
Maximum a posteriori probability assignment (MAP-A): an
optimality criterion for phylogenetic trees via weighting and

dynamic programming

Ward C. Wheeler*

Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024-5192, USA

Accepted 06 June 2013

Abstract

One of the most time-consuming aspects of Bayesian posterior probability analysis in the analysis of phylogenetic trees is the
use of Metropolis-coupled Markov chain Monte Carlo (MC3) methods to determine relative posteriors and identify maximum a
posteriori (MAP) trees. Here, analytical and numerical methods are presented to determine tree likelihoods that are integrated
over edge-length (and other parameter) distributions. Given topological (tree) priors (flat or otherwise), this allows for identifica-
tion of the maximum posterior probability assignment (MAP-A) of character states to non-leaf tree vertices via dynamic pro-
gramming. Using this form of posterior probability as an optimality criterion, tree space can be searched using standard
trajectory techniques and heuristically optimal MAP-A trees can be identified with considerable time savings over MC3. Example
cases are presented using aligned and unaligned molecular sequences as well as combined molecular and anatomical data.
© The Willi Hennig Society 2013.

Introduction

There is a variety of Bayesian (posterior probability)
approaches employed in the analysis of phylogenetic
trees (e.g. Edwards, 1970; Farris, 1973; Harper, 1979;
Smouse and Li, 1987; Wheeler, 1991; Rannala and Yang,
1996; Larget and Simon, 1999; Ronquist et al., 2011).
These may be divided into those that present clade or
subtree posterior probabilities (Larget and Simon, 1999),
termed clade-Bayes (Wheeler and Pickett, 2008); and
those that present topologies with optimal tree posterior
probability, termed maximum posterior probability
(MAP; Rannala and Yang, 1996) or topology-Bayes
(Wheeler and Pickett, 2008). The identification of opti-
mal phylogenetic trees is well known to be a NP-hard
problem (for parsimony by Foulds and Graham, 1982;
for likelihood by Addario-Berry et al., 2004; Roch, 2006;
Chor and Tuller, 2006), hence only heuristically optimal
solutions can be found. Subtree-based measures are often

employed as statements of support (Wheeler, 2010),
while only the tree-optimality MAP can participate
directly (by transitive pairwise competition) in hypothe-
sis testing and act as an optimality criterion to identify
heuristically best trees.
Commonly used implementations (e.g. Ronquist

et al., 2011) offer tools to explore both these forms of
posterior probability (clade and tree), usually via the
Metropolis-coupled Markov chain Monte Carlo (MC3;
Geyer, 1991) procedure. This technique relies on ran-
dom walks within a simulated annealing environment
and can be quite time consuming when done properly,
requiring exponential time in terms of number of char-
acters to reach stationarity even in very small cases (five
taxa with characters drawn from two trees under Jukes
and Cantor, 1969 model; Mossel and Vigoda, 2005,
2006). For n taxa and k cliques of characters, (2n–5)!!k

random starting points will be needed to sample the pos-
terior distribution properly. The cause of this is the need
to sample adequately the distributions of multiple
parameters such as topology, branch length, and char-
acter transition models. These issues add time complex-*Corresponding author:
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ity to maximum likelihood analysis as well, but in the
form of the identification of point estimates of tree and
model parameters.
When performed by MC3, the sampling of parame-

ter space takes place during the phylogenetic analysis.
The examination of a candidate topology is based on
a sampled value for each of the stochastic parameters,
and is likely to be evaluated multiple times. This
repeated tree calculation adds a large factor to the
time complexity of the operation.
Here, I present analytical and numerical methods to

permit the integration of various stochastic parameters
before tree search, yielding character transformation
cost matrices suitable for analysis with dynamic pro-
gramming. This procedure identifies the maximum a
posteriori probability assignment (MAP-A) of non-leaf
vertex character states in an efficient manner. The
resulting form of MAP-A tree optimality can be used
to identify heuristically best solutions via standard
tree-searching techniques. This tree search in all likeli-
hood remains NP-hard, but is liberated from the sta-
tionarity requirements of MC3-based analyses.

A simple case: the Neyman model and branch lengths

There are multiple models of nucleic acid sequence
evolution that have been used in statistical phylogenet-
ics. These range from completely homogeneous models
of change with all nucleotides (A, C, G, and T) having
the same stationary frequencies (0.25) and equal prob-
abilities of mutation (Jukes and Cantor, 1969), to
those with biases in favour of some transformations
(transitions and transversions: HKY; Hasegawa et al.,
1985), to highly parameterized models with potentially
unique probabilities for all transitions and stationary
frequencies (general time-reversible, GTR; Tavar�e,
1986). The Neyman (1971) model is a generalization of
the Jukes–Cantor for r states, where r = 4 for DNA.

