MS.ESS2.C: The Roles of Water in Earth's Surface Processes The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns. (MS-ESS2-5) #### **Disciplinary Core Idea** ## MS.ESS2.C: The Roles of Water in Earth's Surface Processes Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents. (MS-ESS2-6) #### **Disciplinary Core Idea** ### **MS.ESS2.D: Weather and Climate** Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns. (MS-ESS2-6) #### MS.ESS2.D: Weather and Climate Because these patterns are so complex, weather can only be predicted probabilistically. (MS-ESS2-5) #### **Disciplinary Core Idea** #### MS.ESS2.D: Weather and Climate The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents. (MS-ESS2-6) #### **Disciplinary Core Idea** ## MS.ESS3.D: Global Climate Change Human activities, such as the release of greenhouse gases from burning fossil fuels, are major factors in the current rise in Earth's mean surface temperature (global warming). Reducing the level of climate change and reducing human vulnerability to whatever climate changes do occur depend on the understanding of climate science, engineering capabilities, and other kinds of knowledge, such as understanding of human behavior and on applying that knowledge wisely in decisions and activities. (MS-ESS3-5) ## **MS.PS1.A: Structure and Properties of Matter** Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms. (MS-PS1-1) #### **Disciplinary Core Idea** ## **MS.PS1.A: Structure and Properties of Matter** Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). (MS-PS1-1) #### **Disciplinary Core Idea** ## **MS.PS1.A: Structure and Properties of Matter** Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS-PS1-2) ### **MS.PS1.B: Chemical Reactions** Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-2) #### **Disciplinary Core Idea** ## **MS.PS1.A: Structure and Properties of Matter** Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS-PS1-3) #### **Disciplinary Core Idea** #### **MS.PS1.B: Chemical Reactions** Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-3) ## **MS.PS1.A: Structure and Properties of Matter** Gases and liquids are made of molecules or inert atoms that are moving about relative to each other. (MS-PS1-4) #### **Disciplinary Core Idea** ## **MS.PS1.A: Structure and Properties of Matter** In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. (MS-PS1-4) #### **Disciplinary Core Idea** ## **MS.PS1.A: Structure and Properties of Matter** The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter. (MS-PS1-4) ### **MS.PS3.A: Definitions of Energy** The term "heat" as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance) and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to the energy transferred due to the temperature difference between two objects. (MS-PS1-4) #### **Disciplinary Core Idea** ### **MS.PS3.A: Definitions of Energy** The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule (whichever is the appropriate building block for the system's material). The details of that relationship depend on the type of atom or molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system's total thermal energy. The total thermal energy (sometimes called the total internal energy) of a system depends jointly on the temperature, the total number of atoms in the system, and the state of the material. (MS-PS1-4) #### Disciplinary Core Idea #### **MS.PS2.A:** Forces and Motion For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the force that the second object exerts on the first, but in the opposite direction (Newton's third law). (MS-PS2-1) #### MS.PS2.A: Forces and Motion The motion of an object is determined by the sum of the forces acting on it; if the total force on the object is not zero, its motion will change. The greater the mass of the object, the greater the force needed to achieve the same change in motion. For any given object, a larger force causes a larger change in motion. (MS-PS2-2) #### **Disciplinary Core Idea** #### MS.PS2.A: Forces and Motion All positions of objects and the directions of forces and motions must be described in an arbitrarily chosen reference frame and arbitrarily chosen units of size. In order to share information with other people, these choices must also be shared. (MS-PS2-2) #### **Disciplinary Core Idea** ## MS.PS3.A: Definitions of Energy Motion energy is properly called kinetic energy; it is proportional to the mass of the moving object and grows with the square of its speed. (MS-PS3-1) ## MS.PS3.A: Definitions of Energy A system of objects may also contain stored (potential) energy, depending on their relative positions. (MS-PS3-2) #### **Disciplinary Core Idea** ## MS.PS3.C: Relationship Between Energy and Forces When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object. (MS-PS3-2) #### **Disciplinary Core Idea** ## MS.PS3.A: Definitions of Energy Temperature is not a measure of energy; the relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. (MS-PS3-3) ## MS.PS3.B: Conservation of Energy and Energy Transfer Energy is spontaneously transferred out of hotter regions or objects and into colder ones. (MS-PS3-3) #### Disciplinary Core Idea ## MS.ETS1.A: Defining and Delimiting