DCI: Earth and Human Activity

MS.ESS3.A: Natural Resources

Humans depend on Earth's land, ocean, atmosphere, and biosphere for many different resources. Minerals, fresh water, and biosphere resources are limited, and many are not renewable or replaceable over human lifetimes. These resources are distributed unevenly around the planet as a result of past geologic processes. (MS-ESS3-1)

DCI: Earth and Human Activity

MS.ESS3.B: Natural Hazards

Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations and likelihoods of future events. (MS-ESS3-2)

DCI: Earth and Human Activity

MS.ESS3.C: Human Impacts on Earth Systems

Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth's environments can have different impacts (negative and positive) for different living things. (MS-ESS3-3)

DCI: Earth and Human Activity

MS.ESS3.C: Human Impacts on Earth Systems

Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise. (MS-ESS3-3), (MS-ESS3-4)

DCI: Earth and Human Activity

MS.ESS3.D: Global Climate Change

Human activities, such as the release of greenhouse gases from burning fossil fuels, are major factors in the current rise in Earth's mean surface temperature (global warming). Reducing the level of climate change and reducing human vulnerability to whatever climate changes do occur depend on the understanding of climate science, engineering capabilities, and other kinds of knowledge, such as understanding of human behavior and on applying that knowledge wisely in decisions and activities. (MS-ESS3-5)

DCI: Matter and Its Interactions

MS.PS1.A: Structure and Properties of Matter

Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms. (MS-PS1-1)

MS.PS1.A: Structure and Properties of Matter

Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). (MS-PS1-1)

DCI: Matter and Its Interactions

MS.PS1.A: Structure and Properties of Matter

Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS-PS1-2)

DCI: Matter and Its Interactions

MS.PS1.B: Chemical Reactions

Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-2)

MS.PS1.A: Structure and Properties of Matter

Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS-PS1-3)

DCI: Matter and Its Interactions

MS.PS1.B: Chemical Reactions

Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-3)

DCI: Matter and Its Interactions

MS.PS1.A: Structure and Properties of Matter

Gases and liquids are made of molecules or inert atoms that are moving about relative to each other. (MS-PS1-4)

MS.PS1.A: Structure and Properties of Matter

In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. (MS-PS1-4)

DCI: Matter and Its Interactions

MS.PS1.A: Structure and Properties of Matter

The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter. (MS-PS1-4)

DCI: Energy

MS.PS3.A: Definitions of Energy

The term "heat" as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance) and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to the energy transferred due to the temperature difference between two objects. (MS-PS1-4)

DCI: Energy

MS.PS3.A: Definitions of Energy

The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule (whichever is the appropriate building block for the system's material). The details of that relationship depend on the type of atom or molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system's total thermal energy. The total thermal energy (sometimes called the total internal energy) of a system depends jointly on the temperature, the total number of atoms in the system, and the state of the material. (MS-PS1-4)

DCI: Matter and Its Interactions

MS.PS1.B: Chemical Reactions

Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-5)

DCI: Matter and Its Interactions

MS.PS1.B: Chemical Reactions

The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-5)

MS.PS1.B: Chemical Reactions

Some chemical reactions release energy, others store energy. (MS-PS1-6)

DCI: Engineering Design

MS.ETS1.B: Developing Possible Solutions

A solution needs to be tested, and then modified on the basis of the test results in order to improve it. (MS-PS1-6)

DCI: Engineering Design

MS.ETS1.C: Optimizing the Design Solution

Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (MS-PS1-6)

DCI: Engineering Design

MS.ETS1.C: Optimizing the Design Solution

The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (MS-PS1-6)

DCI: Energy

MS.PS3.A: Definitions of Energy

Motion energy is properly called kinetic energy; it is proportional to the mass of the moving object and grows with the square of its speed. (MS-PS3-1)

DCI: Energy

MS.PS3.A: Definitions of Energy

A system of objects may also contain stored (potential) energy, depending on their relative positions. (MS-PS3-2)

DCI: Energy

MS.PS3.C: Relationship Between Energy and Forces

When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object. (MS-PS3-2)

