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Abstract

Models that predict distributions of species by combining 
known occurrence records with digital layers of environmen-
tal variables have much potential for application in conser-
vation. Through using this module, teachers will enable stu-
dents: to develop species’ distribution models; to apply the 
models across a series of analyses; and to interpret predictions 
accurately. Part A of the synthesis introduces the modeling 
approach, outlines key concepts and terminology, and de-
scribes questions that may be addressed using the approach. 
A theoretical framework that is fundamental to ensuring that 
students understand the uses and limitations of the models is 
then described. Part B of the synthesis details the main steps 
in building and testing a distribution model. Types of data that 
can be used are described and some potential sources of spe-
cies’ occurrence records and environmental layers are listed. 
The variety of alternative algorithms for developing distribu-
tion models is discussed, and software programs available to 
implement the models are listed. Techniques for assessing the 
predictive ability of a distribution model are then discussed, 
and commonly used statistical tests are described. Part C of 
the synthesis describes three case studies that illustrate appli-
cations of the models: 1) Predicting distributions of known 
and unknown species in Madagascar; 2) Predicting global in-
vasions by plants of South African origin; and 3) Modeling 
the potential impacts of climate change on species’ distribu-
tions in Britain and Ireland.

This synthesis document is part of an NCEP (Network of 
Conservation Educators and Practitioners; http://ncep.amnh.
org/) module that also includes a presentation and a practical 
exercise:
• An introduction to species’ distribution modeling: theory 

and practice (presentation by Richard Pearson)

• Species’ distribution modeling using Maxent (practical by 
Steven Phillips)

This module is targeted at a level suitable for teaching gradu-
ate students and conservation professionals.

Learning objectives

Through use of this synthesis, teachers will enable students 
to:

1. Understand the theoretical underpinnings of species’ 
 distribution models
2. Run a distribution model using appropriate data and 
 methods
3. Test the predictive performance of a distribution model
4. Apply distribution models to address a range of conserva-

tion questions

Introduction and Theory

Introduction

Predicting species’ distributions has become an important 
component of conservation planning in recent years, and a 
wide variety of modeling techniques have been developed 
for this purpose (Guisan and Thuiller, 2005). These models 
commonly utilize associations between environmental vari-
ables and known species’ occurrence records to identify en-
vironmental conditions within which populations can be 
maintained. The spatial distribution of environments that are 
suitable for the species can then be estimated across a study 
region. This approach has proven valuable for generating bio-
geographical information that can be applied across a broad 
range of fields, including conservation biology, ecology, and 

http://ncep.amnh.org/
http://ncep.amnh.org/
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evolutionary biology. The focus of this synthesis is on con-
servation-oriented applications, but the methods and theory 
discussed are also applicable in other fields (see Table 1 for a 
list of some uses of species’ distribution models in conserva-
tion biology and other disciplines).

This synthesis aims to provide an overview of the theory and 
practice of species’ distribution modeling. Through use of 
the synthesis, teachers will enable students to understand the 
theoretical basis of distribution models, to run models using 
a variety of approaches, to test the predictive ability of mod-
els, and to apply the models to address a range of questions. 
Part A of the synthesis introduces the modeling approach and 
describes the usefulness of the models in addressing conser-
vation questions. Part B details the main steps in building a 
distribution model, including selecting and obtaining suitable 
data, choosing a modeling algorithm, and statistically assess-
ing predictive performance. Part C of the synthesis provides 
three case studies that demonstrate uses of species’ distribu-
tion models.

What is a species’ distribution model?
The most common strategy for estimating the actual or po-
tential geographic distribution of a species is to characterize 
the environmental conditions that are suitable for the species, 
and to then identify where suitable environments are distrib-
uted in space. For example, if we are interested in modeling 
the distribution of a plant that is known to thrive in wet clay 
soils, then simply identifying locations with clay soils and high 
precipitation can generate an estimate of the species’ distri-
bution. There are a number of reasons why the species may 
not actually occupy all suitable sites (e.g. geographic barriers 
that limit dispersal, competition from other species), which 
we will discuss later in this synthesis. However, this is the fun-
damental strategy common to most distribution models.

The environmental conditions that are suitable for a species 
may be characterized using either a mechanistic or a correlative 
approach. Mechanistic models aim to incorporate physiologi-
cally limiting mechanisms in a species’ tolerance to environ-
mental conditions. For example, Chuine and Beaubien (2001) 

modeled distributions of North American tree species by esti-
mating responses to environmental variables (including mean 
daily temperature, daily precipitation, and night length) using 
mechanistic models of factors including frost injury, phenol-
ogy, and reproductive success. Such mechanistic models re-
quire detailed understanding of the physiological response of 
species to environmental factors and are therefore difficult to 
develop for all but the most well understood species. 

Correlative models aim to estimate the environmental con-
ditions that are suitable for a species by associating known 
species’ occurrence records with suites of environmental vari-
ables that can reasonably be expected to affect the species’ 
physiology and probability of persistence. The central premise 
of this approach is that the observed distribution of a species 
provides useful information as to the environmental require-
ments of that species. For example, we may assume that our 
plant species of interest favors wet clay soils because it has 
been observed growing in these soils. The limitations of this 
approach are discussed later in the synthesis, but it has been 
demonstrated that this method can yield valuable biogeo-
graphical information (e.g., Raxworthy et al., 2003; Bourg et 
al., 2005). Since spatially explicit occurrence records are avail-
able for a large number of species, the vast majority of species’ 
distribution models are correlative. The correlative approach 
to distribution modeling is the focus of this synthesis.

The principal steps required to build and validate a correlative 
species’ distribution model are outlined in Figure 1. Two types 
of model input data are needed: 1) known species’ occurrence 
records; and 2) a suite of environmental variables. ‘Raw’ en-
vironmental variables, such as daily precipitation records col-
lected from weather stations, are often processed to generate 
model inputs that are thought to have a direct physiologi-
cal role in limiting the ability of the species to survive. For 
example, Pearson et al. (2002) used a suite of seven climate 
variables and five soil variables to generate five model input 
variables, including maximum annual temperature, minimum 
temperature over a 20-year period, and soil moisture avail-
ability. At this stage, care should be taken to ensure that data 
are checked for errors. For example, simply plotting the spe-
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cies’ occurrence records in a GIS can help identify records 
that are distant from other occupied sites and should therefore 
be checked for accuracy.  Data types and sources are discussed 
in detail in the Section 3: ‘Data types and sources’.

The species occurrence records and environmental variables 
are entered into an algorithm that aims to identify environ-
mental conditions that are associated with species occurrence. 
If just one or two environmental variables were used, then 
this task would be relatively straightforward. For example, 
we may readily discover that our plant species has only been 
recorded at localities where mean monthly precipitation is 
above 60mm and soil clay content is above 40%. In practice, 
we usually seek algorithms that are able to integrate more 
than two environmental variables, since species are in real-
ity likely to respond to multiple factors. Algorithms that can 
incorporate interactions among variables are also preferable 
(Elith et al., 2006). For example, a more accurate description 
of our plant’s requirements may be that it can occur at lo-
calities with mean monthly precipitation between 60mm and 
70mm if soil clay content is above 60%, and in wetter areas 

(>70mm) if clay content is as low as 40%.

A number of modeling algorithms that have been applied to 
this task are reviewed in Section 4. Depending on the method 
used, various decisions and tests will need to be made at this 
stage to ensure the algorithm gives optimal results. For ex-
ample, a suitable ‘regularization’ parameter will need to be 
selected if applying the Maxent method (see Phillips et al., 
2006 and Box 3), or the degrees of freedom must be selected 
if running a generalized additive model (see Guisan et al., 
2002). The relative importance of alternative environmental 
predictor variables may also be assessed at this stage so as to 
select which variables are used in the final model.

Having run the modeling algorithm, a map can be drawn 
showing the predicted species’ distribution. The ability of the 
model to predict the known species’ distribution should be 
tested at this stage. A set of species occurrence records that 
have not previously been used in the modeling should be 
used as independent test data. The ability of the model to 
predict the independent data is assessed using a suitable test 

Figure 1. Flow diagram detailing the main steps required for building and validating a correlative species distribution model.
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statistic. Different approaches to generating test datasets and 
alternative statistical tests are discussed in the section: ‘Assess-
ing predictive performance’. Since a number of modeling al-
gorithms predict a continuous distribution of environmental 
suitability (i.e. a prediction between 0 and 1, as opposed to a 
binary prediction of ‘suitable’ or ‘unsuitable’), it is sometimes 
useful to convert model output into a prediction of suitable 
(1) or unsuitable (0). This is a necessary step before applying 
many test statistics; thus, methods for setting a threshold prob-
ability, above which the species is predicted as present, are also 
outlined in the section: ‘Assessing predictive performance’.

Once these steps have been completed, and if model valida-
tion is successful, the model can be used to predict species’ 
occurrence in areas where the distribution is unknown. Thus, 
a set of environmental variables for the area of interest is in-
put into the model and the suitability of conditions at a given 
locality is predicted. In many cases the model is used to ‘fill 
the gaps’ around known occurrences (e.g., Anderson et al., 
2002a; Ferrier et al., 2002). In other cases, the model may be 
used to predict species’ distributions in new regions (e.g. to 
study invasion potential, for review see Peterson, 2003) or for 
a different time period (e.g. to estimate the potential impacts 
of future climate change, for review see Pearson and Dawson, 
2003). Three examples of the use of predictions from species 
distribution models are presented in Part C. Ideally, model 
predictions in different regions or for different time periods 
should be tested against observed data; for example, Thuiller 
et al. (2005; see Case Study 2) tested predictions of invasion 
potential using occurrence records from the invaded distribu-
tion, while Araújo et al. (2005a) tested predictions of distribu-
tion shifts under climate change using observed records from 
different decades.

This modeling approach has been variously termed ‘species 
distribution’, ‘ecological niche’, ‘environmental niche’, ‘habi-
tat suitability’ and ‘bioclimate envelope’ modeling. Use of 
the term ‘species distribution modeling’ is widespread but it 
should be noted that the term is somewhat misleading since 
it is actually the distribution of suitable environments that is 
being modeled, rather than the species’ distribution per se. Re-

gardless of the name used, the basic modeling process is essen-
tially the same (see Part B) and the theoretical underpinnings 
of the models are similar. It is essential that these theoretical 
underpinnings are properly understood in order to interpret 
model outputs accurately. The following section describes this 
theoretical framework.

Section 2. Theoretical Framework

This section outlines some of the fundamental concepts that 
are crucial for understanding how species’ distribution models 
work, what types of questions they are suitable for addressing, 
and how model output should be interpreted.

Geographical versus environmental space
We are used to thinking about the occurrence of species in 
geographical space; that is, the species’ distribution as plotted 
on a map. To understand species’ distribution models it is im-
portant to also think about species occurring in environmental 
space, which is a conceptual space defined by the environ-
mental variables to which the species responds. The concept 
of environmental space has its foundations in ecological niche 
theory. The term ‘niche’ has a long and varied history of use 
in ecology (Chase and Leibold, 2003), but the definition pro-
posed by Hutchinson (1957) is most useful in the current 
context. Hutchinson defined the fundamental niche of a species 
as the set of environmental conditions within which a spe-
cies can survive and persist. The fundamental niche may be 
thought of as an ‘n-dimensional hypervolume’, every point in 
which corresponds to a state of the environment that would 
permit the species to exist indefinitely (Hutchinson, 1957). 
It is the axes of this n-dimensional hypervolume that define 
environmental space.

