HS.PS3.D: Energy in Chemical Processes and Everyday Life

Solar cells are human-made devices that likewise capture the sun's energy and produce electrical energy. (HS-PS4-5)

HS.PS4.A: Wave Properties

The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. (HS-PS4-1)

HS.PS4.A: Wave Properties

Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses. (HS-PS4-2), (HS-PS4-5)
HS.PS4.A: Wave Properties

[From the 3–5 grade band endpoints] Waves can add or cancel one another as they cross, depending on their relative phase (i.e., relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (Boundary: The discussion at this grade level is qualitative only; it can be based on the fact that two different sounds can pass a location in different directions without getting mixed up.) (HS-PS4-3)

HS.PS4.B: Electromagnetic Radiation

Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features. (HS-PS4-3)

HS.PS4.B: Electromagnetic Radiation

When light or longer wavelength electromagnetic radiation is absorbed in matter, it is generally converted into thermal energy (heat). Shorter wavelength electromagnetic radiation (ultraviolet, X-rays, gamma rays) can ionize atoms and cause damage to living cells. (HS-PS4-4)
HS.PS4.B: Electromagnetic Radiation

Photoelectric materials emit electrons when they absorb light of a high-enough frequency. (HS-PS4-5)

HS.PS4.C: Information Technologies and Instrumentation

Multiple technologies based on the understanding of waves and their interactions with matter are part of everyday experiences in the modern world (e.g., medical imaging, communications, scanners) and in scientific research. They are essential tools for producing, transmitting, and capturing signals and for storing and interpreting the information contained in them. (HS-PS4-5)

HS.PS1.C: Nuclear Processes

Nuclear processes, including fusion, fission, and radioactive decays of unstable nuclei, involve release or absorption of energy. The total number of neutrons plus protons does not change in any nuclear process. (HS-PS1-8)
HS.PS2.B: Types of Interactions

Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS-PS2-5)

HS.PS3.A: Definitions of Energy

“Electrical energy” may mean energy stored in a battery or energy transmitted by electric currents. (HS-PS2-5)

HS.PS3.A: Definitions of Energy

Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system’s total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. (HS-PS3-1)
HS.PS3.B: Conservation of Energy and Energy Transfer

Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. (HS-PS3-1)

HS.PS3.B: Conservation of Energy and Energy Transfer

Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. (HS-PS3-1)

HS.PS3.B: Conservation of Energy and Energy Transfer

Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g., relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. (HS-PS3-1)
HS.PS3.B: Conservation of Energy and Energy Transfer

The availability of energy limits what can occur in any system. (HS-PS3-1)

HS.PS3.A: Definitions of Energy

Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. (HS-PS3-2)

At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. (HS-PS3-2)
HS.PS3.A: Definitions of Energy

These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as a combination of energy associated with the motion of particles and energy associated with the configuration (relative position of the particles). In some cases the relative position energy can be thought of as stored in fields (which mediate interactions between particles). This last concept includes radiation, a phenomenon in which energy stored in fields moves across space. (HS-PS3-2)

HS.PS3.A: Definitions of Energy

At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. (HS-PS3-3)

HS.PS3.D: Energy in Chemical Processes and Everyday Life

Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment. (HS-PS3-3)
Disciplinary Core Idea

HS.ETS1.A: Defining and Delimiting Engineering Problems

Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (HS-PS3-3)

Disciplinary Core Idea

HS.PS3.B: Conservation of Energy and Energy Transfer

Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. (HS-PS3-4)

Disciplinary Core Idea

HS.PS3.B: Conservation of Energy and Energy Transfer

Uncontrolled systems always evolve toward more stable states—that is, toward more uniform energy distribution (e.g., water flows downhill, objects hotter than their surrounding environment cool down). (HS-PS3-4)
Disciplinary Core Idea

HS.PS3.D: Energy in Chemical Processes and Everyday Life

Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment. (HS-PS3-4)

Disciplinary Core Idea

HS.PS3.D: Energy in Chemical Processes and Everyday Life

Solar cells are human-made devices that likewise capture the sun's energy and produce electrical energy. (HS-PS4-5)