DCI: Energy

MS.PS3.A: Definitions of Energy

Temperature is not a measure of energy; the relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. (MS-PS3-3)

DCI: Energy

MS.PS3.B: Conservation of Energy and Energy Transfer

Energy is spontaneously transferred out of hotter regions or objects and into colder ones. (MS-PS3-3)

DCI: Engineering Design

MS.ETS1.A: Defining and Delimiting Engineering Problems

The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to limit possible solutions. (MS-PS3-3)

DCI: Engineering Design

MS.ETS1.B: Developing Possible Solutions

A solution needs to be tested, and then modified on the basis of the test results in order to improve it. There are systematic processes for evaluating solutions with respect to how well they meet criteria and constraints of a problem. (MS-PS3-3)

DCI: Energy

MS.PS3.A: Definitions of Energy

Temperature is not a measure of energy; the relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. (MS-PS3-4)

DCI: Energy

MS.PS3.B: Conservation of Energy and Energy Transfer

The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environment. (MS-PS3-4)

DCI: Ecosystems: Interactions, Energy, and Dynamics

MS.LS2.A: Interdependent Relationships in Ecosystems

Organisms, and populations of organisms, are dependent on their environmental interactions both with other living things and with nonliving factors. (MS-LS2-1)

DCI: Ecosystems: Interactions. Energy, and Dynamics

MS.LS2.A: Interdependent Relationships in Ecosystems

In any ecosystem, organisms and populations with similar requirements for food, water, oxygen, or other resources may compete with each other for limited resources, access to which consequently constrains their growth and reproduction. (MS-LS2-1)

DCI: Ecosystems: Interactions, Energy, and Dynamics

MS.LS2.A: Interdependent Relationships in Ecosystems

Growth of organisms and population increases are limited by access to resources. (MS-LS2-1)

DCI: Ecosystems: Interactions, Energy, and Dynamics

MS.LS2.A: Interdependent Relationships in Ecosystems

Similarly, predatory interactions may reduce the number of organisms or eliminate whole populations of organisms. Mutually beneficial interactions, in contrast, may become so interdependent that each organism requires the other for survival. Although the species involved in these competitive, predatory, and mutually beneficial interactions vary across ecosystems, the patterns of interactions of organisms with their environments, both living and nonliving, are shared. (MS-LS2-2)

DCI: Ecosystems: Interactions, Energy, and Dynamics

MS.LS2.C: Ecosystem Dynamics, Functioning, and Resilience

Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem can lead to shifts in all its populations. (MS-LS2-4)

DCI: Earth's Systems

MS.ESS2.C: The Roles of Water in Earth's Surface Processes

The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns. (MS-ESS2-5)

DCI: Earth's Systems

MS.ESS2.D: Weather and Climate

Because these patterns are so complex, weather can only be predicted probabilistically. (MS-ESS2-5)

DCI: Earth's Systems

MS.ESS2.C: The Roles of Water in Earth's Surface Processes

Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents. (MS-ESS2-6)

DCI: Earth's Systems

MS.ESS2.D: Weather and Climate

Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns. (MS-ESS2-6)

DCI: Earth's Systems

MS.ESS2.D: Weather and Climate

The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents. (MS-ESS2-6)

DCI: Ecosystems: Interactions, Energy, and Dynamics

MS.LS2.C: Ecosystem Dynamics, Functioning, and Resilience

Biodiversity describes the variety of species found in Earth's terrestrial and oceanic ecosystems. The completeness or integrity of an ecosystem's biodiversity is often used as a measure of its health. (MS-LS2-5)

DCI: Biological Evolution: Unity and Diversity

MS.LS4.D: Biodiversity and Humans

Changes in biodiversity can influence humans' resources, such as food, energy, and medicines, as well as ecosystem services that humans rely on— for example, water purification and recycling. (MS-LS2-5)

DCI: Engineering Design

MS.ETS1.B: Developing Possible Solutions

There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (MS-LS2-5)

Performance Expectation

MS-ESS3-1: Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.