Visualizing a species’ distribution in both geographical and 
environmental space helps us to define some basic concepts 
that are crucial for species’ distribution modeling (Fig. 2). No-
tice that the observed localities constitute all that is known 
about the species’ actual distribution; the species is likely to oc-
cur in other areas in which it has not yet been detected (e.g., 
Fig. 2, area A). If the actual distribution is plotted in envi-
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ronmental space then we identify that part of environmental 
space that is occupied by the species, which we can define as 
the occupied niche.

The distinction between the occupied niche and the fun-
damental niche is similar, but not identical, to Hutchinson’s 
(1957) distinction between the realized niche and the funda-
mental niche. With reference to the case of two species utiliz-
ing a common resource, Hutchinson described the realized 

niche as comprising that portion of the fundamental niche 
from which a species is not excluded due to biotic competi-
tion. The definition of the occupied niche used in this synthe-
sis broadens this concept to include geographical and histori-
cal constraints resulting from a species’ limited ability to reach 
or re-occupy all suitable areas, along with biotic interactions 
of all forms (competition, predation, symbiosis, and parasit-
ism). Thus, the occupied niche reflects all constraints imposed 
on the actual distribution, including spatial constraints due to 

Figure 2. Illustration of the relationship between a hypothetical species’ distribution in geographical space and environmental space. Geo-
graphical space refers to spatial location as commonly referenced using x and y coordinates. Environmental space refers to Hutchinson’s 
n-dimensional niche, illustrated here for simplicity in only two dimensions (defined by two environmental factors, e

1
 and e

2
). Crosses 

represent observed species occurrence records. Grey shading in geographical space represents the species’ actual distribution (i.e. those 
areas that are truly occupied by the species). Notice that some areas of actual distribution may be unknown (e.g. area A is occupied but 
the species has not been detected there). The grey area in environmental space represents that part of the niche that is occupied by the 
species: the occupied niche. Again, notice that the observed occurrence records may not identify the full extent of the occupied niche 
(e.g. the shaded area immediately around label D does not include any known localities). The solid line in environmental space depicts 
the species’ fundamental niche, which represents the full range of abiotic conditions within which the species is viable. In geographical 
space, the solid lines depict areas with abiotic conditions that fall within the fundamental niche; this is the species’ potential distribution. 
Some regions of the potential distribution may not be inhabited by the species due to biotic interactions or dispersal limitations. For 
example, area B is environmentally suitable for the species, but is not part of the actual distribution, perhaps because the species has been 
unable to disperse across unsuitable environments to reach this area. Similarly, the non-shaded area around label C is within the species’ 
potential distribution, but is not inhabited, perhaps due to competition from another species. Thus, the non-shaded area around label E 
identifies those parts of the fundamental niche that are unoccupied, for example due to biotic interactions or geographical constraints on 
species dispersal.
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limited dispersal ability, and multiple interactions with other 
organisms.

If the environmental conditions encapsulated within the fun-
damental niche are plotted in geographical space then we have 
the potential distribution. Notice that some regions of the po-
tential distribution may not be inhabited by the species (Fig. 
2, areas B and C), either because the species is: excluded from 
the area by biotic interactions (e.g., presence of a competitor 
or absence of a food source); the species has not dispersed into 
the area (e.g., there is a geographic barrier to dispersal, such 
as a mountain range, or there has been insufficient time for 
dispersal);  or the species has been extirpated from the area 
(e.g. due to human modification of the landscape).

Before we go on to discuss how these concepts are used in 
distribution modeling, it is important to appreciate that the 
environmental variables used in a distribution model are 
unlikely to define all possible dimensions of environmental 
space. Hutchinson (1957) originally proposed that all vari-
ables, “both physical and biological” are required to define 
the fundamental niche. However, the variables available for 
modeling are likely to represent only a subset of possible en-
vironmental factors that influence the distribution of the spe-
cies. Variables used in modeling most commonly 
describe the physical environment (e.g. temper-
ature, precipitation, soil type), though aspects of 
the biological environment are sometimes incor-
porated (e.g. Araújo and Luoto 2007, Heikkinen 
et al. 2007). However, the distinction between bi-
otic and abiotic variables is often problematic; for 
example, land cover type is likely to incorporate 
both abiotic (e.g. urban) and biotic (e.g. deciduous 
forest) classes.

Another important factor that we must be aware 
of is source-sink dynamics, which may cause a 
species to be observed in unsuitable environments. 
‘Source-sink’ refers to the situation whereby an 
area (the ‘sink’) may not provide the necessary en-
vironmental conditions to support a viable popu-

lation, yet may be frequently visited by individuals that have 
dispersed from a nearby area that does support a viable popu-
lation (the ‘source’). In this situation, species occurrence may 
be recorded in sink areas that do not represent suitable habitat, 
meaning that the species is present outside its fundamental 
niche (Pulliam, 2000). We can logically expect this situation 
to occur most frequently in species with high dispersal ability, 
such as birds. In such cases, it is useful to only utilize records 
for modeling that are known to be from breeding distribu-
tions, rather than migrating individuals. Because correlative 
species distribution models utilize observed species occur-
rence records to identify suitable habitat, inclusion of occur-
rence localities from sink populations is problematic. Howev-
er, it is often assumed that observations from source areas will 
be much more frequent than observations from sink areas, so 
this source of potential error is commonly overlooked.

One more thing to be aware of before we move on is that 
some studies explicitly aim to only investigate one part of the 
fundamental niche, by using a limited set of predictor vari-
ables. For example, it is common when investigating the po-
tential impacts of future climate change to focus only on how 
climate variables impact species’ distributions. A species’ niche 
defined only in terms of climate variables may be termed the 

Humpback whales have been recently sighted in unlikely waters around Hong 
Kong and New York Harbor (Source: Chad King)
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climatic niche (Pearson and Dawson, 2003), which represents 
the climatic conditions that are suitable for species existence. 
An approximation of the climatic niche may then be mapped 
in geographical space, giving what is commonly termed the 
bioclimate envelope (Huntley et al., 1995; Pearson and Dawson, 
2003).

Estimating niches and distributions
Let us now consider the extent to which species’ distribution 
models can be used to estimate the niche and distribution 
of a species. We will assume in this section that the model 
algorithm is excellent at defining the relationship between 
observed occurrence localities and environmental variables; 
this will enable us to focus on understanding the ecologi-
cal assumptions underlying distribution models. The ability 
of different modeling algorithms to identify the relationship 
between occurrence localities and environmental variables is 
discussed in the section: ‘Modeling Algorithms’. 

Let us first ask what the aim of the modeling is: what element 
of a species’ distribution are we trying to estimate? There are 
many potential uses of the approach (Table 1) and these re-
quire modeling either the actual distribution or the potential 
distribution. For example, if a model is being used with the 
purpose of selecting sites that should be given high conserva-
tion priority, then modeling the actual distribution will be the 
aim (since there would be less priority given to conserving 
sites where the environment is suitable for the species, but the 
species is not present). In contrast, if the purpose is to identify 
sites that may be suitable for the reintroduction of an endan-
gered species, then modeling the potential distribution is an 
appropriate aim. We will now consider the degree to which 
alternative aims are achievable using the species’ distribution 
modeling approach.

Correlative species’ distribution models rely on observed oc-
currence records for providing information on the niche and 
distribution of a species. Two key factors are important when 
considering the degree to which observed species occurrence 
records can be used to estimate the niche and distribution of 
a species:

1) The degree to which the species is at ‘equilibrium’ with current 
environmental conditions. 

 A species is said to be at equilibrium with the physical 
environment if it occurs in all suitable areas, while being 
absent from all unsuitable areas. The degree of equilib-
rium depends both on biotic interactions (for example, 
competitive exclusion from an area) and dispersal abil-
ity (organisms with higher dispersal ability are expected 
to be closer to equilibrium than organisms with lower 
dispersal ability) (Araújo and Pearson, 2005). When using 
the concept of ‘equilibrium,’ we should remember that 

Table 1. Some published uses of species’ distribution 
models in conservation biology (based in part on Gui-
san and Thuiller, 2005).

Type of use Example reference(s)

Guiding field surveys to find 
populations of known species

Bourg et al., 2005; Guisan et 
al., 2006

Guiding field surveys to 
accelerate the discovery of 
unknown species

Raxworthy et al., 2003

Projecting potential impacts 
of climate change

Iverson and Prasad, 1998; 
Berry et al., 2002; Hannah et 
al., 2005; for review see Pear-
son and Dawson, 2003

Predicting species’ invasion
Higgins et al., 1999; Thuiller 
et al., 2005; for review see 
Peterson, 2003

Exploring speciation 
mechanisms

Kozak and Wiens, 2006; Gra-
ham et al., 2004b

Supporting conservation 
prioritization and reserve 
selection

Araújo and Williams, 2000; 
Ferrier et al., 2002; Leathwick 
et al., 2005

Species delimitation Raxworthy et al., 2007

Assessing the impacts of land 
cover change on species’ distri-
butions

Pearson et al., 2004

Testing ecological theory
Graham et al., 2006; Anderson 
et al., 2002b

Comparing paleodistributions 
and phylogeography

Hugall et al., 2002

Guiding reintroduction of 
endangered species

Pearce and Lindenmayer, 1998

Assessing disease risk Peterson et al., 2006, 2007
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species distributions change over time, so the term should 
not be used to imply stasis. However, the concept is useful 
for us here to help understand that some species are more 
likely than others to occupy areas that are abiotically suit-
able.

2) The extent to which observed occurrence records provide a sample 
of the environmental space occupied by the species. 

 In cases where very few occurrence records are avail-
able, perhaps due to limited survey effort (Anderson and 
Martinez-Meyer, 2004) or low probability of detection 
(Pearson et al., 2007), the available records are unlikely 
to provide a sufficient sample to enable the full range of 
environmental conditions occupied by the species to be 
identified. In other cases, surveys may provide extensive 
occurrence records that provide an accurate picture as to 
the environments inhabited by a species in a particular 
region (for example, breeding bird distributions in the 
United Kingdom and Ireland are well known) (Gibbons 
et al., 1993). It should be noted that there is not necessar-
ily a direct relationship between sampling in geographical 
space and in environmental space. It is quite possible that 
poor sampling in geographical space could still result in 
good sampling in environmental space.

Each of these factors should be carefully considered to ensure 
appropriate use of a species’ distribution model (see Box 1). In 
reality, species are unlikely to be at equilibrium (as illustrated 
by area B in Fig. 2, which is environmentally suitable but is 
not part of the actual distribution) and occurrence records 
will not completely reflect the range of environments oc-
cupied by the species (illustrated by that part of the occupied 
niche that has not been sampled around label D in Fig. 2). 
Fig. 3 illustrates how a species’ distribution model may be fit 
under these circumstances. Notice that the model is calibrated 
(i.e. built) in environmental space and then projected into 
geographical space. In environmental space, the model identi-
fies neither the occupied niche nor the fundamental niche; 
instead, the model fits only to that portion of the niche that 
is represented by the observed records. Similarly, the model 
identifies only some parts of the actual and potential distribu-

tions when projected back into geographical space. Therefore, 
it should not be expected that species’ distribution models are 
able to predict the full extent of either the actual distribution 
or the potential distribution.