Disciplinary Core Idea

HS.PS4.A: Wave Properties

Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses. (HS-PS4-5)
Disciplinary Core Idea

HS.PS4.B: Electromagnetic Radiation

Photoelectric materials emit electrons when they absorb light of a high-enough frequency. (HS-PS4-5)

Disciplinary Core Idea

HS.PS4.C: Information Technologies and Instrumentation

Multiple technologies based on the understanding of waves and their interactions with matter are part of everyday experiences in the modern world (e.g., medical imaging, communications, scanners) and in scientific research. They are essential tools for producing, transmitting, and capturing signals and for storing and interpreting the information contained in them. (HS-PS4-5)

Disciplinary Core Idea

HS.LS1.C: Organization for Matter and Energy Flow in Organisms

The process of photosynthesis converts light energy to stored chemical energy by converting carbon dioxide plus water into sugars plus released oxygen. (HS-LS1-5)
As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different ways to form different products. (HS-LS1-6)

The sugar molecules thus formed contain carbon, hydrogen, and oxygen: their hydrocarbon backbones are used to make amino acids and other carbon-based molecules that can be assembled into larger molecules (such as proteins or DNA), used for example to form new cells. (HS-LS1-6)

As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different ways to form different products. (HS-LS1-7)
As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another. Cellular respiration is a chemical process in which the bonds of food molecules and oxygen molecules are broken and new compounds are formed that can transport energy to muscles. Cellular respiration also releases the energy needed to maintain body temperature despite ongoing energy transfer to the surrounding environment. (HS-LS-7)

The main way that solar energy is captured and stored on Earth is through the complex chemical process known as photosynthesis. (HS-LS-2-5)

Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes. (HS-LS-2-5)
Disciplinary Core Idea

HS.PS3.D: Energy in Chemical Processes and Everyday Life

Nuclear Fusion processes in the center of the sun release the energy that ultimately reaches Earth as radiation. (HS-ESS1-1)

Disciplinary Core Idea

HS.ESS1.A: The Universe and Its Stars

The star called the sun is changing and will burn out over a lifespan of approximately 10 billion years. (HS-ESS1-1)

Disciplinary Core Idea

HS.PS4.B: Electromagnetic Radiation

Atoms of each element emit and absorb characteristic frequencies of light. These characteristics allow identification of the presence of an element, even in microscopic quantities. (HS-ESS1-2)
HS.ESS1.A: The Universe and Its Stars

The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth. (HS-ESS1-2)

HS.ESS1.A: The Universe and Its Stars

The Big Bang theory is supported by observations of distant galaxies receding from our own, of the measured composition of stars and non-stellar gases, and of the maps of spectra of the primordial radiation (cosmic microwave background) that still fills the universe. (HS-ESS1-2)

HS.ESS1.A: The Universe and Its Stars

Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases electromagnetic energy. Heavier elements are produced when certain massive stars achieve a supernova stage and explode. (HS-ESS1-2)
Disciplinary Core Idea

HS.ESS1.A: The Universe and Its Stars

The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth. (HS-ESS1-3)

HS.ESS1.A: The Universe and Its Stars

Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases electromagnetic energy. Heavier elements are produced when certain massive stars achieve a supernova stage and explode. (HS-ESS1-3)

HS.PS1.C: Nuclear Processes

Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (HS-ESS1-5)
HS.ESS1.C: The History of Planet Earth

Continental rocks, which can be older than 4 billion years, are generally much older than the rocks of the ocean floor, which are less than 200 million years old. (HS-ESS1-5)

HS.ESS2.B: Plate Tectonics and Large-Scale System Interactions

Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. Plate movements are responsible for most continental and ocean-floor features and for the distribution of most rocks and minerals within Earth's crust. (HS-ESS1-5)

HS.PS1.C: Nuclear Processes

Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (HS-ESS1-6)
HS.ESS1.C: The History of Planet Earth

Although active geologic processes, such as plate tectonics and erosion, have destroyed or altered most of the very early rock record on Earth, other objects in the solar system, such as lunar rocks, asteroids, and meteorites, have changed little over billions of years. Studying these objects can provide information about Earth’s formation and early history. (HS-ESS1-6)