Four taxa, one character, two states

Consider the simple case of four taxa with a single
binary character evolving under the Neyman (1971)
model (equation 1) yielding the probabilities of charac-
ter change over an edge (pii and pij with l as mutation
rate, t time, and r the number of states):

pii ¼ 1

r
þ ðr� 1Þ

r
e�lt

pij ¼ 1

r
� 1

r
e�lt ð1Þ

with edge parameter lt and r = 2 in this case.
Since l and t always appear as a product, we can

scale this factor and represent it by t, the expected

number of changes per site, on the edge (as will be
done subsequently). In this scenario, there are three
possible trees, each of which has four possible assign-
ments of states to its internal vertices (Fig. 1).
If we take this model to be fixed, and the prior

probability of trees to be flat (∀i,j;pr(Ti) = pr(Tj), the
posterior probability of a given tree (Ti ∈ s, the set of
all trees) is then given by equation 2 with model h
(e.g. Neyman, GTR), data (D), and edge parameter
distribution for the set of all edges in a tree (tT).

pðTi j DÞ ¼
R
pðtTi

j h;TiÞpðD j h;Ti; tTi
ÞdtTiP

Tj�s

R
pðtTj

j h;TjÞpðD j h;Tj; tTj
ÞdtTj

ð2Þ

In this example, we can consider two popular continuous
distributions for t, exponential and uniform with h = Ney-
man. In these cases, the distribution of branch lengths is
independent of the particular tree of which it is a compo-
nent, so all edges in t have the same distribution. For
parameter a, these distributions are given as:
exponential:

prðtÞ ¼ ae�at for t ¼ ½0;1Þ
uniform:

prðtÞ ¼ 1=a for t ¼ ½0; a�

The integrated probabilities (over t) of change and
no-change for a given character over an edge under
the Neyman model can then be determined. For the
exponential distribution with parameter a (and lt):

Pii ¼
Z

piidt ¼
Z 1

0

h1
r
þ r� 1

r
e�t

i
ae�atdt

Pij ¼
Z

pijdt ¼
Z 1

0

h1
r
� 1

r
e�t

i
ae�atdt

which evaluate to:

Pii ¼ ðarþ 1Þ=½ðaþ 1Þr� ð3Þ

Pij ¼ 1=½ðaþ 1Þr�
For the uniform distribution with parameter a:

Pii ¼
Z

piidt ¼
Z a

0

h1
r
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e�t

i 1
a
dt

Pij ¼
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pijdt ¼
Z a
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i 1
a
dt

which evaluate to:
Pii ¼ ½a� ðr� 1Þðe�a � 1Þ�=ar

Pij ¼ ½aþ e�a � 1�=ar
With these integrated probabilities, we can calculate

the probabilities of assignments and trees of Fig. 1
(Table 1) for a variety of values of a.
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As the expected branch lengths (a/2 and 1/a for uni-
form and exponential, respectively) grow longer, the
probabilities of change and non-change become
increasingly close, and the posterior probabilities of
the three trees converge to 1/3[pii = pij = (1/r)] as
a ? ∞ for uniform and a ? 0 for exponential. The
assignments with maximum probability are always 0–1

for AB|CD and both 0–0 and 1–1 for AC|BD and AD|
BC, given the initial assignments to the leaves in
Fig. 1.
Although AB|CD is the optimal MAP-A choice in

all cases examined here (if marginally for very long
branches), it is possible that summing the suboptimal
solutions could yield a choice different from the maxi-

Fig. 1. The case of four taxa and one binary character showing the three possible trees (left) and the four possible assignments of internal node
states for each tree (right).
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mal assignment (they are different optimality criteria,
after all). This might occur with long (near-random-
ized, lt = 10 or so) expected branch lengths and large
alphabets (as might be found in amino acid or devel-
opmental [Schulmeister and Wheeler, 2004;] sequence
data). However, such cases are likely to have very low
odds support for tree edges. This same suboptimal
solution issue can occur with likelihood alignment
(“dominant” versus “total” likelihood) (Thorne et al.,
1991; Wheeler, 2006) and tree search (most parsimoni-
ous likelihood, MPL; maximum average likelihood,
MAL) (Barry and Hartigan, 1987).