Engineering Problems The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to limit possible solutions. (MS-PS3-3) #### **Disciplinary Core Idea** ## **MS.ETS1.B: Developing Possible Solutions** A solution needs to be tested, and then modified on the basis of the test results in order to improve it. There are systematic processes for evaluating solutions with respect to how well they meet criteria and constraints of a problem. (MS-PS3-3) ## **MS.PS3.A: Definitions of Energy** Temperature is not a measure of energy; the relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. (MS-PS3-4) #### **Disciplinary Core Idea** ## MS.PS3.B: Conservation of Energy and Energy Transfer The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environment. (MS-PS3-4) #### Disciplinary Core Idea ## MS.PS3.B: Conservation of Energy and Energy Transfer When the motion energy of an object changes, there is inevitably some other change in energy at the same time. (MS-PS3-5) ### **MS.PS4.A: Wave Properties** A sound wave needs a medium through which it is transmitted. (MS-PS4-2) #### **Disciplinary Core Idea** ## **MS.PS4.B: Electromagnetic Radiation** When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object's material and the frequency (color) of the light. (MS-PS4-2) #### **Disciplinary Core Idea** ## MS.PS4.B: Electromagnetic Radiation The path that light travels can be traced as straight lines, except at surfaces between different transparent materials (e.g., air and water, air and glass) where the light path bends. (MS-PS4-2) ### **MS.PS4.B: Electromagnetic Radiation** A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light at a surface between media. (MS-PS4-2) #### Disciplinary Core Idea ### **MS.PS4.B: Electromagnetic Radiation** However, because light can travel through space, it cannot be a matter wave, like sound or water waves. (MS-PS4-2) #### **Performance Expectation** MS-ESS2-5: Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions. Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation). **Assessment Boundary:** Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations. MS-ESS2-6: Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations **Assessment Boundary:** Assessment does not include the dynamics of the Coriolis effect. #### **Performance Expectation** MS-ESS3-5: Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century. Clarification Statement: Examples of factors include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence can include tables, graphs, and maps of global and regional temperatures, atmospheric levels of gases such as carbon dioxide and methane, and the rates of human activities. Emphasis is on the major role that human activities play in causing the rise in global temperatures. Assessment Boundary: none #### Performance Expectation ## MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures. Clarification Statement: Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include ammonia and methanol. Examples of extended structures could include sodium chloride or diamonds. Examples of molecular-level models could include drawings, 3D ball and stick structures, or computer representations showing different molecules with different types of atoms. **Assessment Boundary:** Assessment does not include valence electrons and bonding energy, discussing the ionic nature of subunits of complex structures, or a complete description of all individual atoms in a complex molecule or extended structure is not required. MS-PS1-2: Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. **Clarification Statement:** Examples of reactions could include burning sugar or steel wool, fat reacting with sodium hydroxide, and mixing zinc with hydrogen chloride. **Assessment Boundary:** Assessment is limited to analysis of the following properties: density, melting point, boiling point, solubility, flammability, and odor. #### **Performance Expectation** MS-PS1-3: Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. **Clarification Statement:** Emphasis is on natural resources that undergo a chemical process to form the syntheic material. Examples of new materials could include new medicine, foods, and alternative fuels. **Assessment Boundary:** Assessment is limited to qualitative information. #### Performance Expectation MS-PS1-4: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawing and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium. Assessment Boundary: none ## MS-PS2-1: Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects. * **Clarification Statement:** Examples of practical problems could include the impact of collisions between two cars, between a car and stationary objects, and between a meteor and a space vehicle. **Assessment Boundary:** Assessment is limited to vertical or horizontal interactions in one dimension. * This performance expectation integrates traditional science content with engineering through a practice or disciplinary code idea. #### **Performance Expectation** # MS-PS2-2: Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object. **Clarification Statement:** Emphasis is on balanced (Newton's First Law) and unbalanced forces in a system, qualitative comparisons