HS.ESS2.A: Earth Materials and Systems

Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. (HS-ESS2-1)

HS.ESS2.B: Plate Tectonics and Large-Scale System Interactions

Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. Plate movements are responsible for most continental and ocean-floor features and for the distribution of most rocks and minerals within Earth’s crust. (HS-ESS2-1)
Disciplinary Core Idea

HS.ESS2.B: Plate Tectonics and Large-Scale System Interactions

Plate movements are responsible for most continental and ocean-floor features and for the distribution of most rocks and minerals within Earth’s crust. (HS-ESS2-1)

Disciplinary Core Idea

HS.ESS2.A: Earth Materials and Systems

Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. (HS-ESS2-2)

Disciplinary Core Idea

HS.ESS2.D: Weather and Climate

The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space. (HS-ESS2-2)
Disciplinary Core Idea

HS.ESS2.A: Earth Materials and Systems

Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth’s surface and its magnetic field, and an understanding of physical and chemical processes lead to a model of Earth with a hot but solid inner core, a liquid outer core, a solid mantle and crust. Motions of the mantle and its plates occur primarily through thermal convection, which involves the cycling of matter due to the outward flow of energy from Earth’s interior and gravitational movement of denser materials toward the interior. (HS-ESS2-3)

Disciplinary Core Idea

HS.ESS2.B: Plate Tectonics and Large-Scale System Interactions

The radioactive decay of unstable isotopes continually generates new energy within Earth’s crust and mantle, providing the primary source of the heat that drives mantle convection. Plate tectonics can be viewed as the surface expression of mantle convection. (HS-ESS2-3)

Disciplinary Core Idea

HS.ESS1.B: Earth and the Solar System

Cyclical changes in the shape of Earth’s orbit around the sun, together with changes in the tilt of the planet’s axis of rotation, both occurring over hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on the earth. These phenomena cause a cycle of ice ages and other gradual climate changes. (HS-ESS2-4)
Disciplinary Core Idea

HS.ESS2.A: Earth Materials and Systems

The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun’s energy output or Earth’s orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities. These changes can occur on a variety of time scales from sudden (e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic cycles. (HS-ESS2-4)

Disciplinary Core Idea

HS.ESS2.D: Weather and Climate

The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space. (HS-ESS2-4)

Disciplinary Core Idea

HS.ESS2.D: Weather and Climate

Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate. (HS-ESS2-4)
Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen. (HS-ESS2-6)

Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate. (HS-ESS2-6)

Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen. (HS-ESS2-7)
HS.ESS2.E: Biogeology
The many dynamic and delicate feedbacks between the biosphere and other Earth systems cause a continual co-evolution of Earth’s surface and the life that exists on it. (HS-ESS2-7)

HS.ESS2.D: Weather and Climate
Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere. (HS-ESS3-6)

HS.ESS3.D: Global Climate Change
Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities. (HS-ESS3-6)
Performance Expectation

HS-PS4-1: Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.

Clarification Statement: Examples of data could include electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through air and water, and seismic waves traveling through the Earth.
Assessment Boundary: Assessment is limited to algebraic relationships and describing those relationships qualitatively.

Performance Expectation

HS-PS4-2: Evaluate questions about the advantages of using a digital transmission and storage of information.

Clarification Statement: Examples of advantages could include that digital information is stable because it can be stored reliably in computer memory, transferred easily, and copied and shared rapidly. Disadvantages could include issues of easy deletion, security, and theft.
Assessment Boundary: none

Performance Expectation

HS-PS4-3: Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.

Clarification Statement: Emphasis is on how the experimental evidence supports the claim and how a theory is generally modified in light of new evidence. Examples of a phenomenon could include resonance, interference, diffraction, and photoelectric effect.
Assessment Boundary: Assessment does not include using quantum theory.
Performance Expectation

HS-PS4-4: Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.

Clarification Statement: Emphasis is on the idea that photons associated with different frequencies of light have different energies, and the damage to living tissue from electromagnetic radiation depends on the energy of the radiation. Examples of published materials could include trade books, magazines, web resources, videos, and other passages that may reflect bias.