This observation may be regarded as a failure of the model-
ing approach (Woodward and Beerling, 1997; Lawton, 2000; 
Hampe, 2004). However, we can identify three types of model 
predictions that yield important biogeographical information: 
species’ distribution models may identify 1) the area around 
the observed occurrence records that is expected to be oc-
cupied (Fig. 3, area 1); 2) a part of the actual distribution 
that is currently unknown (Fig. 3, area 2); and/or 3) part of 
the potential distribution that is not occupied (Fig. 3, area 3). 
Prediction types 2 and 3 can prove very useful in a range of 
applications, as we will see in the following section.

Uses of species’ distribution models
Consider modeled area 2 in Fig. 3, which identifies part of 
the actual distribution for which no occurrence records have 
been collected. Although the model does not predict the full 
extent of the actual distribution, additional sampling in the 
area identified may yield new occurrence records. A number 
of studies have demonstrated the utility of species’ distribu-
tion modeling for guiding field surveys toward regions where 
there is an increased probability of finding new populations 
of a known species (Fleishman et al., 2002; Bourg et al., 2005; 
Guisan et al., 2006; also see Case Study 1). Accelerating the 
discovery of new populations in this way may prove extremely 
useful for conservation planning, especially in poorly known 
and highly threatened landscapes.

Consider now predicted area 3 in Fig. 3. Here, the model 
identifies an area of potential distribution that is environmen-
tally similar to where the species is known to occur, but which 
is not inhabited. The full extent of the potential distribution is 
not predicted, but the model can be useful for identifying sites 
that may be suitable for reintroduction of a species (Pearce 
and Lindenmayer, 1998) or sites where a species is most likely 
to become invasive (if it overcomes dispersal barriers and if 
biotic competition does not prevent establishment) (Peterson, 
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Figure 3. Diagram illustrating how a hypothetical species’ distribution model may be fitted to observed species occurrence records (using 
the same hypothetical case as in Fig. 2). A modelling technique (e.g. GARP, Maxent) is used to characterize the species’ niche in envi-
ronmental space by relating observed occurrence localities to a suite of environmental variables. Notice that, in environmental space, the 
model may not identify either the species’ occupied niche or fundamental niche; rather, the model identifies only that part of the niche 
defined by the observed records. When projected back into geographical space, the model will identify parts of the actual distribution 
and potential distribution. For example, the model projection labeled 1 identifies the known distributional area. Projected area 2 identi-
fies part of the actual distribution that is currently unknown; however, a portion of the actual distribution is not predicted because the 
observed occurrence records do not identify the full extent of the occupied niche (i.e. there is incomplete sampling; see area D in Fig. 
2). Similarly, modeled area 3 identifies an area of potential distribution that is not inhabited (the full extent of the potential distribution 
is not identified because the observed occurrence records do not identify the full extent of the fundamental niche due to, for example, 
incomplete sampling, biotic interactions, or constraints on species dispersal; see areas D and E in Fig. 2).
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2003). Model predictions of this type also have the potential 
to accelerate the discovery of previously unknown species 
that are closely related to the modeled species and that oc-
cupy similar environmental space but different geographical 
space (Raxworthy et al., 2003; see Case Study 1).

Model predictions as illustrated in Fig. 3 therefore have the 
potential to yield useful information, even though species are 
not expected to inhabit all suitable locations and sampling 
may be poor. Additional uses of species’ distribution modeling 
include identifying potential areas for disease outbreaks (Pe-
terson et al., 2006), examining niche evolution (Peterson et 
al., 1999; Kozak and Wiens, 2006) and informing taxonomy 
(Raxworthy et al., 2007). However, some potential applica-
tions require an estimation of the actual distribution of a spe-
cies. For example, if a model is being used with the purpose 
of selecting priority sites for conservation, then an estimate 
of the actual species’ distribution is desired since it would be 
inefficient to conserve sites where the species is not present 
(Loiselle et al., 2003). In such cases, it should be remembered 
that modeled distributions represent environmentally suitable 
regions but do not necessarily correspond closely with the ac-
tual distribution. Additional processing of model output may 
be required to improve predictions of the actual distribution. 
For example, predicted areas that are isolated from observed 
occurrence records by a dispersal barrier may be removed 
(Peterson et al., 2002) and the influence of competing species 
may be incorporated (Anderson et al., 2002b).

It is useful to note that mechanistic distribution models (e.g., 
Chuine and Beaubien, 2001) are subject to the same basic ca-
veat as correlative approaches: the models aim to identify areas 
with suitable environmental conditions, but do not inform us 
which areas are actually occupied. Mechanistic models are 
ideally suited to identifying a species’ fundamental niche, and 
hence its potential distribution. This is because mechanistic 
approaches model physiological limitations in a species’ envi-
ronmental tolerance, without relying on known occurrence 
records to define suitable environments. However, the detailed 
understanding of species’ physiology that is required to build 
mechanistic models prohibits their use in many instances.

The discussion in this section should help clarify the theo-
retical basis of the species’ distribution modeling approach. 
It is crucial that any application of these models has a sound 
theoretical basis and that model outputs are interpreted in 
the context of this framework (see Box 1). It should now be 
apparent why the terminology used to describe these models 
is so varied throughout the literature. The terms ‘ecological 
niche model’, ‘environmental niche model’, ‘bioclimate en-
velope model’ and ‘environmental suitability model’ usually 
refer to attempts to estimate the potential distribution of a 
species. Use of the term ‘species distribution model’ implies 
that the aim is to simulate the actual distribution of the spe-
cies. Nevertheless, each of these terms refers to the same basic 
approach, which can be summarized as follows: 1) the study 
area is modeled as a raster map composed of grid cells at a 
specified resolution; 2) the dependent variable is the known 
species’ distribution; 3) a suite of environmental variables are 
collated to characterize each cell; and 4) a function of the en-
vironmental variables is generated so as to classify the degree 
to which each cell is suitable for the species (Hirzel et al., 
2002). Part B of this synthesis details the principal steps re-
quired to build a distribution model, including selecting and 
obtaining suitable data, choosing a modeling algorithm, and 
statistically assessing predictive performance.

Developing a Species’ Distribution Model

Data Types and Sources

Correlative species’ distribution models require two types of 
data input: biological data, describing the known species’ dis-
tribution, and environmental data, describing the landscape in 
which the species is found. This section discusses the types of 
data that are suitable for distribution modeling, and reviews 
some possible sources of data (see Table 2).

Data used for distribution modeling are usually stored in a 
Geographical Information System (GIS; see Box 2). The data 
may be stored either as point localities (termed ‘point vector’ 
data; e.g. sites where a species has been observed, or locations 
of weather stations), as polygons defining an area (termed 
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‘polygon vector’ data; e.g. areas with different soil types) or as 
a grid of cells (termed ‘raster’ data; e.g. land cover types de-
rived from remote sensing [see NCEP module: Remote Sens-
ing for Conservation Biology]). For use in a distribution model, it 
is usual to reformat all environmental data to a raster grid. For 
example, temperature records from weather stations may be 
interpolated to give continuous data over a grid (Hijmans et 
al., 2005). Formatting all data to the same raster grid ensures 
that environmental data are available for every cell in which 
biological data have been recorded. These cells, containing 
both biological data and environmental data, are used to build 
the species’ distribution model. After the model is construct-
ed, its fit to test occurrence records is evaluated (see section: 
‘Assessing Predictive Performance’) and, if the fit is judged 
to be acceptable, the occurrence of species in cells for which 
only environmental data are available can be predicted. Note 
that in some applications the model may be used to predict 
the species’ distribution in a region from which data were not 
used to build the model (e.g. to predict the spread of an inva-

sive species) or under a future climate scenario. In these cases, 
environmental data for the new region or climate scenario 
must also be collated.

A consideration when collating data is the spatial scale at 
which the model will operate. Spatial scale has two compo-
nents: extent and resolution (see NCEP module Applications of 
remote sensing to ecological modeling). Extent refers to the size of 
the region over which the model is run (e.g. New York state 
or the whole of North America) whilst resolution refers to 
the size of grid cells (e.g. 1 km2 or 10 km2). Note that it is 
common for datasets with large extent to have coarse resolu-
tion (e.g. data for North America at 10 km2) and datasets with 
small extent to have fine resolution (e.g. New York state at 1 
km2). Spatial scale can play an important role in the applica-
tion of a species’ distribution model. In particular, ideally the 
data resolution should be relevant to the species under con-
sideration: the appropriate data resolution for studying ants is 
likely to be very different from that for studying elephants.

Box 1. Caution! On the use and misuse of models  

Garbage in, garbage out: This old adage is as relevant to distribution modeling as it is to other fields. Put simply, 
a model is only as good as the data it contains. Thus, if the occurrence records used to build a correlative species’ 
distribution model do not provide useful information as to the environmental requirements of the species, then 
the model cannot provide useful output. If you put garbage into the model, you will get garbage out.

Model extrapolation: ‘Extrapolation’ refers to the use of a model to make predictions for areas with environmental 
values that are beyond the range of the data used to calibrate (i.e. develop) the model. For example, suppose a 
distribution model was calibrated using occurrence records that spanned a temperature range of 10–20ºC. If the 
model is used to predict the species’ distribution in a different region (or perhaps under a future climate scenario) 
where the temperature reaches 25ºC, then the model is extrapolating. In this case, because the model has no prior 
information regarding the probability of the species’ occurrence at 25ºC, the prediction may be extremely uncer-
tain (see Pearson et al., 2006). Model extrapolation should be treated with a great deal of caution.

The lure of complicated technology: Many approaches to modeling species’ distributions utilize complex compu-
tational technology (e.g. machine learning tools such as artificial neural networks and genetic algorithms) along 
with huge GIS databases of digital environmental layers. In some cases, these approaches can yield highly suc-
cessful predictions. However, there is a risk that model users will be swayed by the apparent complexity of the 
technology: “it is so complicated, it must be correct!” Always remember that a model can only be useful if the 
theoretical underpinnings on which it is based are sound.

For additional discussion of the limitations of ecological models, see the NCEP module: Applications of Remote 
Sensing to Ecological Modeling.
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Biological data
Data describing the known distribution of a species may be 
obtained in a variety of ways:

1) Personal collection: occurrence localities can be obtained 
during field surveys by an individual or small group of 
researchers. For example, Fleishman et al. (2001) built 
models using butterfly occurrence records collected by 
the researchers during surveys in Nevada, USA.

2) Large surveys: distribution information may be available 
from surveys undertaken by a large number of people. 
For example, Araújo et al. (2005a) built distribution mod-
els using data from The New Atlas of Breeding Birds in Brit-
ain and Ireland: 1988-1991 (Gibbons et al., 1993), which 
represents the sampling effort of hundreds of volunteers.

3) Museum collections: occurrence localities can be obtained 
from collections in natural history museums. For exam-
ple, Raxworthy et al. (2003) utilized occurrence records 
of chameleons in Madagascar that are held in museum 
collections.

4) Online resources: distributional data from a variety of 
sources are increasing being made available over the in-
ternet (see Table 2). For example, the Global Biodiversity 
Information Facility (www.gbif.org) is collating available 
datasets from a diversity of sources and making the infor-

mation available online via a searchable web portal.