Clarification Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock)

Assessment Boundary: none

MS-ESS3-2: Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

Clarification Statement: Emphasis is on how some natural hazards, such as volcanic eruptions and severe weather, are preceded by phenomena that allow for reliable predictions, but others, such as earthquakes, occur suddenly and with no notice, and thus are not yet predictable. Examples of natural hazards can be taken from interior processes (such as earthquakes and volcanic eruptions), surface processes (such as mass wasting and tsunamis), or severe weather events (such as hurricanes, tornadoes, and floods). Examples of data can include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies can be global (such as satellite systems to monitor hurricanes or forest fires) or local (such as building basements in tornado-prone regions or reservoirs to mitigate droughts).

Assessment Boundary: none

Performance Expectation

MS-ESS3-3: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.*

Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land). Assessment Boundary: none

* This performance expectation integrates traditional science content with engineering through a practice or disciplinary code idea.

Performance Expectation

MS-ESS3-4: Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

Clarification Statement: Examples of evidence include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth's systems as well as the rates at which they change. The consequences of increases in human populations and consumption of natural resources are described by science, but science does not make the decisions for the actions society takes.

Assessment Boundary: none

MS-ESS3-5: Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

Clarification Statement: Examples of factors include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence can include tables, graphs, and maps of global and regional temperatures, atmospheric levels of gases such as carbon dioxide and methane, and the rates of human activities. Emphasis is on the major role that human activities play in causing the rise in global temperatures.

Assessment Boundary: none

Performance Expectation

MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures.

Clarification Statement: Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include ammonia and methanol. Examples of extended structures could include sodium chloride or diamonds. Examples of molecular-level models could include drawings, 3D ball and stick structures, or computer representations showing different molecules with different types of atoms.

Assessment Boundary: Assessment does not include valence electrons and bonding energy, discussing the ionic nature of subunits of complex structures, or a complete description of all individual atoms in a complex molecule or extended structure is not required.

Performance Expectation

MS-PS1-2: Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Clarification Statement: Examples of reactions could include burning sugar or steel wool, fat reacting with sodium hydroxide, and mixing zinc with hydrogen chloride.

Assessment Boundary: Assessment is limited to analysis of the following properties: density, melting point, boiling point, solubility, flammability, and odor.

MS-PS1-3: Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Clarification Statement: Emphasis is on natural resources that undergo a chemical process to form the syntheic material. Examples of new materials could include new medicine, foods, and alternative fuels.

Assessment Boundary: Assessment is limited to qualitative information.

Performance Expectation

MS-PS1-4: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawing and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.

Assessment Boundary: none

Performance Expectation

MS-PS1-5: Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Clarification Statement: Emphasis is on law of conservation of matter and on physical models or drawings, including digital forms, that represent atoms.

Assessment Boundary: Assessment does not include the use of atomic masses, balancing symbolic equations, or intermolecular forces.

MS-PS1-6: Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.*

Clarification Statement: Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride.

Assessment Boundary: Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device.

* This performance expectation integrates traditional science content with engineering through a practice or disciplinary code idea.

Performance Expectation

MS-PS3-1: Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball. **Assessment Boundary:** none

Performance Expectation

MS-PS3-2: Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate's hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.

Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.

MS-PS3-3: Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.*

Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.

Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.

* This performance expectation integrates traditional science content with engineering through a practice or disciplinary code idea.

Performance Expectation

MS-PS3-4: Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.

Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.

Performance Expectation

MS-LS2-1: Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Clarification Statement: Emphasis is on cause and effect relationships between resources and growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant and scarce resources.

Assessment Boundary: none

MS-LS2-2: Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

Clarification Statement: Emphasis is on predicting consistent patterns of interactions in different ecosystems in terms of the relationships among and between organisms and abiotic components of ecosystems. Examples of types of interactions could include competitive, predatory, and mutually beneficial.

Assessment Boundary: none

Performance Expectation

MS-LS2-4: Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Clarification Statement: Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes to ecosystems.

Assessment Boundary: none

Performance Expectation

MS-ESS2-5: Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.

Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation).

Assessment Boundary: Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.

MS-ESS2-6: Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations

Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.

Performance Expectation

MS-LS2-5: Evaluate competing design solutions for maintaining biodiversity and ecosystem services.*

Clarification Statement: Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.

Assessment Boundary: none

* This performance expectation integrates traditional science content with engineering through a practice or disciplinary code idea.

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in grades 6–8 builds from grades K–5 experiences and progresses to specifying relationships between variables and clarifying arguments and models.

Ask questions to identify and clarify evidence of an argument. (MS-ESS3-5)

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

Analyze and interpret data to determine similarities and differences in findings. (MS-ESS3-2)

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (MS-ESS3-1)

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Apply scientific ideas or principles to design an object, tool, process or system. (MS-ESS3-3)

Engaging in Argument from Evidence

Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).

Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-ESS3-4)

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

Develop a model to predict and/or describe phenomena. (MS-PS1-1)

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

Analyze and interpret data to determine similarities and differences in findings. (MS-PS1-2)

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 6–8 builds on K–5 experiences and progresses to evaluating the merit and validity of ideas and methods.

Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence. (MS-PS1-3)

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

Develop a model to predict and/or describe phenomena. (MS-PS1-4)

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

Develop a model to describe unobservable mechanisms. (MS-PS1-5)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints. (MS-PS1-6)

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

Construct and interpret graphical displays of data to identify linear and nonlinear relationships. (MS-PS3-1)

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

Develop a model to describe unobservable mechanisms. (MS-PS3-2)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Apply scientific ideas or principles to design, construct, and test a design of an object, tool, process or system. (MS-PS3-3)

Science and Engineering Practices

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions.

Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim. (MS-PS3-4)

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

Analyze and interpret data to provide evidence for phenomena. $(\mbox{\sc MS-LS2-1})$

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Construct an explanation that includes qualitative or quantitative relationships between variables that predict phenomena. (MS-LS2-2)

Science and Engineering Practices

Engaging in Argument from Evidence

Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).

Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-LS2-4)

Science and Engineering Practices

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions.

Collect data about the performance of a proposed object, tool, process, or system under a range of conditions. (MS-ESS2-5)

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

Develop and use a model to describe phenomena. (MS-ESS2-6)

Science and Engineering Practices

Engaging in Argument from Evidence

Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).

Evaluate competing design solutions based on jointly developed and agreed-upon design criteria. (MS-LS2-5)

Crosscutting Concepts

Patterns

Graphs, charts, and images can be used to identify patterns in data. $(\mbox{\scriptsize MS-ESS3-2})$

Cause and Effect

Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-ESS3-1), (MS-ESS3-4)

Crosscutting Concepts

Cause and Effect

Relationships can be classified as causal or correlational, and correlation does not necessarily imply causation. (MS-ESS3-3)

Crosscutting Concepts

Stability and Change

Stability might be disturbed either by sudden events or gradual changes that accumulate over time. (MS-ESS3-5)

Scale, Proportion, and Quantity

Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. (MS-PS1-1)

Crosscutting Concepts

Patterns

Macroscopic patterns are related to the nature of microscopic and atomic-level structure. (MS-PS1-2)

Crosscutting Concepts

Structure and Function

Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used. (MS-PS1-3)

Cause and Effect

Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-PS1-4)

Crosscutting Concepts

Energy and Matter

Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-5)

Crosscutting Concepts

Energy and Matter

The transfer of energy can be tracked as energy flows through a designed or natural system. (MS-PS1-6)

Scale, Proportion, and Quantity

Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes. (MS-PS3-1)

Crosscutting Concepts

Systems and System Models

Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy and matter flows within systems. (MS-PS3-2)

Crosscutting Concepts

Energy and Matter

The transfer of energy can be tracked as energy flows through a designed or natural system. (MS-PS3-3)

Scale, Proportion, and Quantity

Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes. (MS-PS3-4)

Crosscutting Concepts

Cause and Effect

Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-LS2-1)