of forces, mass and changes in motion (Newton's Second Law), frame of reference, and specification of units. **Assessment Boundary:** Assessment is limited to forces and changes in motion in one-dimension in an inertial reference frame and to change in one variable at a time. Assessment does not include the use of trigonometry. #### Performance Expectation # MS-PS3-1: Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. **Clarification Statement:** Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball. **Assessment Boundary:** none MS-PS3-2: Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate's hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems. **Assessment Boundary:** Assessment is limited to two objects and electric, magnetic, and gravitational interactions. #### **Performance Expectation** MS-PS3-3: Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.* **Clarification Statement:** Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup. **Assessment Boundary:** Assessment does not include calculating the total amount of thermal energy transferred. * This performance expectation integrates traditional science content with engineering through a practice or disciplinary code idea. #### Performance Expectation MS-PS3-4: Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added. **Assessment Boundary:** Assessment does not include calculating the total amount of thermal energy transferred. MS-PS3-5: Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. **Clarification Statement:** Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object. **Assessment Boundary:** Assessment does not include calculations of energy. #### **Performance Expectation** MS-PS4-2: Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. **Clarification Statement:** Emphasis is on both light and mechanical waves. Examples of models could include drawings, simulations, and written descriptions. **Assessment Boundary:** Assessment is limited to qualitative applications pertaining to light and mechanical waves. #### **Science and Engineering Practice** ### **Asking Questions and Defining Problems** Asking questions and defining problems in grades 6–8 builds from grades K–5 experiences and progresses to specifying relationships between variables and clarifying arguments and models. Ask questions to identify and clarify evidence of an argument. (MS-ESS3-5) ### **Developing and Using Models** Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. Develop and use a model to describe phenomena. (MS-ESS2-6) #### **Science and Engineering Practice** ## **Planning and Carrying Out Investigations** Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions. Collect data about the performance of a proposed object, tool, process, or system under a range of conditions. (MS-ESS2-5) #### **Science and Engineering Practice** ## **Developing and Using Models** Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. Develop a model to predict and/or describe phenomena. (MS-PS1-1) ### **Analyzing and Interpreting Data** Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis. Analyze and interpret data to determine similarities and differences in findings. (MS-PS1-2) #### Science and Engineering Practice ## Obtaining, Evaluating, and Communicating Information Obtaining, evaluating, and communicating information in 6–8 builds on K–5 experiences and progresses to evaluating the merit and validity of ideas and methods. Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence. (MS-PS1-3) #### **Science and Engineering Practice** ## **Developing and Using Models** Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. Develop a model to predict and/or describe phenomena. (MS-PS1-4) ## **Constructing Explanations and Designing Solutions** Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. Apply scientific ideas or principles to design an object, tool, process or system. (MS-PS2-1) #### Science and Engineering Practice ### **Planning and Carrying Out Investigations** Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions. Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim. (MS-PS2-2) #### **Science and Engineering Practice** ## **Analyzing and Interpreting Data** Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis. Construct and interpret graphical displays of data to identify linear and nonlinear relationships. (MS-PS3-1) ### **Developing and Using Models** Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. Develop a model to describe unobservable mechanisms. (MS-PS3-2) #### Science and Engineering Practice ## **Constructing Explanations and Designing Solutions** Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. Apply scientific ideas or principles to design, construct, and test a design of an object, tool, process or system. (MS-PS3-3) #### **Science and Engineering Practice** ### **Planning and Carrying Out Investigations** Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions. Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim. (MS-PS3-4) ## **Engaging in Argument from Evidence** Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s). Construct, use, and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon. (MS-PS3-5) #### Science and Engineering Practice ### **Developing and Using Models** Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. Develop a model to describe phenomena. (MS-PS4-2) #### **Crosscutting Concept** #### **Cause and Effect** Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-ESS2-5) ## **Systems and System Models** Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems. (MS-ESS2-6) #### **Crosscutting Concept** ## **Stability and Change** Stability might be disturbed either by sudden events or gradual changes that accumulate over time. (MS-ESS3-5) #### **Crosscutting Concept** ## Scale, Proportion, and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. (MS-PS1-1) Macroscopic patterns are related to the nature of microscopic and atomic-level structure. (MS-PS1-2) #### **Crosscutting Concept** #### **Structure and Function** Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used. (MS-PS1-3) #### **Crosscutting Concept** #### **Cause and Effect** Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-PS1-4) ## **Systems and System Models** Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy and matter flows within systems. (MS-PS2-1) #### **Crosscutting Concept** ## **Stability and Change** Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and forces at different scales. (MS-PS2-2) #### **Crosscutting Concept** ## Scale, Proportion, and Quantity Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes. (MS-PS3-1) ## **Systems and System Models** Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy and matter flows within systems. (MS-PS3-2) #### Crosscutting Concept ## **Energy and Matter** The transfer of energy can be tracked as energy flows through a designed or natural system. (MS-PS3-3) #### **Crosscutting Concept** ## Scale, Proportion, and Quantity Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes. (MS-PS3-4) ### **Energy and Matter** Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion). (MS-PS3-5) #### Crosscutting Concept #### **Structure and Function** Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used. (MS-PS4-2) **Connection to Engineering, Technology, and Applications of Science** ## Science Knowledge Is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-PS1-2) #### **Connection to Engineering, Technology, and Applications of Science** ## Science Knowledge Is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-PS2-2) #### **Connection to Engineering, Technology, and Applications of Science** ## Science Knowledge Is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-PS3-4) #### **Connection to Engineering, Technology, and Applications of Science** ## Science Knowledge Is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-PS3-5) #### Connection to Engineering, Technology, and Applications of Science ## Influence of Science, Engineering, and Technology on Society and the Natural World The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time. (MS-PS1-3) #### Connection to Engineering, Technology, and Applications of Science ## Interdependence of Science, Engineering, and Technology Engineering advances have led to important discoveries in virtually every field of science and scientific discoveries have led to the development of entire industries and engineered systems. (MS-PS1-3) Connection to Engineering, Technology, and Applications of Science ## Influence of Science, Engineering, and Technology on Society and the Natural World The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. (MS-PS2-1) #### **Common Core State Standards for ELA/Literacy** ## **Reading in Science** ## RST.6-8.1 - Key Ideas and Details Cite specific textual evidence to support analysis of science and technical texts. (MS-ESS2-5), (MS-ESS3-5) #### **Common Core State Standards for ELA/Literacy** ## **Reading in Science** ## RST.6-8.9 - Integration of Knowledge and Ideas Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-ESS2-5) #### **Common Core State Standards for ELA/Literacy** ## **Speaking & Listening** ## SL.8.5 - Presentation of Knowledge and Ideas Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-ESS2-6) #### **Common Core State Standards for ELA/Literacy** ### **Writing in Science** ## WHST.6-8.8 - Research to Build and Present Knowledge Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-ESS2-5) #### **Common Core State Standards for Mathematics** #### **Expressions & Equations** ## 6.EE.B.6 - Reason about and solve one-variable equations and inequalities. Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-ESS3-5) #### **Common Core State Standards for Mathematics** #### **The Number System** ## 6.NS.C.5 - Apply and extend previous understandings of numbers to the system of rational numbers. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-ESS2-5) #### **Common Core State Standards for Mathematics** #### **Expressions & Equations** 7.EE.B.4 - Solve real-life and mathematical problems using numerical and algebraic expressions and equations. Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-ESS3-5) #### **Common Core State Standards for Mathematics** #### **Mathematical Practices** MP.2 - Reason abstractly and quantitatively Reason abstractly and quantitatively. (MS-ESS2-5), (MS-ESS3-5)