Species distribution data may be either presence-only (i.e. re-
cords of localities where the species has been observed) or 
presence/absence (i.e. records of presence and absence of the 
species at sampled localities). Different modeling approaches 
have been developed to deal with each of these cases (see 
section on: ‘Modeling Algorithms’). In some instances, the in-
clusion of absence records has been shown to improve model 
performance (Brotons et al., 2004). However, absence records 
are often not available and may be unreliable in some cases. 
In particular, absences may be recorded when the species was 
not detected even though the environment was suitable. These 
cases are often referred to as ‘false absences’ because the model 
will interpret the record as denoting unsuitable environmen-
tal conditions, even though this is not the case. False absences 
can occur when a species could not be detected although it 
was present, or when the species was absent but the environ-
ment was in fact suitable (e.g. due to dispersal limitation or 
metapopulation dynamics). Inclusion of false absence records 
may seriously bias analyses, so absence data should be used 
with care (Hirzel et al., 2002).

There are a number of additional potential sources of bias and 
error that should be carefully considered when collating spe-

Box 2. The Role of Geographic Information Systems (GIS) 

GIS is a vital tool in species’ distribution modeling. The large datasets of biological and environmental data that 
are used in distribution modeling are ideally suited to being stored, viewed, and formatted in a GIS. For example, 
useful GIS operations include changing geographic reference systems (it is essential that all data are referenced to 
a common coordinate system, so occurrence records can be matched with the environmental conditions at the 
site), reformatting spatial resolution, and interpolating point locality data to a grid. GIS is also crucial for visual-
izing model results and carrying out additional processing of model output, such as removing predicted areas that 
are isolated from observed species records by a dispersal barrier (Peterson et al., 2002). However, the distribution 
modeling itself is usually undertaken outside the GIS framework. With few exceptions (e.g. Ferrier et al., 2002), 
the distribution model does not ‘see’ geographical coordinates; instead, the model operates in environmental space 
(see section: ‘Theoretical Framework’). Some GIS platforms now incorporate distribution modeling tools (e.g. 
DIVA GIS: www.diva-gis.org/, IDRISI: http://www.clarklabs.org/), or have add-in scripts that enable distribu-
tion models to be run (e.g. BIOCLIM script for ArcView: http://arcscripts.esri.com/details.asp?dbid=13745), 
but running the model within a GIS is not necessary.

http://www.diva-gis.org/
http://www.clarklabs.org/
http://arcscripts.esri.com/details.asp?dbid=13745


68SYNTHESIS

Lessons in Conservation
http://ncep.amnh.org/linc

Species’ Distribution Modeling for 
Conservation Educators and Practitioners

68

cies’ distribution data. Errors may arise through the incorrect 
identification of species, or inaccurate spatial referencing of 
samples. Biases can also be introduced because collectors tend 
to sample in easily accessible locations, such as along roads and 
rivers and near towns or biological stations (Graham et al., 
2004a). In some cases, biased sampling in geographical space 
may lead to non-representative sampling of the available envi-
ronmental conditions, although this is not necessarily the case. 
When utilizing records from museum collections, it should 
be remembered that these data were not generally collected 
with the purpose of determining the distributional limits of 
a species; rather, sampling for museum collections tends to be 
biased toward rare and previously unknown species.

Environmental data
A wide range of environmental input variables have been em-
ployed in species’ distribution modeling. Most common are 
variables relating to climate (e.g. temperature, precipitation), 
topography (e.g., elevation, aspect), soil type and land cover 
type (see Table 2). Variables tend to describe primarily the abi-
otic environment, although there is potential to include biotic 
interactions within the modeling. For example, Heikkinen et 
al. (2007) used the distribution of woodpecker species to pre-
dict owl distributions in Finland since woodpeckers excavate 
cavities in trees that provide nesting sites for owls.

As noted in the previous section: ‘Introduction’ variables are 
often processed to generate new variables that are thought to 

Table 2. Some example sources of biological and environmental data for use in species’ distribution modeling

Type of data Source

Species’ distributions

- Data for a wide range of organisms in many regions of the world Global Biodiversity Information Facility (GBIF): www.gbif.org

- Data for a range of organisms, mostly rare or endangered, and pri-
marily in North America

NatureServe: www.NatureServe.org

Climate

- Interpolated climate surfaces for the globe at 1km resolution WorldClim:http://www.worldclim.org/

- Scenarios of future climate change for the globe
Intergovernmental Panel on Climate Change (IPCC): http://
www.ipcc-data.org/

- Reconstructed palaeoclimates NOAA: http://www.ncdc.noaa.gov/paleo/paleo.html

Topography

- Elevation and related variables for the globe at 1km resolution
USGS: http://edc.usgs.gov/products/elevation/gtopo30/
hydro/index.html

Remote sensing (satellite)

- Various land cover datasets Global Landcover Facility: http://glcf.umiacs.umd.edu/data/

- Various atmospheric and land products from the MODIS instrument NASA:http://modis.gsfc.nasa.gov/data/

Soils

- Global soil types
UNEP: http://www.grid.unep.ch/data/data.
php?category=lithosphere

Marine

- Various datasets describing the world’s oceans NOAA: www.nodc.noaa.gov

http://www.worldclim.org/
http://www.ncdc.noaa.gov/paleo/paleo.html
http://edc.usgs.gov/products/elevation/gtopo30/hydro/index.html
http://edc.usgs.gov/products/elevation/gtopo30/hydro/index.html
http://glcf.umiacs.umd.edu/data/
http://modis.gsfc.nasa.gov/data/
http://www.grid.unep.ch/data/data.php?category=lithosphere
http://www.grid.unep.ch/data/data.php?category=lithosphere
www.nodc.noaa.gov
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have a direct physiological or behavioral role in determin-
ing species’ distributions. In general, it is advisable to avoid 
predictor variables that have an indirect influence on species’ 
distributions, since indirect associations may cause erroneous 
predictions when models are used to predict the species’ dis-
tribution in new regions or under alternative climate scenar-
ios (Guisan and Thuiller, 2005). For example, species do not 
respond directly to elevation, but rather to changes in tem-
perature and air pressure that are affected by elevation. Thus, a 
species characterized as living at high elevation in a low lati-
tude region may, in fact, be associated with lower elevations in 
areas with higher latitude, since the regional climate is cooler.

Environmental variables may comprise either continuous data 
(data that can take any value within a certain range, such 
as temperature or precipitation) or categorical data (data that 
are split into discrete categories, such as land cover type or 
soil type). Categorical data cannot be used with a number 
of common modeling algorithms (see section: ‘Modeling Al-
gorithms’). In these cases, it may be possible to generate a 
continuous variable from the categorical data. For example, 
Pearson et al. (2002) estimated soil water holding capacity 
from categorical soil data, and used these values within a wa-
ter balance model to generate continuous predictions of soil 
moisture surplus and deficit.

Modern technologies, including remote sensing (see NCEP 
module Applications of remote sensing to ecological modeling), the 
internet, and GIS have greatly facilitated the collection and 
dissemination of environmental datasets (see Table 2). In ad-
dition, global climate models have been used to generate sce-
narios of future climates and to simulate climatic conditions 
since the end of the last glacial period (see Table 2). Predicted 
future climate scenarios can be used to estimate the potential 
impacts of climate change on biodiversity (e.g. Thomas et al. 
2004; see case study 3), whilst simulations of past climates can 
be used to test the predictive ability of models (e.g. Marti-
nez-Meyer et al., 2004). Given the vast amounts of data that 
are available, it is especially important to remain critical as to 
which variables are suitable for inclusion in the model. Some 
studies have demonstrated good predictive ability using only 

three variables (e.g., Huntley et al., 1995), whilst other studies 
have applied methodologies that can incorporate many more 
variables (e.g., Phillips et al., [2006] utilized 14 environmental 
variables, although some of these variables are likely to have 
been rejected by the algorithm applied because they did not 
provide useful information beyond that which was included 
in other variables).

Modeling Algorithms

A number of alternative modeling algorithms have been ap-
plied to classify the probability of species’ presence (and ab-
sence) as a function of a set of environmental variables. The 
task is to identify potentially complex non-linear relation-
ships in multi-dimensional environmental space. In the sec-
tion: ‘Theoretical Frameworks’, we assumed that the modeling 
algorithm is excellent, enabling us to identify three expected 
types of model prediction, illustrated by modeled areas 1, 2 
and 3 in Fig. 3. If we now admit some degree of error in the 
algorithm’s ability to fit the observed records, then a fourth 
type of prediction will occur: the model will predict as suit-
able areas that are part of neither the actual nor the potential 
distribution. The most useful algorithms will limit these er-
roneous ‘type 4’ predictions.

Table 3 lists some commonly used approaches for species’ dis-
tribution modeling. Some methods that have been applied 
are statistical (e.g. generalized linear models [GLMs] and gen-
eralized additive models [GAMs]), whilst other approaches 
are based on machine-learning techniques (e.g., maximum 
entropy [Maxent] and artificial neural networks [ANNs]). 
Published studies have often applied one or more of these 
algorithms and have given the resulting model a name or 
acronym (e.g., ‘Maxent’ refers to an implementation of the 
maximum entropy method, while ‘BIOMOD’ is the acronym 
given to a model that implements a number of methods, in-
cluding GLMs and GAMs). Often these models have been 
implemented in user-friendly software that is free and easy to 
obtain (Table 3).

There are some important differences between among model 
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algorithms that should be carefully considered when selecting 
which method(s) to apply. One key factor is whether the al-
gorithm requires data on observed species absence (see ‘Data 
Types and Sources’). Some algorithms operate by contrasting 
sites where the species has been detected with sites where 
the species has been recorded as absent (e.g., GLMs, GAMs, 
ANNs). However, reliable absence data often are not available 

(see: ‘Data Types and Sources’), so other methods have been 
applied that do not require absence data. We can distinguish 
three types of presence-only methods:

1) Methods that rely solely on presence records (e.g. BIO-
CLIM, DOMAIN). These methods are truly ‘presence-
only’ since the prediction is made without any reference 

Table 3. Some published methods for species’ distribution modeling

Method(s)1 Model/soft-
ware name2

Species data 
type

Key reference/URL

Gower Metric DOMAIN* presence-only

Carpenter et al., 1993
http://www.cifor.cgiar.org/docs/_ref/
research_tools/domain/
http://diva-gis.org

Ecological Niche Factor Analysis (ENFA) BIOMAPPER*
presence and 
background

Hirzel et al., 2002
http://www2.unil.ch/biomapper/

Maximum Entropy MAXENT*
presence and 
background

Phillips et al., 2006
http://www.cs.princeton.edu/~schapire/
maxent/

Genetic algorithm (GA) GARP3* pseudo-absence4

Stockwell and Peters, 1999
http://www.lifemapper.org/desktopg-
arp/

Artificial Neural Network (ANN) SPECIES
presence and 
absence (or 

pseudo-absence)
Pearson et al., 2002

Regression:
generalized linear model (GLM), generalized addi-
tive model (GAM), boosted regression trees (BRT), 

multivariate adaptive regression splines (MARS)

Implemented 
in R5

presence and 
absence (or 

pseudo-absence)

Lehman et al., 2002
Elith et al., 2006
Leathwick et al., 2006
Elith et al., 2007

Multiple methods BIOMOD
presence and 
absence (or 

pseudo-absence) 
Thuiller, 2003

Multiple methods OpenModeller
depends on 

method imple-
mented

http://openmodeller.sourceforge.net/

1 ‘Method’ refers to a statistical or machine-learning technique. 2‘Model/software name’ refers to a name (or acronym) given to a pub-
lished model that implements the method(s) stated. Software to implement the method for species’ distribution modeling is readily avail-
able at no cost for those models marked with an asterisk (*); other models are available at the discretion of the author(s). 3The genetic 
algorithm for rule-set prediction (GARP) includes within its processing multiple methods, including GLM. 4Note that Pseudo-absence 
here refers to the sampling approach implemented in the GARP software; in principle, any presence-absence method can be implement-
ed using pseudo absences. 5R is a freely available (at no cost) software environment for statistical computing and graphics (http://www.r-
project.org/). Based in part on Elith et al. (2006) and Guisan and Thuiller (2005).

http://www.cifor.cgiar.org/docs/_ref/research_tools/domain/
http://www.cifor.cgiar.org/docs/_ref/research_tools/domain/
http://diva-gis.org
http://www2.unil.ch/biomapper/
http://www.cs.princeton.edu/~schapire/maxent/
http://www.cs.princeton.edu/~schapire/maxent/
http://www.lifemapper.org/desktopgarp/
http://www.lifemapper.org/desktopgarp/
http://openmodeller.sourceforge.net/
http://www.r-project.org/
http://www.r-project.org/
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to other samples from the study area.
2) Methods that use ‘background’ environmental data for 

the entire study area (e.g. Maxent, ENFA). These meth-
ods focus on how the environment where the species is 
known to occur relates to the environment across the rest 
of the study area (the ‘background’). An important point 
is that the occurrence localities are also included as part 
of the background.