Dynamic programming

As with other forms of character-transformation
weighting where the total cost is the sum of the
weighted character changes over the tree, the MAP-A
can be identified by dynamic programming. By using a
logarithmic transform of the integrated character-
change probabilities, the overall probability can be
determined by summing the logarithmically weighted
transformations.
In the case of the exponential distribution with

parameter a = 10 (corresponding to a commonly used
expected branch length parameter of 0.1), the negative
logarithm of the probabilities of change (for r = 2;
Pii = 0.9545, Pij = 0.04546) is used as a weighting
scheme (W = {wii = 0.04652, wij = 3.091}) for deter-
mining the minimum assignment cost for a tree. To be
precise, as with MAP determination, we are identifying
the mode of the posterior distribution with a 0/1 loss

function. In this way, we do not need to determine the
value of the partition function (denominator of Bayes
theorem) to identify the optimal value.
The dynamic programming method of Sankoff and

Rousseau (1975) assumes that W is metric, which it
is not, given the non-zero diagonals (wii > 0). The
cost matrix, however, is symmetric (wij = wji) with
non-zero transformation costs (∀i,j; wij > 0), and con-
forms to the triangle inequality (provably for uniform
and exponential, equation 4, and verifiable numeri-
cally for more complex models on a case-by-case
basis).

8i;j;k : wij þ wjk �wik ð4Þ

since Pij = Pjk = Pik for exponential and uniform dis-
tributions;

2wij �wij

which will always be true since wij > 0.
Due to the presence of the non-zero identities, the

dynamic programming procedure of Sankoff and
Rousseau (1975) requires slight modification. The
post-order pass from leaves down is unmodified until
the root vertex is reached. At the root, the identity
transforms (wii) are doubly counted (the root vertex
adds an additional edge to the unrooted tree) and
hence must be subtracted from the calculated tree cost.
This factor is simply the sum of the identity costs over
the number of characters (for m characters

c0;...;m�1

Pi¼m�1

i¼0

wci;ci).

Table 1
Assignment probabilities for the three trees and four assignments of internal states for Fig. 1

Tree Assignment

a parameter and distribution

10.0 Exp. 0.1 Uni. 5.0 Exp. 0.2 Uni. 0.1 Exp. 10.0 Uni.

AB|CD 0–0 0.001797 0.000544 0.005349 0.001899 0.033530 0.033691
0–1 0.037737 0.021931 0.058839 0.038653 0.040236 0.041177
1–0 0.000000 0.000000 0.000004 0.000000 0.019404 0.018453
1–1 0.001797 0.000544 0.005349 0.001899 0.033530 0.033691
Sum 0.041331 0.023018 0.069541 0.042451 0.126699 0.127012
Posterior 0.845885 0.911739 0.748702 0.841951 0.340055 0.341396

AC|BD 0–0 0.001797 0.000544 0.005349 0.001899 0.033530 0.033691
0–1 0.000086 0.000013 0.000486 0.000093 0.027941 0.027566
1–0 0.000086 0.000013 0.000486 0.000093 0.027941 0.027566
1–1 0.001797 0.000544 0.005349 0.001899 0.033530 0.033691
Sum 0.003765 0.001114 0.011671 0.003984 0.122942 0.122513
Posterior 0.077057 0.044130 0.125649 0.079025 0.329973 0.329302

AD|BC 0–0 0.001797 0.000544 0.005349 0.001899 0.033530 0.033691
0–1 0.000086 0.000013 0.000486 0.000093 0.027941 0.027566
1–0 0.000086 0.000013 0.000486 0.000093 0.027941 0.027566
1–1 0.001797 0.000544 0.005349 0.001899 0.033530 0.033691
Sum 0.003765 0.001114 0.011671 0.003984 0.122942 0.122513
Posterior 0.077057 0.044130 0.125649 0.079025 0.329973 0.329302

“Sum” = total probability summed over the four assignments for that tree; “posterior” = posterior probability for that tree (sum divided by
total of three trees). “Exp.” and “Uni.” denote exponential and uniform distributions with commonly used parameter values.
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This tree cost calculation procedure can be extended
over tree space to find the tree with the maximum
value for MAP-A, which would be 1/e raised to the
tree cost (since the weights are negative logs of proba-
bilities).