Assessment Boundary: Assessment is limited to qualitative descriptions.

Performance Expectation

HS-PS4-5: Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.*

Clarification Statement: Examples could include solar cells capturing light and converting it to electricity; medical imaging; and communications technology.

Assessment Boundary: Assessments are limited to qualitative information. Assessments do not include band theory.

This performance expectation integrates traditional science content with engineering through a practice or disciplinary code idea.

Performance Expectation

HS-PS1-8: Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.

Clarification Statement: Emphasis is on simple qualitative models, such as pictures or diagrams, and on the scale of energy released in nuclear processes relative to other kinds of transformations.

Assessment Boundary: Assessment does not include quantitative calculation of energy released. Assessment is limited to alpha, beta, and gamma radioactive decays.
Performance Expectation

HS-PS2-5: Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

Clarification Statement: none

Assessment Boundary: Assessment is limited to designing and conducting investigations with provided materials and tools.

Performance Expectation

HS-PS3-1: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

Clarification Statement: Emphasis is on explaining the meaning of mathematical expressions used in the model.

Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.

Performance Expectation

HS-PS3-2: Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).

Clarification Statement: Examples of phenomena at the macroscopic scale could include the conversion of kinetic energy to thermal energy, the energy stored due to position of an object above the earth, and the energy stored between two electrically-charged plates. Examples of models could include diagrams, drawings, descriptions, and computer simulations.

Assessment Boundary: none
Performance Expectation

HS-PS3-3: Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.*

Clarification Statement: Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency.
Assessment Boundary: Assessment for quantitative evaluations is limited to total output for a given input. Assessment is limited to devices constructed with materials provided to students.
* This performance expectation integrates traditional science content with engineering through a practice or disciplinary code idea.

Performance Expectation

HS-PS3-4: Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).

Clarification Statement: Emphasis is on analyzing data from student investigations and using mathematical thinking to describe the energy changes both quantitatively and conceptually. Examples of investigations could include mixing liquids at different initial temperatures or adding objects at different temperatures to water.
Assessment Boundary: Assessment is limited to investigations based on materials and tools provided to students.

Performance Expectation

HS-PS4-5: Communicate technical information about about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.*

Clarification Statement: Examples could include solar cells capturing light and converting it to electricity; medical imaging; and communications technology.
Assessment Boundary: Assessments are limited to qualitative information. Assessments do not include band theory.
* This performance expectation integrates traditional science content with engineering through a practice or disciplinary code idea.
Performance Expectation

HS-LS1-5: Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.

Clarification Statement: Emphasis is on illustrating inputs and outputs of matter and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models.

Assessment Boundary: Assessment does not include specific biochemical steps.

Performance Expectation

HS-LS1-6: Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.

Clarification Statement: Emphasis is on using evidence from models and simulations to support explanations.

Assessment Boundary: Assessment does not include the details of the specific chemical reactions or identification of macromolecules.

Performance Expectation

HS-LS1-7: Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy.

Clarification Statement: Emphasis is on the conceptual understanding of the inputs and outputs of the process of cellular respiration.

Assessment Boundary: Assessment should not include identification of the steps or specific processes involved in cellular respiration.
Performance Expectation

HS-LS2-5: Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.

Clarification Statement: Examples of models could include simulations and mathematical models.

Assessment Boundary: Assessment does not include the specific chemical steps of photosynthesis and respiration.

Performance Expectation

HS-ESS1-1: Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy in the form of radiation.

Clarification Statement: Emphasis is on the energy transfer mechanisms that allow energy from nuclear fusion in the sun's core to reach Earth. Examples of evidence for the model include observations of the masses and lifetimes of other stars, as well as the ways that the sun's radiation varies due to sudden solar flares ("space weather"), the 11-year sunspot cycle, and non-cyclic variations over centuries.

Assessment Boundary: Assessment does not include details of the atomic and sub-atomic processes involved with the sun's nuclear fusion.

Performance Expectation

HS-ESS1-2: Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe.

Clarification Statement: Emphasis is on the astronomical evidence of the red shift of light from galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars), which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).