3) Methods that sample ‘pseudo-absences’ from the study 
area. In principle, any presence/absence algorithm can be 
implemented using pseudo-absences. The aim here is to 
assess differences between the occurrence localities and a 
set of localities chosen from the study area that are used 
in place of real absence data. The set of ‘pseudo-absences’ 
may be selected randomly (e.g., Stockwell and Peters, 
1999) or according to a set of weighting criteria (e.g., 
Engler et al., 2004; Zaniewski et al., 2002). An important 
difference between the pseudo-absence approach and the 
background approach is that pseudo-absence models do 
not include occurrence localities within the set of pseu-
do-absences.

Another key difference among model algorithms is their abil-
ity to incorporate categorical environmental variables (see the 
section: Data Types and Sources’). Methods also differ in the 
form of their output, which is most commonly a continu-
ous prediction (e.g. a probability value ranging from 0 to 1) 

but may be a binary prediction (with ‘0’ as a prediction of 
unsuitable environmental conditions or species absence, and 
‘1’ a prediction of highly suitable environmental conditions 
or species presence). To generate a binary prediction from 
a model that gives continuous output, it is necessary to set 
a threshold value above which the prediction is classified as 
‘highly suitable’ or ‘present’ (see the section: ‘Assessing Predic-
tive Performance’).

A further consideration when selecting a modeling algorithm 
is whether it is important to determine the relative influence 
of different input variables on the model’s fit or predictive 
capacity. Some models may have excellent predictive power 
but do not enable us to easily understand how the algorithm 
is operating; such models are often termed ‘black box’ since 
the model takes input and produces output but the internal 
workings are somewhat opaque. For example, artificial neural 
networks have shown good predictive ability (e.g., Pearson 
et al., 2002; Thuiller, 2003; Segurado and Araújo, 2004), but 
identifying the relative contribution of each input variable to 
the prediction is difficult (sensitivity analysis may be used, but 
this requires additional analyses). In contrast, a GLM builds 
a regression equation from which the relative contributions 
of different variables are immediately apparent (Guisan et al., 
2002).

It is not possible within the scope of this synthesis to describe 

Box 3. Maximum Entropy (Maxent) Modeling of Species Distributions 
(based on Phillips et al., 2006) 

Maxent is a general-purpose method for characterizing probability distributions from incomplete information. 
In estimating the probability distribution defining a species’ distribution across a study area, Maxent formalizes the 
principle that the estimated distribution must agree with everything that is known (or inferred from the environ-
mental conditions where the species has been observed) but should avoid making any assumptions that are not 
supported by the data. The approach is thus to find the probability distribution of maximum entropy (the distri-
bution that is most spread-out, or closest to uniform) subject to constraints imposed by the information available 
regarding the observed distribution of the species and environmental conditions across the study area.

The Maxent method does not require absence data for the species being modeled; instead it uses background 
environmental data for the entire study area. The method can utilize both continuous and categorical variables 
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the theory, advantages and disadvantages of a large number of 
modeling algorithms; the reader is referred to the literature 
cited in Table 3. However, see Box 3 and the practical exercise 
by Steven Phillips that accompanies this Synthesis for a more 
detailed description of one method, Maxent.

The model algorithm is in some ways the ‘core’ of the distri-
bution model, but it should be remembered that the algorithm 
is just one part of the broader modeling process; other fac-
tors, including selection of environmental variables (see sec-
tion: ‘Data Types and Sources’) and application of a decision 
threshold (see section: ‘Assessing Predictive Performance’), are 
key elements of the modeling process that affect model results 
and may be varied regardless of the model algorithm being 
used. Nevertheless, studies comparing different modeling al-
gorithms have demonstrated substantial differences between 
predictions from alternative methods. The importance of se-
lecting an appropriate algorithm is discussed below.

Differences between methods and selection of ‘best’ models
Given the variety of possible modeling methods (Table 3), it is 
important to consider the degree to which different methods 
yield different results. Furthermore, if model predictions differ 
substantially, how should we choose which method to apply? 
This is an active area of research, and unfortunately there are 

no simple answers.

A number of studies have demonstrated that different model-
ing approaches have the potential to yield substantially dif-
ferent predictions (e.g., Loiselle et al., 2003; Thuiller, 2003; 
Brotons et al., 2004; Segurado and Araújo, 2004; Thuiller et 
al., 2004; Elith et al., 2006; Pearson et al., 2006). Pearson et al. 
(2006) found especially large differences among predictions 
of changes in range size under future climate change sce-
narios based on nine alternative modeling methods. Predicted 
changes in range size differed in both magnitude and direc-
tion (e.g. from 92% range reduction to 322% range increase 
for a single species). In another study, Loiselle et al. (2003) 
demonstrated markedly different results when alternative dis-
tribution models were used alongside a reserve selection algo-
rithm for identifying priority sites for conservation.

The most comprehensive model comparison to date was 
provided by Elith et al. (2006). The authors compared six-
teen modeling methods using 226 species across six regions 
of the world. All of the models included in the study were 
implemented using presence-only data for calibration (some 
methods required the use of pseudo-absence data), but model 
performance was assessed using data on both presence and 
absence. These analyses found differences between predictions 

and the output is a continuous prediction (either a raw probability or, more commonly, a cumulative probability 
ranging from 0 to 100 that indicates relative suitability). Maxent has been shown to perform well in compari-
son with alternative methods (Elith et al., 2006; Phillips et al., 2006; Pearson et al., 2007). One drawback of the 
Maxent approach is that it uses an exponential model that can predict high suitability for environmental condi-
tions that are outside the range present in the study area (i.e. extrapolation, see Box 1). To alleviate this problem, 
when predicting for variable values that are outside the range found in the study area, these values are reset (or 
‘clamped’) to match the upper or lower values found in the study area.

For a concise mathematic definition of Maxent and for more detailed discussion of its application to species 
distribution modeling see Phillips et al. (2004, 2006). These authors have developed software with a user-friendly 
interface to implement the Maxent method for modeling species distributions (for free download see web link in 
Table 3). The software also calculates a number of alternative thresholds (see Section 5), computes model valida-
tion statistics (see section: ‘Assessing Predictive Performance’), and enables the user to run a jackknife procedure 
to determine which environmental variables contribute most to the model prediction (see the practical exercise 
by Steven Phillips that accompanies this synthesis).

Box 3. Maximum Entropy (Maxent) Modeling of Species Distributions (Continued)
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from alternative methods, but also found that some methods 
consistently outperformed others. In general, models classi-
fied as ‘best’ were those that were able to identify complex 
relationships that existed in the data, including interactions 
among environmental variables.

Several additional factors that lead to differences among pre-
dictions from alternative algorithms have been identified. 
These include (1) whether the model uses presence-absence 
or presence-only data (Brotons et al., 2004; Pearson et al., 
2006), (2) if the model does not use absence data, whether 
the model uses solely presence records, ‘background’ data, or 
‘pseudo-absences’ (Elith et al., 2006), (3) whether the algo-
rithm is parametric or non-parametric (Segurado and Araújo, 
2004), and (4) how the model ‘extrapolates’ beyond the range 
of data used for its calibration (Pearson et al., 2006; and see 
Box 1).

In view of these differences among models, selection of an 
appropriate algorithm is both difficult and crucial. Identifying 
models that are generically ‘best’ is problematic since the ap-
proach used to assess predictive performance depends on the 
aim of the modeling. For example, Elith et al. (2006) assessed 
the ability of models to simulate actual distributions by us-
ing statistical tests that reward models for correctly classifying 
both presences and absences (see Section 5). In contrast, Pear-
son et al. (2007) assessed predictive performance based only 
on the model’s ability to predict observed presences, argu-
ing that the purpose of the modeling was to identify potential 
distributions (in which case use of absence data in assessing 
performance is invalid since a site classified as absent still may 
be environmentally suitable). The relative merits of aiming 
to predict actual versus potential distributions were discussed 
in Section 2. We will also return to the question of how to 
identify ‘best’ models when describing various statistical ap-
proaches for assessing predictive performance in Section 5. 
However, the important point is that it is not straightforward 
to identify which methods are best, and it is therefore not 
possible to recommend use of one method over another.

In practice, model selection will be influenced by factors in-

cluding whether observed absence data are available, whether 
data on some of the environmental variables are categori-
cal, and whether it is important to evaluate the influence of 
different variables on the model prediction. We recommend 
that modeling efforts apply and examine predictions from 
a range of methods in order to quantify uncertainty arising 
from the choice of method and to identify when different 
models are in agreement. Perhaps most importantly, it is vital 
that the assumptions and behavior of any model are properly 
understood (e.g. how does the model deal with environmen-
tal conditions that are beyond the range of the data used to 
calibrate the model?) so that model output can be accurately 
interpreted.

Assessing Predictive Performance

Assessing the accuracy of a model’s predictions is commonly 
termed ‘validation’ or ‘evaluation’, and is a vital step in model 
development. Application of the model will have little merit if 
we have not assessed the accuracy of its predictions. Validation 
thus enables us to determine the suitability of a model for a 
specific application and to compare different modeling meth-
ods (Pearce and Ferrier, 2000). This section discusses different 
approaches for assessing predictive performance, including 
strategies for obtaining data against which the predictions can 
be compared, methods for selecting thresholds of occurrence, 
and various test statistics. As in previous sections, there is no 
single approach that can be recommended for use in all mod-
eling exercises; rather, the choice of validation strategy will be 
influenced by the aim of the modeling effort, the types of data 
available, and the modeling method used.