Sequence characters

The case of a single binary character can be
extended to sequence data, again using the Neyman
model, this time with r = 5 for the nucleotides A, C,
G, T, and the indel or gap ‘–’. A modified direct
optimization algorithm (DO; Wheeler, 1996; Var�on
and Wheeler, 2012) can then be used to identify heu-
ristic (this optimization is also NP-hard; Wang and
Jiang, 1994) sequence medians (non-leaf assignments)
and calculate an upper-bound MAP-A for a tree
with unaligned sequences as leaves (terminal taxa) in
a Bayesian dynamic homology analysis (Wheeler,
2001).
There are three steps to this process. First, the set of

sequence transformation costs must be determined.
Second, these costs are applied via the DO algorithm
to identify sequence medians; and third, a post-order
traversal of the tree is performed to determine the
MAP-A for the DO tree medians.

Sequence transformation costs. In order to identify
the cost of sequence medians in the following steps,
the cost of individual sequence state assignments is
required. This is the cost of assigning a given state or
combination of states to a vertex with two descendent
states (or combination of states). Hence, there are
three elements to the cost: the vertex assignment state
(s) and the two descent states. The overall cost of the
assignment is the sum of the minimum transformation
costs between that assignment and each of the child
states. To make this determination efficient, the cost of
all possible assignment states (and their combinations
—the power set) given all possible descendent states
are precalculated (equation 5; Var�on and Wheeler,
2012).

8i;j;k�}� 1 fA;C;G;T;�g :

ci;j;k ¼ wij þ wik ð5Þ
For an exponential distribution with a = 10.0 and

r = 5, the costs would be wii = 0.07551 and
wij = 4.007.

Direct optimization and median construction. The
DO algorithm assigns median sequences during paired
post-order (down) and pre-order (up) traversals of the
tree. During the post-order pass, a sequence median is
constructed such that the median assignment
minimizes the cost to the two descendent sequences.

This is accomplished via dynamic programming using
a modified string-matching algorithm (Wheeler, 1996).
The original algorithm assumed that all match events
(e.g. A ? A) occurred with zero cost (Wheeler, 1993).
The MAP-A case here does not share this property
but, since the cost of assignment (equation 5) takes
into account match cost, this does not cause a
problem. It is worth noting that there may be multiple
elements assigned to a specific median position. For
instance, under the Neyman model the median for two
sequences A and G would be either A or G,
represented as R in IUPAC code.

Tree traversal and MAP-A determination. Each
internal (non-leaf) vertex is assigned a median
sequence based on its two descendant and one
ancestor sequences, and the total cost of the tree is the
sum of the edge (costs) between each pair of vertices.
As with the pre-aligned or non-sequence case, care
must be taken at the root not to overcount matching
events. This can be overcome by simply treating one
of the leaf sequences as the root sequence. This
optimization problem-tree alignment (Sankoff, 1975) is
known to be NP-hard (Wang and Jiang, 1994), hence
the DO procedure is a heuristic upper bound on tree
cost.
Consider the case of four sequences A, A, AC, and

AC under a Neyman model with r = 5 and a uniform
branch length distribution (a = 10). The MAP-A tree
and assignment (Fig. 2) results in a cost of 4.536 (six
A ? A, two C ? C, and one C-insertion event; pos-
terior probability = 0.01072). If the assignment were
based on multiple sequence alignment, the cost
increases (integrated likelihood decreases) due to the
extra events required (2 9 – ? –).
It is important to emphasize that this procedure

identifies a single assignment of maximum posterior
probability and is not the total posterior for the tree.
The value is akin to the “dominant” likelihood in
sequence comparison (Thorne et al., 1991). Determina-
tion of the total posterior probability would require
(as in Fig. 1) the sum over all possible assignments.
For DO analysis of sequence characters, this presents
a problem. While it is possible to determine the total
posterior probability for a given pair of sequences (by
summing probabilities during median calculation;
Wheeler, 2006), the DO method does not represent rel-
ative probabilities of alternate state assignments or
length distribution when median states are assigned.
The algorithm determines subsequent assignments
based on these medians. The cost calculation will be
optimal for a given specific assignment, but this assign-
ment is not guaranteed to be to be optimal for the
entire tree, and there is a potentially exponential num-
ber of assignments that contribute to the total poster-
ior probability.
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General case