Assessment Boundary: none
Performance Expectation

HS-ESS1-3: Communicate scientific ideas about the way stars, over their life cycle, produce elements.

Clarification Statement: Emphasis is on the way nucleosynthesis, and therefore the different elements created, varies as a function of the mass of a star and the stage of its lifetime.

Assessment Boundary: Details of the many different nucleosynthesis pathways for stars of differing masses are not assessed.

Performance Expectation

HS-ESS1-5: Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.

Clarification Statement: Emphasis is on the ability of plate tectonics to explain the ages of crustal rocks. Examples include evidence of the ages oceanic crust increasing with distance from mid-ocean ridges (a result of plate spreading) and the ages of North American continental crust increasing with distance away from a central ancient core (a result of past plate interactions).

Assessment Boundary: none

Performance Expectation

HS-ESS1-6: Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth’s formation and early history.

Clarification Statement: Emphasis is on using available evidence within the solar system to reconstruct the early history of Earth, which formed along with the rest of the solar system 4.6 billion years ago. Examples of evidence include the absolute ages of ancient materials (obtained by radiometric dating of meteorites, moon rocks, and Earth’s oldest minerals), the sizes and compositions of solar system objects, and the impact cratering record of planetary surfaces.

Assessment Boundary: none
Performance Expectation

HS-ESS2-1: Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.

Clarification Statement: Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive mechanisms (such as weathering, mass wasting, and coastal erosion).

Assessment Boundary: Assessment does not include memorization of the details of the formation of specific geographic features of Earth's surface.

Performance Expectation

HS-ESS2-2: Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.

Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth's surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.

Assessment Boundary: none

Performance Expectation

HS-ESS2-3: Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection.

Clarification Statement: Emphasis is on both a one-dimensional model of Earth, with radial layers determined by density, and a three-dimensional model, which is controlled by mantle convection and the resulting plate tectonics. Examples of evidence include maps of Earth's three-dimensional structure obtained from seismic waves, records of the rate of change of Earth's magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth's layers from high-pressure laboratory experiments.

Assessment Boundary: none
Performance Expectation

HS-ESS2-4: Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate.

Clarification Statement: Examples of the causes of climate change differ by timescale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth’s orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition.

Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.

Performance Expectation

HS-ESS2-6: Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.

Clarification Statement: Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.

Assessment Boundary: none

Performance Expectation

HS-ESS2-7: Construct an argument based on evidence about the simultaneous coevolution of Earth’s systems and life on Earth.

Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth’s other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth’s surface. Examples include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.

Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth’s other systems.
Performance Expectation

HS-ESS3-6: Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

Clarification Statement: Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.

Assessment Boundary: Assessment does not include running computational representations but is limited to using the published results of scientific computational models.

Science and Engineering Practice

Asking Questions and Defining Problems

Asking questions and defining problems in 9–12 builds on grades K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.

Evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of a design. (HS-PS4-2)

Science and Engineering Practice

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 9–12 builds on K–8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponents and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

Use mathematical representations of phenomena or design solutions to describe and/or support claims and/or explanations. (HS-PS4-1)
Science and Engineering Practice

Engaging in Argument from Evidence

Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. (HS-PS4-3)

Science and Engineering Practice

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 9–12 builds on K–8 experiences and progresses to evaluating the validity and reliability of the claims, methods, and designs.

Evaluate the validity and reliability of multiple claims that appear in scientific and technical texts or media reports, verifying the data when possible. (HS-PS4-4)

Science and Engineering Practice

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 9–12 builds on K–8 experiences and progresses to evaluating the validity and reliability of the claims, methods, and designs.

Communicate technical information or ideas (e.g. about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-PS4-5)
Science and Engineering Practice

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-PS1-8)

Planning and Carrying Out Investigations

Planning and carrying out investigations in 9-12 builds on K–8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-PS2-5)

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 9–12 builds on K–8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

Create a computational model or simulation of a phenomenon, designed device, process, or system. (HS-PS3-1)
Science and Engineering Practice

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-PS3-2)

Science and Engineering Practice

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.