Strategies for obtaining test data
In order to test predictive performance it is necessary to have 
data against which the model predictions can be compared. 
We can refer to these as test data (sometimes called evaluation 
data) to distinguish them from the calibration data (sometimes 
called training data) that are used to build the model. It is fairly 
common for studies to assess predictive performance by sim-
ply testing the ability of the model to predict the calibration 
data (i.e. calibration and test datasets are identical). However, 
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this approach makes it difficult to identify models that have 
over-fit the calibration data (meaning the model is able to ac-
curately classify the calibration data, but the model performs 
poorly when predicting test data), making it impossible for 
users to judge how well the model may perform when mak-
ing predictions (Araújo et al., 2005a). It is therefore preferable 
to use test data that are different from the calibration data.

Ideally, test data would be collected independently from the 
data used to calibrate the model. For example, Fleishman et 
al. (2002) modeled the occurrence of butterfly species in Ne-
vada, USA, using species inventory data collected during the 
period 1996-1999, and then tested the models using data col-
lected from new sites during 2000-2001 (see Case Study 1 
for a comparable study). Other researchers have undertaken 
validation using independent data from different regions (e.g. 
Beerling et al., 1995; Peterson, 2003), data at different spatial 
resolution (e.g., Pearson et al., 2004; Araújo et al., 2005b), 
data from different time periods (e.g., Araújo et al., 2005a), 
and data from surveys conducted by other researchers (Elith 
et al., 2006).

However, in practice it may not be possible to obtain inde-
pendent test data and it is, therefore, common to partition 
the available data into calibration and test datasets. Several 
strategies are available for partitioning data, the simplest being 
a one-time split in which the available data are assigned to 
calibration and test datasets either randomly (e.g., Pearson et 
al., 2002) or by dividing the data spatially (e.g., Peterson and 
Shaw, 2003). The relative proportions of data included in each 
data set are somewhat arbitrary, and dependent on the total 
number of locality points available (though using 70% for cal-
ibration and 30% for testing is common, following guidelines 
provided by Huberty (1994)). An alternative to a one-time 
split is ‘bootstrapping’, whereby the data are split multiple 
times. Bootstrapping methods sample the original set of data 
randomly with replacement (i.e. the same occurrence record 
could be included in the test data more than once). Multiple 
models are thus built, and in each case predictive performance 
is assessed against the corresponding test data. Validation statis-
tics can then be reported as the mean and range from the set 

of bootstrap samples (e.g., Verbyla and Litaitis, 1989; Buckland 
and Elston, 1993). An approach similar to bootstrapping, but 
sampling without replacement (i.e. the same occurrence re-
cord cannot be included in the test data more than once), can 
also be applied and may be termed ‘randomization’ (Fielding 
and Bell, 1997).

Another useful data partitioning method is k-fold partition-
ing. Here, data are split into k parts of roughly equal size (k 
> 2) and each part is used as a test set with the other k-1 sets 
used for model calibration. Thus, if we select k = 5 then five 
models will be calibrated and each model tested against the 
excluded test data. Validation statistics are then reported as the 
mean and range from the set of k tests (Fielding and Bell, 
1997). An extreme form of k-fold partitioning, with k equal 
to the number of occurrence localities, is recommended for 
use with very low sample sizes (e.g., < 20; Pearson et al., 
2007). This method is termed ‘jackknifing’ or ‘leave-one-out’ 
since each occurrence locality is excluded from model cali-
bration during one partition.

The following sub-sections describe validation statistics that 
can be calculated after test data have been obtained using one 
of the above approaches.

The presence/absence confusion matrix
If a model is used to predict a set of test data, predictive per-
formance can be summarized in a confusion matrix. Note that 
binary model predictions (i.e. predictions of suitable and un-
suitable, rather than probabilities; see section 4) are required 
in order to complete the confusion matrix. Later subsections 
describe methods for converting continuous model outputs 
into binary predictions (see Selecting thresholds of occurrence) and 
for assessing predictive performance using continuous predic-
tions (see Threshold-independent assessment). However, in order 
to understand these later sections it is important to first look 
at the confusion matrix.

The confusion matrix is rather more straightforward than its 
name suggests, and is alternatively termed an ‘error matrix’ or 
a ‘contingency table’. The confusion matrix records the fre-
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quencies of each of the four possible types of prediction from 
analysis of test data: (a) true positive (the model predicts that 
the species is present and test data confirms this to be true), (b) 
false positive (the model predicts presence but test data show 
absence), (c) false negative (the model predicts absence but 
test data show presence), (d) true negative (the model predicts 
and the test data show absence). Frequencies are commonly 
recorded in a confusion matrix with the following form:

recorded present recorded absent

predicted present a (true positive) b (false positive)

predicted absent c (false negative) d (true negative)

Each element of the confusion matrix can be visualized in 
geographical space as illustrated in Figure 4. In the example 
depicted, 27 test localities have been sampled and presence 
or absence of the species recorded at each site. The use of 

test data comprising only presence localities (i.e. species oc-
currence records) is discussed below, but for completion of 
the confusion matrix we require both presence and absence 
records. Thus, the hypothetical case shown in Figure 4 would 
yield the following confusion matrix:

recorded present recorded absent

predicted present 9 2

predicted absent 3 13

The frequencies in the confusion matrix form the basis for 
a variety of different statistical tests that can be used to assess 
model performance. Most of the commonly used tests are 
described below. Terminology related to model performance 
often varies from study to study and is sometimes not in-
tuitive. In particular, false negative predictions are commonly 
termed errors of ‘omission’, whilst false positive predictions 

Figure 4. Diagram illustrating the four types of outcomes that are possible when assessing the predictive performance of a species distri-
bution model: true positive, false positive, false negative and true negative. The diagram uses the same hypothetical actual and modeled 
distributions as in Figure 3. Each instance of a symbol (x,    , o, -) on the map depicts a site that has been surveyed and presence or ab-
sence of the species recorded (it is assumed here that if a site falls within the actual distribution then the species will be detected). These 
survey records constitute the test data. Frequencies of each type of outcome are commonly entered into a confusion matrix (see main 
text).
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are termed errors of ‘commission’.

Test statistics derived from the confusion matrix
A simple measure of predictive performance that can be de-
rived from the confusion matrix is the proportion (or per-
centage) of test localities that are correctly predicted, calcu-
lated as

(a+d)/(a+b+c+d)

This measure may be termed ‘accuracy’ or ‘correct classifica-
tion rate’. The concept of accuracy is simple and logical, but it 
is possible to obtain high accuracy using a poor model when a 
species’ prevalence (the proportion of sampled sites in which 
the species is recorded present) is relatively high or low. For 
example, if prevalence is 5% then 95% of test localities can be 
correctly classified simply by predicting all sites as ‘absent’. To 
circumvent this problem, Cohen (1960) introduced a measure 
of accuracy that is adjusted to account for chance agreement 
between predicted and observed values. The statistic, Kappa 
(k), is similar to accuracy but the proportion of correct pre-
dictions expected by chance is taken into account (for full 
derivation see Monserud and Leemans, 1992). Kappa is cal-
culated as:

[(a+d)-(((a+c)(a+b)+(b+d)(c+d))/n)]
[n-(((a+c)(a+b)+(b+d)(c+d)/n]

Accuracy and Kappa statistics use all values in the confusion 
matrix and therefore require both presence and absence data. 
However, absence data are often unavailable (e.g. when using 
specimens from museum collections) and are inappropriate 
for use when the aim is to estimate the potential distribution 
(since the environment may be suitable even though the spe-
cies is absent). 

When only presence records are used, the proportion of ob-
served occurrences correctly predicted can be calculated as:

a/(a+c)

This measure is sometimes termed ‘sensitivity’ or ‘true posi-
tive fraction’. Alternatively, we may calculate:

c/(a+c)

which is often termed ‘omission rate’ or ‘false positive frac-
tion’. Note that these two measures – sensitivity and omission 
rate – sum to 1. Thus, high sensitivity means low omission, 
and low sensitivity means high omission. Although sensitivity 
and omission rate avoid the use of absence records, a serious 
disadvantage of these tests is that it is possible to achieve very 
high sensitivity (and low omission) simply by predicting that 
the species is present at an excessively large proportion of the 
study area. In short, it is possible to cheat: if the model predicts 
the entire study area to be suitable, then sensitivity will equal 
1, and omission rate will be zero. To avoid this problem, it is 
necessary to test the statistical significance of a sensitivity or 
omission rate score.

To test for statistical significance, we ask whether the accu-
racy of our predictions is greater than would be expected by 
chance. Imagine, for example, that we are blindfolded and 
asked to throw darts at a map of our study area. The sites 
identified by our random throws are then used as species’ oc-
currence localities for model testing. The probability of land-
ing darts in the area predicted by the model to be suitable 
for the species is equal to the proportion of the study area 
that is predicted as suitable. Thus, if the model predicts that 
the species will be present in 40% of the study area, then our 
probability of successfully landing a dart in the area predicted 
as suitable is 0.4.

We can apply the same logic to assess the statistical signifi-
cance of a sensitivity (or omission rate) score. In this case, we 
use an exact one-tailed binomial test (or for larger sample siz-
es a chi-square test; for description of binomial and chi-square 
tests see Zar, 1996) to calculate the probability of obtaining 
a sensitivity result by chance alone (Anderson et al., 2002a). 
For example, suppose that the model in Figure 4 predicts that 
30% of the study area is suitable for the species. The probabil-
ity of success by chance alone for each test locality is therefore 
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0.3. We can calculate from the confusion matrix that the sen-
sitivity = 9/(9+3) = 0.75, and we can use an exact one-tailed 
binomial test to calculate that the probability of making nine 
or more successful predictions of presence by chance alone is 
0.0017. We may therefore conclude that our result is statisti-
cally significant (p < 0.01).

A similar assessment of predictive performance can be con-
ducted when only very few occurrence localities are avail-
able and test data have been generated using a jackknifing 
approach (see subsection Strategies for obtaining test data). In 
this case the number of successful predictions from a set of 
jackknife trials can be calculated (e.g., 9 successes in 12 jack-
knife trials) and a p-value can be calculated using the method 
presented in Pearson et al. (2007).

In practice, binomial and chi-square tests can be performed in 
most standard statistical packages, whilst the jackknife p-value 
can be calculated using software provided as Supplementary 
Material to the Pearson et al. (2007) paper. Various test statis-
tics and thresholds (including those discussed in the remain-
der of this section) are sometimes calculated automatically by 
software designed for species distribution modeling (see Table 
3), and test statistics may also be calculated using more general 
applications such as DIVA-GIS (for free download see http://
www.diva-gis.org/).

Another statistic that can be derived from the confusion ma-
trix is the proportion of observed absences that are correctly 
predicted, calculated as:

d/(b+d)

This statistic is commonly termed ‘specificity’ or ‘true nega-
tive fraction’. Specificity is rarely used as a test statistic on 
its own, since specificity focuses solely on observed absence 
records. However, specificity is an important measure used in 
setting decision thresholds and in ROC analysis, which are 
described in the following two subsections.

Selecting thresholds of occurrence
Binary predictions of ‘present’ or ‘absent’ are necessary to test 
model performance using statistics derived from the confu-
sion matrix. It is therefore often useful to convert continuous 
model output into binary predictions by setting a threshold 
probability value above which the species is predicted to be 
present. Although an alternative test statistic that does not re-
quire a threshold is available (Area Under the ROC curve; 
see the following subsection), this approach is not suitable in 
many circumstances (notably when absence records are not 
available, Boyce et al., 2002, but see Phillips et al., 2006). Fur-
thermore, it is essential to learn the techniques described in 
this subsection to understand how the AUC test operates.