The cases above employ restricted models, but the
method of analysis they suggest can be extended to
more complex scenarios. In the general case, the ana-
lytical integrations of the Neyman model can be
replaced by numerical integration over a broad variety
of distributions and parameters. These typically might
include edge parameters (branch length), rate parame-
ters including the discrete gamma distribution (with
rate classes), invariant sites, and state transformation
models (e.g. GTR). As with the sequence example
above, indel parameters can be included as an addi-
tional state in sequence models to allow for analysis of
unaligned sequences.
Since the result of this process is the transformation

cost matrix, the numerical integration can be per-
formed a single time for each set of parameters before
a search is used to identity the MAP-A solution, as in
the simple cases above.
To demonstrate the use of this approach for nucleo-

tides and indels (five elements), analytical parameters
were drawn with symmetric Dirichlet distribution (all
parameters 1.0) for the five element priors and 10
instantaneous rate change parameters, uniform distri-
bution [0.0–1.0] for invariant sites, uniform distribu-

tion [0.0–50.0] for the a-shape parameter, uniform
discrete distribution [1–7] for rate classes, and expo-
nential distribution (a = 10.0) for edge (branch)
lengths. This process was repeated 2 9 108 times, in
each case calculating the transition probabilities
between each pair of elements (using the program
MAPA, available with POY5). Due to the symmetry
in the Dirichlet parameters for element priors and
transition rates, the only probabilities that are asymp-
totically unique are those of an element remaining un-
transformed along an edge (pii = 0.089422) and that of
transformation having occurred (pij = 0.64231). This
results in transformed weights of wii = 0.44268 and
wij = 2.41438.

An example: metazoan ribosomal DNA

A dataset of 208 complete metazoan 18S rDNA
sequences (Giribet and Wheeler, 2001; Wheeler, 2007)
was analysed using the MAP-A weight function and
compared with other forms of analysis. An aligned
version of the data was created using CLUSTAL ver.
2.0.012 (Larkin et al., 2007) under default parameters.
The data were treated as both aligned and unaligned
using parsimony with substitutions = indels = 1, and
using MAP-A weights as determined above
(wii = 0.44268, wij = 2.41438). In each case, a simple
search with 10 random-addition Wagner build
sequences, tree bisection and reconnection (TBR)
branch swapping, and tree fusing were performed.
The analyses based on equally weighted parsimony

(counting indels) show a typical pattern of multiple
sequence alignment (MSA)-based analysis with higher
cost than for DO-based analysis. In this case, the
MSA-based tree is 16% more costly than the DO
(30 990 versus 26 744). The same pattern follows for
the MAP-A analysis with the MSA-based MAP-A of
584 316.21396 and the DO-based 380 663.93472. This
difference is, in large part, due to the necessity of
accounting for “gap-to-gap” events in the MSA, a sit-
uation that will never occur in a median optimization
approach such as DO. If an adjustment is made to
remove this contribution (by arbitrarily setting
wgap ? gap = 0), the difference in values still favours
the DO-based tree, but by a smaller margin
(380 663.93472 versus 385 973.23538)1 . The MAP tree
generated by MrBayes is included for comparative
purposes, but its MAP value of 0.002660 is not
directly comparable with the MAP-A numbers. The
MAP-A score of this tree is 382 437.61768 (DO via
diagnosis), which is very close to the cost of the DO-
based MAP-A tree found with a search.

Fig. 2. The case of four simple sequences under a Neyman model
with r = 5 and an exponential branch length distribution (a = 10).
The upper case shows DO assignments to internal nodes
(cost = 4.536, MAP-A = 0.01072) with a single indel on the central
branch (insert or delete C); the lower case is based on multiple align-
ment (cost = 4.687, MAP-A = 0.009218) including the central indel
(C ↔ –) and two gap matches (– ↔ –).

1This kludge allows for verification and comparison, but does

not result from, or imply, any possible stochastic model of change.
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Combined analysis: arthropod systematics

As a demonstration of how a combined (“total evi-
dence” or simultaneous) analysis can be performed
under MAP-A, the arthropod data set of Giribet et al.
(2001) was used. In this data set of 54 taxa with eight
molecular loci and 303 morphological characters,
MAP-A weight matrices were created as above using
an exponential distribution (with parameter 10.0) for
edge lengths. Molecular sequence character models
were as above in the initial sequence example
(wii = 0.07551, wij = 4.007) and a Neyman-based
model was created for the characters with alphabet
sizes varying from two to 10 (equation 4). The results
are shown in Fig. 3 for equally weighted parsimony
(morphological changes = nucleotide substitu-
tions = indels), MAP-A, and MAP (via MrBayes ver.
3.2.1).
Several groups are common to the three optimality

criteria, including Pycnogonida, Chelicerata, Remipe-

dia, and paraphyletic Crustacea and Myriapoda. Oth-
ers are specific to parsimony (Entognatha) or
parsimony and MAP (Tetraconata). While the myria-
pods are never (in these analyses) monophyletic, sev-
eral lineages (e.g. Pauropodinae) group with the
entognathan Protura. The MAP-A tree is more similar
to that of parsimony (Robinson–Foulds distance,
RF = 40) than either is to MAP (RF = 56) (via
TREEDIST in Phylip ver. 3.69, Felsenstein, 2004 and
POY5b, Var�on et al., 2013).

