custom alphabet break inversion characters
	Genome analysis: multiple chromosomes
	Bibliography
	General Index
	POY 3.0 Commands Index