A number of different methods have been employed for se-
lecting thresholds of occurrence (Table 4). Perhaps the sim-
plest approach is to use an arbitrary value, but this method is 
subjective and lacks ecological reasoning (Liu et al., 2005). 
Other methods use criteria that are based on the data used 
to calibrate the model. One approach is to use the lowest 
predicted value of environmental suitability, or probability of 
presence, across the set of sites at which a species has been de-
tected. This method assumes that species presence is restricted 
to locations equally or more suitable than those at which the 
species has been observed. The approach therefore identifies 
the minimum area in which the species occurs whilst ensur-
ing that no localities at which the species has been observed 
are omitted (i.e. omission rate = 0, and sensitivity = 1). An 
alternative approach is to set the threshold to allow a certain 
amount of omission (e.g. 5%), which is analogous to setting a 
fixed sensitivity (e.g. 0.95). This method is less sensitive than 
the lowest predicted value method to ‘outliers’ (i.e. locations 
in which the species is detected despite a low predicted prob-
ability of occurrence or suitability), but errors of omission are 
imposed (i.e. some observed localities will be omitted from 
the prediction).

Many methods for setting thresholds can be implemented by 
calculating statistics derived from the confusion matrix across 
the range of possible thresholds. For example, sensitivity and 
specificity may be calculated at thresholds increasing in incre-

 http://www.diva-gis.org/
 http://www.diva-gis.org/
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ments of 0.01 from 0 to 1 (i.e. 0, 0.01, 0.02, 0.03…0.99, 1). As 
the threshold increases, the proportion of the study area pre-
dicted to be suitable for the species, or in which the species 
is predicted to be ‘present,’ will decrease. Consequently, the 
proportion of observed presences that are correctly predicted 
decreases (i.e. decreasing sensitivity) and the proportion of 
observed absences that are correctly predicted increases (i.e. 
increasing specificity) (Figure 5A). From these data we can se-
lect the threshold at which sensitivity and specificity are equal 
(labeled a in Figure 5A) or at which their sum is maximized. 
Similarly, it is common to calculate Kappa across the range of 
possible thresholds and to select the threshold at which the 
statistic is maximized (Figure 5B).

Choice of an appropriate decision threshold is dependent on 
the type of data that are available and the question that is be-
ing addressed. Some methods require presence and absence 
records, while others require presence-only records (Table 4). 
When using both presence and absence records, the general 
approach is to balance the number of observed presences and 
absences that are correctly predicted; in effect, to maximize 
agreement between observed and predicted distributions. 
Thus, we must be willing to increase the omission rate (i.e. 
decrease sensitivity) in order to increase the proportion of 
observed absences that are correctly predicted (i.e. increase 
specificity). Liu et al. (2005) tested twelve methods for setting 
thresholds using presence and absence data for two European 
plant species. Based on four assessments of predictive perfor-

Table 4. Some published methods for setting thresholds of occurrence

Method Definition Species data type1 Reference(s)

Fixed value
An arbitrary fixed value (e.g. 
probability = 0.5)

presence-only
Manel et al., 1999 

Robertson et al., 2001

Lowest predicted value
The lowest predicted value 
corresponding with an observed 
occurrence record

presence-only
Pearson et al., 2006 
Phillips et al., 2006

Fixed sensitivity

The threshold at which an arbi-
trary fixed sensitivity is reached 
(e.g. 0.95, meaning that 95% 
of observed localities will be 
included in the prediction)

presence-only Pearson et al., 2004

Sensitivity-specificity equality
The threshold at which sensi-
tivity and specificity are equal

presence and absence Pearson et al., 2004

Sensitivity-specificity sum 
maximization

The sum of sensitivity and 
specificity is maximized

presence and absence Manel et al., 2001

Maximize Kappa
The threshold at which Cohen’s 
Kappa statistic is maximized

presence and absence
Huntley et al., 1995 

Elith et al., 2006

Average probability/suitability
The mean value across model 
output

presence-only Cramer, 2003

Equal prevalence

Species’ prevalence (the propor-
tion of presences relative to the 
number of sites) is maintained 
the same in the prediction as in 
the calibration data.

presence and absence Cramer, 2003

1 Species occurrence records required to set the threshold.  Based in part on Liu et al. (2005).
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mance (sensitivity, specificity, accuracy and Kappa), they con-
cluded that the best methods for setting thresholds included 
maximizing the sum of sensitivity and specificity, using the 
average probability/suitability score, and setting equal preva-
lence between the calibration data and the prediction (Table 
4). Maximizing Kappa did not perform well, and use of an 
arbitrary fixed value performed worst.

Methods that use only presence records for setting a threshold 
are required for cases in which absence data are unavailable. 
Presence-only methods can also be justified on the grounds 
that they avoid false absences (Section 3): it may be argued 
that we should be primarily concerned with maximizing the 
number of observed presences that are correctly predicted, 
rather than minimizing the number of absences that are in-
correctly predicted as presences (since some absences may be 
recorded in apparently suitable environments; Pearson et al., 
2006). For example, Pearson et al. (2007) used a dataset com-
prising very few presence-only records for geckos in Mada-
gascar. Because confidence was high that the localities and 
species identification were correct, and because these species 
are not highly mobile and are therefore unlikely to be found 
in unsuitable habitat (i.e. sink habitat; see Section 2), omission 
of any occurrence record was considered a clear model error. 

Therefore, the minimum predicted value corresponding to 
an observed presence was selected as a threshold to ensure 
zero omission. Distribution models thus predicted that many 
regions of the study area were suitable although no presences 
had been detected there. This approach suited the aim of the 
study, which was to prioritize regions for future surveys by 
estimating the potential distribution (see Case Study 1).

As a final illustration of the importance of selecting an appro-
priate decision threshold, we can return to an example raised 
in Section 2. If the purpose of modeling is to identify areas 
within which disturbance may impact a species negatively 
(e.g. as part of an environmental impact assessment), then the 
threshold may be set low to identify a larger area of poten-
tially suitable habitat. In contrast, if the model was intended 
to identify potential introduction or reintroduction sites for 
an endangered species or species of recreational value, then it 
would be appropriate to choose a relatively high threshold. 
Choosing a high threshold reduces the risk of choosing un-
suitable sites by identifying those areas with highest suitability 
(Pearce and Ferrier, 2000).

Threshold-independent assessment
When model output is continuous, assessment of predictive 

Figure 5. Plots showing changes in test statistics as the threshold of occurrence is adjusted. A Decrease in sensitivity and increase in 
specificity as the threshold is increased. The threshold labeled a corresponds to the specificity-sensitivity equality threshold. B Changes 
in the Kappa statistic as the threshold is adjusted. The threshold labeled b corresponds to that threshold at which Kappa is maximized.



80SYNTHESIS

Lessons in Conservation
http://ncep.amnh.org/linc

Species’ Distribution Modeling for 
Conservation Educators and Practitioners

80

performance using statistics derived from the confusion ma-
trix will be sensitive to the method used to select a threshold 
for creating a binary prediction. Furthermore, if predictions 
are binary, the assessment of performance does not take into 
account all of the information provided by the model (Field-
ing and Bell, 1997). Therefore, it is often useful to derive a test 
statistic that provides a single measure of predictive perfor-
mance across the full range of possible thresholds. This can be 
achieved using a statistic known as AUC: the Area Under the 
Receiver Operating Characteristic Curve.

The AUC test is derived from the Receiver Operating Char-
acteristic (ROC) Curve. The ROC curve is defined by plot-
ting sensitivity against ‘1 – specificity’ across the range of 
possible thresholds (Figure 6A). Sensitivity and specificity are 
used because these two measures take into account all four 
elements of the confusion matrix (true and false presences 
and absences). It is conventional to subtract specificity from 1 
(i.e. 1 – specificity) so that both sensitivity and specificity vary 

in the same direction when the decision threshold is adjusted 
(Pearce and Ferrier, 2000). The ROC curve thus describes the 
relationship between the proportion of observed presences 
correctly predicted (sensitivity) and the proportion of ob-
served absences incorrectly predicted (1 – specificity). There-
fore, a model that predicts perfectly will generate an ROC 
curve that follows the left axis and top of the plot, whilst a 
model with predictions that are no better than random (i.e. is 
unable to classify accurately sites at which the species is pres-
ent and absent) will generate a ROC curve that follows the 
1:1 line (Figure 6A).

In order to summarize predictive performance across the full 
range of thresholds we can measure the area under the ROC 
curve (the AUC), expressed as a proportion of the total area of 
the square defined by the axes (Swets, 1988). The AUC thus 
ranges from 0.5 for models that are no better than random to 
1.0 for models with perfect predictive ability. We can think of 
AUC in terms of the frequency distributions of probabilities 

Figure 6. Example Receiver Operating Characteristic (ROC) Curves and illustrative frequency distributions. A ROC curves formed 
by plotting sensitivity against ‘1 – specificity’. Two ROC curves are shown, the upper curve (red) signifying superior predictive ability. 
The dashed 1:1 line signifies random predictive ability, whereby there is no ability to distinguish occupied and unoccupied sites. B and 
C show example frequency distributions of probabilities predicted by a model for observed ‘presences’ and ‘absences’. The results shown 
in B reveal good ability to distinguish presence from absence, whilst results in C show more overlap between the frequency distributions 
thus revealing poorer classification ability. The case shown in B would produce an ROC curve similar to the upper (red) curve in A. 
The case shown in C would give an ROC curve more like the lower (blue) curve in A.
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predicted for locations at which we have empirical data on 
presence and absence (Figure 6, B and C). A high AUC score 
reflects that the model can discriminate accurately between 
locations at which the species is present or absent. In fact, 
AUC can be interpreted as the probability that a model will 
correctly distinguish between a presence record and an ab-
sence record if each record is selected randomly from the set 
of presences and absences. Thus, an AUC value of 0.8 means 
the probability is 0.8 that a record selected at random from 
the set of presences will have a predicted value greater than a 
record selected at random from the set of absences (Fielding 
and Bell, 1997; Pearce and Ferrier, 2000).

AUC is a test that uses both presence and absence records. 
However, Phillips et al. (2006) have demonstrated how the 
test can be applied using randomly selected ‘pseudo-absence’ 
records in lieu of observed absences. In this case, AUC tests 
whether the model classifies presence more accurately than a 
random prediction, rather than whether the model is able to 
accurately distinguish presence from absence.

A number of different methods can be used to compute the 
AUC (Pearce and Ferrier, 2000). Some distribution modeling 
programs automatically calculate the AUC (e.g. Maxent; Table 
3). The statistic can also be calculated using numerous other 
free software packages (e.g. R, for free download see http://
www.r-project.org/).

Choosing a suitable test statistic
The choice of test statistic depends largely on how the model 
will be applied. If the aim is to predict the actual distribution 
(Section 2) then use of a test that incorporates both presence 
and absence records may be preferable (e.g. accuracy or Kap-
pa). A good model will successfully predict both presences 
and absences with equal frequency. However, when using this 
approach it is important to realize that predictions that an 
unoccupied area is environmentally suitable (type 3 predic-
tions, Figure 3) are considered model errors. Because type 
3 predictions are theoretically expected (Section 2), models 
may be judged poor although they make biologically sound 
predictions.