Group support

Similarly to likelihood ratios (Wheeler, 2006), the
commonly used Bremer support (Goodman et al.,
1982; Bremer, 1994), where tree costs are expressed as
the –log of posterior probabilities, yields the log of the
Bayes factor for each subtree (difference in log of
MAP-A cost with and without subtree). That is, the
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Fig. 3. Combined arthropod analysis under equally weighted parsimony (a), MAP-A (b), and MAP (c). MP and MAP-A using direct optimiza-
tion and POY5b, MAP based on MSA (CLUSTAL) and MrBayes ver. 3.2.1. In the MP and MAP-A cases, simple searches of 100 RAS + TBR
with tree fusing were performed; in the MAP case, 200M generations with 2 9 4 chains. The parsimony tree (left) has a score of 29 945 (MAP-
A = 160 476.65905, –ln units); the MAP-A tree (centre) 159 533.61236 (parsimony score = 30 108); and the MAP tree (right) has a posterior
probability of 0.000197 (MAP-A = 162 772.33991; parsimony score = 30 553). Bremer support values (a), log MAP-A ratios (b), and clade pos-
terior probabilities (c, when > 50%) are displayed beneath branches. Values are determined by comparison with trees in the TBR neighbourhood
of the best tree.
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log ratio of odds for the best tree found and the best
tree without that subtree. This is shown in Fig. 3,
where groups such as Pycnogonida, Chelicerata, and
especially Remipedia have relatively high log odds
compared with others such as Tetraconata (“Crusta-
cea” + Hexapoda), which are more equivocal. Overall,
group support (whether by Bremer, odds ratio, or
clade-posterior probability) is fairly consistent in terms
of well supported groups (e.g. Pycnogonida: 128 parsi-
mony Bremer, 3982.7478 log odds ratio, 100% clade
posterior probability) versus weakly supported ones
(e.g. Tetraconata: 122 parsimony Bremer, < 1.0 log
odds ratio, 51% clade posterior probability).

Heuristic utility

MAP-A searches can be achieved in much less time
than MC3-based MAP searches: CPU hours versus
CPU days. A 100 Wagner build and TBR branch
swap for the unaligned (using DO) combined arthro-
pod data set (above) took 26 CPU hours on a 2.93
Ghz Intel HexaCore i7 desktop running OSX 10.7 (a
single TBR swap takes 128 s). The 200M 2 9 4 chain
runs of the aligned (CLUSTAL) data set with MrBa-
yes 3.2.1 required 1084 CPU hours. These values are
not meant to represent completely adequate analytical
effort, but example timings.

Discussion

MAP-A is a novel form of posterior probability-
based (Bayesian) optimality criteria. As such, we can
use this value in hypothesis testing, hence the identifi-
cation of heuristically useful phylogenetic scenarios.
Unlike MAP, MAP-A is based on a single assignment
of maximal posterior probability, not the integration
of all possible vertex state assignments on a tree. Like
MAP, MAP-A does not depend on the potentially
exponential time complexity (Mossel and Vigoda,
2005, 2006) of numerical stationarity that clade-based
posterior probabilities require. Hence MAP-A is a rel-
atively efficient, optimality based method of identifying
heuristically best phylogenetic trees and associated
odds-based support values for subcomponents.
The weights used to identify MAP-A solutions can

also be viewed as a posterior probability-based weight-
ing function that can be used in typical phylogenetic
analysis. Such a weighting scenario is employable in a
dynamic or static homology analysis. The main differ-
ence between MAP-A and standard likelihood analysis
is in the use of integrated branch lengths as opposed
to point estimates. In this sense, MAP-A is more akin
to integrated likelihood than to maximum average
likelihood. The most important distinction between

MAP-A weights and those used in standard parsimony
analysis is the non-zero identity weights. Unlike famil-
iar scenarios, there is a non-zero cost for a transforma-
tion between identical states. This is, of course,
reasonable given stochastic models of change where
the probability of non-change is non-zero.
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