Design, evaluate, and/or refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-PS3-3)

Science and Engineering Practice

Planning and Carrying Out Investigations

Planning and carrying out investigations in 9-12 builds on K–8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-PS3-4)
Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 9–12 builds on K–8 experiences and progresses to evaluating the validity and reliability of the claims, methods, and designs.

Communicate technical information or ideas (e.g. about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-PS4-5)

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

Use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-LS1-5)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.

Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-LS1-6)
Science and Engineering Practice

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

Use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-LS1-7)

Science and Engineering Practice

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-LS2-5)

Science and Engineering Practice

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-ESS1-1)
Science and Engineering Practice

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.

Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-ESS1-2)

Science and Engineering Practice

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 9–12 builds on K–8 experiences and progresses to evaluating the validity and reliability of the claims, methods, and designs.

Communicate scientific ideas (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-ESS1-3)

Science and Engineering Practice

Engaging in Argument from Evidence

Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

Evaluate evidence behind currently accepted explanations or solutions to determine the merits of arguments. (HS-ESS1-5)
Science and Engineering Practice

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.

Apply scientific reasoning to link evidence to the claims to assess the extent to which the reasoning and data support the explanation or conclusion. (HS-ESS1-6)

Science and Engineering Practice

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-ESS2-1)

Science and Engineering Practice

Analyzing and Interpreting Data

Analyzing data in 9–12 builds on K–8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-ESS2-2)
Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-ESS2-3)

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

Use a model to provide mechanistic accounts of phenomena. (HS-ESS2-4)

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-ESS2-6)
Engaging in Argument from Evidence

Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

Construct an oral and written argument or counter-arguments based on data and evidence. (HS-ESS2-7)

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 9–12 builds on K–8 experiences and progresses to using algebraic thinking and analysis, a range of linear and non-linear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

Use a computational representation of phenomena or design solutions to describe and/or support claims and/or explanations. (HS-ESS3-6)

Cause and Effect

Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-PS4-1)
Crosscutting Concept

Cause and Effect

Systems can be designed to cause a desired effect. (HS-PS4-5)

Crosscutting Concept

Cause and Effect

Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system. (HS-PS4-4)

Crosscutting Concept

Systems and System Models

Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales. (HS-PS4-3)
Stability and Change

Systems can be designed for greater or lesser stability. (HS-PS4-2)

Energy and Matter

In nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved. (HS-PS1-8)

Cause and Effect

Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-PS2-5)
Systems and System Models

Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models. (HS-PS3-1)

Energy and Matter

Energy cannot be created or destroyed—it only moves between one place and another place, between objects and/or fields, or between systems. (HS-PS3-2)

Energy and Matter

Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. (HS-PS3-3)
When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. (HS-PS3-4)

Systems can be designed to cause a desired effect. (HS-PS4-5)

Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. (HS-LS1-5)
Energy and Matter

Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. (HS-LS1-6)

Energy and Matter

Energy cannot be created or destroyed—it only moves between one place and another place, between objects and/or fields, or between systems. (HS-LS1-7)

Systems and System Models

Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales. (HS-LS2-5)
Crosscutting Concept

Scale, Proportion, and Quantity

The significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs. (HS-ESS1-1)

Crosscutting Concept

Energy and Matter

Energy cannot be created or destroyed—it only moves between one place and another place, between objects and/or fields, or between systems. (HS-ESS1-2)

Crosscutting Concept

Energy and Matter

In nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved. (HS-ESS1-3)
Empirical evidence is needed to identify patterns. (HS-ESS1-5)

Much of science deals with constructing explanations of how things change and how they remain stable. (HS-ESS1-6)

Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible. (HS-ESS2-1)
Crosscutting Concept

Stability and Change
Feedback (negative or positive) can stabilize or destabilize a system. (HS-ESS2-2)

Crosscutting Concept

Energy and Matter
Energy drives the cycling of matter within and between systems. (HS-ESS2-3)

Crosscutting Concept

Cause and Effect
Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-ESS2-4)
Crosscutting Concept

Energy and Matter

The total amount of energy and matter in closed systems is conserved. (HS-ESS2-6)

Crosscutting Concept

Stability and Change

Much of science deals with constructing explanations of how things change and how they remain stable. (HS-ESS2-7)