Crosscutting Concepts

Patterns

Patterns can be used to identify cause-and-effect relationships. (${\tt MS-LS2-2}$)

Stability and Change

Small changes in one part of a system might cause large changes in another part. (MS-LS2-4)

Crosscutting Concepts

Cause and Effect

Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-ESS2-5)

Crosscutting Concepts

Systems and System Models

Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems. (MS-ESS2-6)

Stability and Change

Small changes in one part of a system might cause large changes in another part. (MS-LS2-5)

Connections to Nature of Science

Science Addresses Questions About the Natural and Material World

Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes. (MS-ESS3-4)

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time. (MS-ESS3-2), (MS-ESS3-3)

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. (MS-ESS3-1), (MS-ESS3-4)

Connections to Engineering, Technology, and Applications of Science

Science Knowledge Is Based on Empirical Evidence

Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-PS1-2)

Connections to Engineering, Technology, and Applications of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-5)

Connections to Engineering, Technology, and Applications of Science

Science Knowledge Is Based on Empirical Evidence

Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-PS3-4)

Connections to Engineering, Technology, and Applications of Science

Science Knowledge Is Based on Empirical Evidence

Science disciplines share common rules of obtaining and evaluating empirical evidence. (MS-LS2-4)

Connections to Engineering, Technology, and Applications of Science

Science Addresses Questions About the Natural and Material World

Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes. (MS-LS2-5)

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time. (MS-PS1-3)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

Engineering advances have led to important discoveries in virtually every field of science and scientific discoveries have led to the development of entire industries and engineered systems. (MS-PS1-3)

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time. (MS-LS2-5)

Common Core State Standards for ELA/Literacy

Reading in Science

RST.6-8.1 - Key Ideas and Details

Cite specific textual evidence to support analysis of science and technical texts. (MS-ESS3-1), (MS-ESS3-2), (MS-ESS3-4), (MS-ESS3-5)

Common Core State Standards for ELA/Literacy

Reading in Science

RST.6-8.7 - Integration of Knowledge and Ideas

Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-ESS3-2)

Common Core State Standards for ELA/Literacy

Writing in Science

WHST.6-8.1 - Text Types and Purposes

Cite specific textual evidence to support analysis of science and technical texts. (MS-ESS3-4)

Common Core State Standards for ELA/Literacy

Writing in Science

WHST.6-8.2 - Text Types and Purposes

Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (MS-ESS3-1)

Common Core State Standards for ELA/Literacy

Writing in Science

WHST.6-8.7 - Research to Build and Present Knowledge

Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-ESS3-3)

Common Core State Standards for ELA/Literacy

Writing in Science

WHST.6-8.8 - Research to Build and Present Knowledge

Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-ESS3-3)

Common Core State Standards for ELA/Literacy

Writing in Science

WHST.6-8.9 - Research to Build and Present Knowledge

Draw evidence from informational texts to support analysis reflection, and research. (MS-ESS3-1), (MS-ESS3-3)

Common Core State Standards for Mathematics

Expressions & Equations

6.EE.B.6 - Reason about and solve one-variable equations and inequalities.

Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-ESS3-1), (MS-ESS3-2), (MS-ESS3-3), (MS-ESS3-4), (MS-ESS3-5)

Common Core State Standards for Mathematics

Ratios & Proportional Relationships

6.RP.A.1 - Understand ratio concepts and use ratio reasoning to solve problems.

Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-ESS3-3), (MS-ESS3-4)

Common Core State Standards for Mathematics

Expressions & Equations

7.EE.B.4 - Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-ESS3-1), (MS-ESS3-2), (MS-ESS3-3), (MS-ESS3-5)

Common Core State Standards for Mathematics

Ratios & Proportional Relationships

7.RP.A.2 - Analyze proportional relationships and use them to solve real-world and mathematical problems.

Recognize and represent proportional relationships between quantities. (MS-ESS3-3), (MS-ESS3-4)

Common Core State Standards for Mathematics

Mathematical Practices

MP.2 - Reason abstractly and quantitatively

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects. (MS-ESS3-2), (MS-ESS3-5)