If the aim of the modeling is to estimate the potential distri-
bution (Section 2) then presence-only assessment of model 
performance using sensitivity and statistical significance is 
likely to be preferable. In this case we cannot test if the model 
is correct (since we do not know the true potential distribu-
tion), but rather we test if the model is useful. Our criteria for 
usefulness are that the model successfully predicts presence in 
a high proportion of test localities (i.e., known occurrences) 
whilst not predicting that an excessively large proportion of 
the study area is suitable. Thus, a model that successfully pre-
dicts whether the species is present at all test localities whilst 
classifying most of the study area as suitable may be correct 
(the environment may truly be suitable throughout most of 
the study area); however, the model is not useful because it is 
not more informative than a random prediction. 

Subjective guidelines can be used to decide what values of 
a test statistic correspond to ‘good’ model performance. For 
example, Landis and Koch (1977) suggested that Kappa scores 
>0.75 represent an ‘excellent’ model, whilst Swets (1988) clas-
sified any AUC score >0.9 as ‘very good’. However, the only 
true test of the model is whether it is useful for a given ap-
plication. There are numerous potential applications of these 
methods (Table 1) and the final part of this synthesis describes 
three representative case studies.

Case Studies

Case Study 1: Predicting Distributions of Known and 
Unknown Species in Madagascar (based on Raxwor-
thy et al., 2003)

Our knowledge of the identity and distribution of species 
on Earth is remarkably poor, with many species yet to be de-
scribed and catalogued. This problem has two key elements, 
which may be termed the ‘Linnean’ and ‘Wallacean’ shortfalls 
(Whittaker et al., 2005). The Linnean shortfall refers to our 
lack of knowledge of how many, and what kind, of species 
exist. The term is a reference to Carl Linnaeus, who laid the 
foundations of modern taxonomy and the 18th century. The 

http://www.r-project.org/
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Linnean shortfall concerns our highly incomplete knowledge 
of the diversity of life that exists on Earth.

The Wallacean shortfall refers to our inadequate knowledge 
of the distributions of species. This term is a reference to Al-
fred Russel Wallace who, as well as contributing to the early 
development of evolutionary theory, was an expert on the 
geographical distribution of species (he is sometimes referred 
to as ‘the father of biogeography‘). The Wallacean shortfall 
thus refers to our poor knowledge of the biogeography of 
most species. Species distribution modeling offers a powerful 
tool to address both the Linnean and Wallacean shortfalls, as 
demonstrated in a study by Raxworthy et al. (2003).

Raxworthy et al. (2003) modeled the distributions of 11 spe-
cies of chameleon that are endemic to the island of Madagas-
car. They used species occurrence records from recent surveys 
and from older specimens deposited in collections of natural 
history museums. No observed absence records were available 
for building the models. Environmental variables were derived 
from remote sensing data, from a digital elevation model, and 
from weather station data that had been interpolated to a grid 
(i.e. converted from point vector to raster data). In all, 25 GIS 
layers were used in the modeling, including environmental 
variables describing temperature, precipitation, land cover, 
and elevation. All analyses were undertaken at a resolution of 
1 km2. The modeling algorithm used was GARP (see Table 
3), which generated an output ranging from 0 – 10 at in-
crements of 1. Two alternative thresholds of occurrence were 
used: threshold = 1 (termed by the authors “any model pre-
dicts”), and threshold = 10 (termed “all models predict”).

Predictive performance of the models was first evaluated by 
splitting the available data into two parts, 50% for calibrat-
ing the model and 50% for testing the model. The authors 
calculated the number of test localities at which the species 
was correctly predicted to be present and tested the statistical 
significance of the results using a chi-square test. Performance 
of the 11 models was generally good, with overall prediction 
success as high as 83%. Predictions usually were better than 
random. A second evaluation tested model performance using 

independent test data from herpetological surveys undertaken 
at 11 sites after the models had been built. In this case, model 
evaluation was based on both presence and absence records, 
since surveys were sufficiently thorough that detection prob-
ability was high. The success of these predictions was more 
than 70% and levels of statistical significance were uniformly 
high.

Raxworthy et al. (2003) thus demonstrated the potential for 
species’ distribution models to be used to guide new field 
surveys toward areas in which the probability of species pres-
ence was high. This approach takes advantage of the type of 
model prediction illustrated by area 2 in Figure 3: the model 
identifies an area that is environmentally similar to where the 
species has already been found, but for which no occurrence 
data are available. The models can thus help to address the 
Wallacean shortfall, by improving our knowledge of the dis-
tributions of known species.

Raxworthy et al. (2003) also demonstrated that the models 
can help to address the Linnean shortfall by guiding field sur-
veys toward areas where species new to science are most likely 
to be discovered. In this case, the approach makes use of the 
type of model prediction illustrated by area 3 in Figure 3: 
areas are identified that are unoccupied by the species being 
modeled, but where closely-related species that occupy simi-
lar environmental space are most likely to be found. By sur-
veying sites identified by the distribution models for known 
species, Raxworthy et al. (2003) discovered seven new species, 
considerably greater than the number that would usually be 
expected on the basis of similar survey effort across a less-
targeted area.

Case Study 2: Species’ Distribution Modeling as a Tool 
for Predicting Invasions of Non-Native Plants (based 
on Thuiller et al., 2005)

Invasive species are increasingly a global concern, with inva-
sions altering ecosystem functioning, threatening native bio-
diversity, and negatively impacting agriculture, forestry, and 
human health. Species’ distribution modeling can be used to 
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identify areas that are most likely to be colonized by a known 
invader. The general approach is to model the distribution of 
a species using occurrence records from its native range, then 
project the model into new regions to assess susceptibility 
to invasion. The approach makes use of the type of model 
prediction illustrated by area 3 in Figure 3: areas are identi-
fied that are part of the potential, but not actual, distribution. 
Thuiller et al. (2005) used this method to identify parts of the 
world that are potentially susceptible to invasion by plant spe-
cies native to South Africa.

Thuiller and colleagues developed distribution models for 96 
South African plant taxa that are invasive in other regions 
of the globe. Species distribution data were extracted from 
large databases of occurrence records that have been collated 
for South Africa. Since the surveys incorporated within these 
databases were fairly comprehensive, the authors argued that 
absences within the databases are reliable and the modeling 
was thus undertaken using presence and absence data. Four 
climate-related variables that are known to affect plant physi-
ology and growth were developed and used as input to the 
models. These included two measures of temperature (grow-
ing degree days and temperature of the coldest month) along 
with indexes of humidity and plant productivity. All the anal-
yses were undertaken at a resolution of 25x25 km, which was 
considered sufficiently fine to identify environmental differ-
ences between regions at a global scale. Generalized Additive 
Models (implemented using the Splus-based BIOMOD ap-
plication; Table 3) were used to build the distribution mod-
els.

The first step in the study was to model each species’ distribu-
tion based on its native range in South Africa. Models were 
calibrated using 70% of the available records for each species, 
with the remaining 30% retained for model testing. The AUC 
validation test was applied using presence and absence test 
data. Because AUC assesses predictive performance based on 
continuous model output, it was not necessary to set a thresh-
old of occurrence. Validation statistics for the test data were 
generally very good, with a median AUC score across all 96 
species of 0.94 (minimum = 0.68, maximum = 1.0).

The second step in the study was to project the calibrated 
models worldwide. The accuracy of the global predictions 
was assessed for three example species using presence-only 
records from their non-native distributions (for example, in 
Europe, Australia, and New Zealand). Absence records were 
not available for these tests, so model performance was as-
sessed using chi-square tests (see section 5). For each of the 
species, predictions of potentially suitable areas outside South 
Africa showed considerable agreement with observed records 
of invasions (chi-square test, P<0.05).

In a further step, Thuiller and colleagues summed the prob-
ability surfaces for all 96 taxa to produce a global map for 
risk of invasion by species of South African origin. Parts of 
the world most susceptible to invasion included six biodiver-
sity ‘hotspots’, including the Mediterranean Basin, California 
Floristic Province, and southwest Australia. This study dem-
onstrates that species distribution modeling can be a valuable 
tool for identifying sites prone to invasion. Such sites may be 
prioritized for monitoring and quarantine measures can be 
put in place to help avoid the establishment of invasive spe-
cies.

Case Study 3: Modeling the Potential Impacts of Cli-
mate Change on Species’ Distributions in Britain and 
Ireland (based on Berry et al., 2002)

Climate change has the potential to significantly impact the 
distribution of species. Species’ distribution models have been 
used in a number of studies that aim to predict the likely re-
distribution of species under projected climate change over 
the coming century. The general approach is to calibrate the 
models based on current distributions of species and then 
predict future distributions of those species across landscapes 
for which the environmental input variables have been per-
turbed to reflect expected changes.

Berry et al. (2002) modeled 54 species that were chosen to 
represent a range of habitats common in Britain and Ireland. 
Species distribution data were obtained for the whole of Eu-
rope (i.e. European extent) from range maps for European 
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plants, amphibians, butterflies, and mammals. Since survey ef-
fort across Europe is generally very high, areas where a species 
had not been recorded were considered reliable measures of 
absence, and both presence and absence data were therefore 
used in the modeling. Five environmental variables describ-
ing temperature, precipitation, and soil type were used. These 
variables were generated using both current climate data 
and predictions of future climate from a General Circulation 
Model (GCM). GCMs are complex simulations that predict 
future climates using scenarios of greenhouse gas emissions. 
The environmental variables were calculated at a coarse reso-
lution (~50x50 km) for Europe, and also at a finer resolution 
(10x10 km) for Britain and Ireland. The modeling algorithm 
was an Artificial Neural Network (Table 3), which gave pre-
dictions of relative suitability ranging from 0 to 1. These con-
tinuous predictions were converted into binary predictions of 
presence and absence by applying a threshold of occurrence 
that maximized the Kappa statistic.

An important part of Berry et al.’s (2002) method was that 
calibration of the distribution model was carried out at the 
European scale (large extent and coarse resolution) and then 
the model was used to predict distributions in Britain and 
Ireland (smaller extent and finer resolution). This approach 
ensured that when distributions were predicted under future 
climate scenarios in Britain and Ireland, the model was not 
required to extrapolate beyond the range of data for which it 
was calibrated (since future climates in Britain and Ireland are 
expected to be similar to conditions currently experienced 
elsewhere in Europe).

Evaluation of the models was undertaken at the European 
scale by comparing model predictions against a test dataset, 
which comprised one third of the available data that had been 
randomly selected and not used in model calibration. Since 
both presence and absence records were available, the Kappa 
statistic was applied. Results from these tests revealed gen-
erally good model performance, with 27 out of 54 species 
achieving Kappa scores >0.75, and only 7 of 54 species with 
Kappa scores <0.6.

The models calibrated for Europe were then used to pre-
dict distributions in Britain and Ireland under current and 
projected future climates. Berry et al. (2002) emphasized that 
they did not predict actual distributions, but rather ‘biocli-
mate envelopes’, or suitable climate space. It is important to 
remember that actual future distributions will be determined 
by many factors that are not taken into account in the model-
ing, including the ability of species to colonize areas that be-
come suitable. Nevertheless, the distribution models enabled 
each species to be placed in one of three categories: those 
expected to lose suitable climate space, those expected to gain 
suitable climate space, and those showing little change. Spe-
cies’ distribution modeling thus enables preliminary assess-
ments of the possible impacts of climate change to be made, 
providing information that may be valuable in developing 
conservation policies to address the threat.
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