Crosscutting Concept

Systems and System Models

When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. (HS-ESS3-6)
Connection to Nature of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence. (HS-PS4-3)

Connection to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

Modern civilization depends on major technological systems. (HS-PS4-2), (HS-PS4-5)

Connection to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

Engineers continuously modify these technological systems by applying scientific knowledge and engineering design practices to increase benefits while decreasing costs and risks. (HS-PS4-2)
Interdependence of Science, Engineering, and Technology

Science and engineering complement each other in the cycle known as research and development (R&D). (HS-PS4-5)

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence. (HS-ESS1-2)

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence. (HS-ESS1-6)
Connection to Engineering, Technology, and Applications of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

Models, mechanisms, and explanations collectively serve as tools in the development of a scientific theory. (HS-ESS1-6)

Connection to Engineering, Technology, and Applications of Science

Science Knowledge Is Based on Empirical Evidence

Science knowledge is based on empirical evidence. (HS-ESS2-3)

Connection to Engineering, Technology, and Applications of Science

Science Knowledge Is Based on Empirical Evidence

Science disciplines share common rules of evidence used to evaluate explanations about natural systems. (HS-ESS2-3)
Science Knowledge Is Based on Empirical Evidence

Science includes the process of coordinating patterns of evidence with current theory. (HS-ESS2-3)

Science Knowledge Is Based on Empirical Evidence

Science arguments are strengthened by multiple lines of evidence supporting a single explanation. (HS-ESS2-4)

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

Science assumes the universe is a vast single system in which basic laws are consistent. (HS-PS3-1)
Connection to Engineering, Technology, and Applications of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

Science assumes the universe is a vast single system in which basic laws are consistent. (HS-ESS1-2)

Connection to Engineering, Technology, and Applications of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future. (HS-ESS1-2)

Connection to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

Modern civilization depends on major technological systems. Engineers continuously modify these technological systems by applying scientific knowledge and engineering design practices to increase benefits while decreasing costs and risks. (HS-PS3-3)
Influence of Science, Engineering, and Technology on Society and the Natural World

Modern civilization depends on major technological systems. (HS-PS4-5)

Interdependence of Science, Engineering, and Technology

Science and engineering complement each other in the cycle known as research and development (R&D). (HS-PS4-5)

Interdependence of Science, Engineering, and Technology

Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. (HS-ESS1-2)
Connection to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology. (HS-ESS2-2)

Interdependence of Science, Engineering, and Technology

Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. (HS-ESS2-3)

Common Core State Standards for ELA/Literacy

Reading in Science

RST.11-12.1 - Key Ideas and Details

Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS4-2), (HS-PS4-3), (HS-PS4-4)
Reading in Science

RST.11-12.7 - Integration of Knowledge and Ideas

Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS4-1), (HS-PS4-4)

Reading in Science

RST.11-12.8 - Integration of Knowledge and Ideas

Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-PS4-2), (HS-PS4-3), (HS-PS4-4)

Reading in Science

RST.9-10.8 - Integration of Knowledge and Ideas

Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. (HS-PS4-2), (HS-PS4-3), (HS-PS4-4)
Writing in Science
WHST.11-12.8 - Research to Build and Present Knowledge
Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS4-4)

Writing in Science
WHST.9-12.2 - Text Types and Purposes
Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. (HS-PS4-5)

Creating Equations
HSA-CED.A.4 - Create equations that describe numbers or relationships.
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS4-1), (HS-PS4-3)
Seeing Structure in Expressions
HSA-SSE.A.1 - Interpret the structure of expressions.
Interpret expressions that represent a quantity in terms of its context. (HS-PS4-1), (HS-PS4-3)

Seeing Structure in Expressions
HSA-SSE.B.3 - Write expressions in equivalent forms to solve problems.
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS4-1), (HS-PS4-3)

Mathematical Practices
MP.2 - Reason abstractly and quantitatively
Reason abstractly and quantitatively. (HS-PS4-1), (HS-PS4-3)
Common Core State Standards for Mathematics

Mathematical Practices
MP.4 - Model with mathematics
Model with mathematics. (HS-PS4-1)