

- 1) Find the minimum distance between the bighorn sheep populations on the map. Measure the distance between the boundaries (not the centers) of the Cady Mountains population and:
- a. Old Dad Peak
- b. Granite Mountains
- c. Newberry Mountains
- Distance = 6.2 (cm) × 10 = 62 (mm) Distance = 7.0 (cm) × 10 = 70 (mm) Distance = 5.0 (cm) × 10 = 50 (mm)
- Which population is closest to the Cady Mountains bighorn sheep?
 Newberry Which is the farthest? Granite
- 3) Which population would you predict to breed the most with Cady sheep?

 Newberry The least? Granite

Breeding Evidence: Newberry sheep Granite sheep Old Dad sheep Cady sheep $\updownarrow \updownarrow \updownarrow \updownarrow \updownarrow$ **\$\$\$**

old Dad

Peak

Mountains GEGV

effinent Mountains

Mountains Newberry

Cady Mountains

SCALE: 1 cm = 5 km = 55 football fields

CADY MOUNTAINS

Step 2: How much mating is taking place between sheep populations on neighboring mountains?

By looking at the genes of different populations, scientists can tell how much breeding takes place between neighboring populations.

The genetic data below translated into arrows indicate breeding levels between sheep populations from different mountains:

Many arrows (\$\$\$\$\$\$) means that more breeding occurs between two populations Few arrows (\$) means that less breeding occurs between populations – Inbreeding

Instructions:

- 1) Draw double-headed arrows on your map to connect the sheep populations from different mountains to one another.
- 2) Use the number of arrows indicated by the table below. For example, use four double-headed arrows to connect Old Dad sheep and Cady sheep.

Breeding Evidence of Cady Sheep		
Cady Sheep		
Old Dad Sheep	‡ ‡‡‡	
Granite Sheep	‡ ‡‡‡	
Newberry Sheep	‡	

Step 3: Compare your predictions from step 1 with the data from step 2:

Instructions:

- 1) Answer questions below
- 2) Use your answers to the questions to make a prediction of where the highway is located. Draw the highway onto the map.
- **A.** Based upon distance, what sheep population would you have expected Cady Mountain sheep to breed with most frequently? Newberry Mountain sheep

B. What do the genetic data show?	Which population	do they breed	with most
frequently?			
Granite Sheep			

C. Where do you predict the highway lies amongst the mountain ranges? Draw your prediction on the map.

The highway must lie between Cady Mountain and Newberry Mountain.

Eagle Mountains—Buzzard Spring

SCALE: 1 cm = 5 km = 55 football fields

Bernardino Little San Mountelins

Mountains Lost Plains

-301252817G **Eagle** Mountains

Spring

Little San Bernardino sheep

Orocopeia

 $\leftrightarrow \leftrightarrow \leftrightarrow$

Eagle Lost Plains sheep

Breeding Evidence:

Eagle Buzzard Spring sheep

would have to travel from the Eagle Mountains-Buzzard Spring Step One: What is the minimum distance a bighorn sheep population to find a mate in a different population?

- Eagle Mountains-Buzzard Spring population and map. Measure the distance between the boundaries (not the centers) of the Find the minimum distance between the bighorn sheep populations on the

- a. Eagle Mountains—Lost Plains Distance = 0.5 (cm) x 10 = 5 (mm) b. Orocopeia Mountains Distance = 1.0 (cm) x 10 = 10 (mm) c. Little San Bernadino Mountains Distance = 1.0 (cm) x 10 = 10 (mm)
- Which population is closest to the Eagle-Buzzard Spring bighorn sheep? Eagle-Lost Plains Which is the farthest? Little San Bernardino
- 3) Which population would you predict to breed the most with Eagle-Buzzard Spring sheep? **Eagle-Lost Plains** The least? **Little San Bernardino**

Mountains

EAGLE BUZZARD SPRING

Step 2: How much mating is taking place between sheep populations on neighboring mountains?

By looking at the genes of different populations, scientists can tell how much breeding takes place between neighboring populations.

The genetic data below translated into arrows indicate breeding levels between sheep populations from different mountains:

Many arrows (‡‡‡‡‡) means that more breeding occurs between two populations Few arrows (‡) means that less breeding occurs between populations – Inbreeding

Instructions:

- 1) Draw double-headed arrows on your map to connect the sheep populations from different mountains to one another.
- Use the number of arrows indicated by the table below. For example, use six doubleheaded arrows to connect Eagle-Buzzard Spring sheep and Little San Bernardino sheep.

Breeding Evidence of Eagle-Buzzard Spring Sheep		
	Eagle Buzzard Spring Sheep	
Little San Bernardino Sheep	‡ ‡‡‡‡‡	
Orocopeia Sheep	‡ ‡‡	
Eagle Lost Plains Sheep	111111	

Step 3: Compare your predictions from step 1 with the data from step 2:

Instructions:

1) Answer questions below

Little San Bernardino sheep

2) Use your answers to the questions to make a prediction of where the highway is located. Draw the highway onto the map.

A. Based	upon distance,	what sheep	population	would you	u expect E	Eagle-Buzza	ard Spring
sheep to	breed with leas	t often?					

B. What do the genetic	data show? With wha	t sheep population	do they show the	least signs
- f la a libra - O				

of breeding?

C. Where do you predict the highway lies amongst the mountain ranges? Draw your prediction on the map.

The highway must lie between Eagle Buzzard Spring and Orocopeia Mountains.

Step One: What is the minimum distance a bighorn sheep would have to travel from the Hackberry Mountain population to find a mate in a different population?

map. Measure the distance between the boundaries (not the centers) of the Hackberry Mountain population and: Find the minimum distance between the bighorn sheep populations on the

 a. Wood Mountains c. Providence Mountains Distance = 1.4 (cm) x 10 = 14 Distance = 4.4 (cm) x 10 = 44 Distance = 3.3 (cm) x 10 = 33

Which population is closest to the Hackberry Mountain bighorn sheep?
 Wood Mountains Which is the farthest?

Plute Range

3) Which population would you predict to breed the most with Hackberry Mountain sheep Wood Mountains The least? Piute Range

Hackberry Mountain SCALE: 1 cm = 3 km = 33 football fields

Plute Range

Providence sheep	Piute Range sheep	Wood sheep	Breeding Evidence:
\$\$\$\$	\$\$\$\$	****	Hackberry sheep

Hackberry

Mountain

Wood Mountains

Providence <u>lountains</u>

HACKBERRY MOUNTAIN

Step 2: How much mating is taking place between sheep populations on neighboring mountains?

By looking at the genes of different populations, scientists can tell how much breeding takes place between neighboring populations.

The genetic data below translated into arrows indicate breeding levels between sheep populations from different mountains:

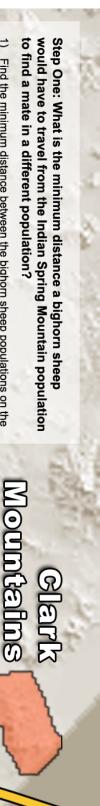
Many arrows (\$\$\$\$\$\$) means that more breeding occurs between two populations Few arrows (\$) means that less breeding occurs between populations – Inbreeding

Instructions:

- 1) Draw double-headed arrows on your map to connect the sheep populations from different mountains to one another.
- 2) Use the number of arrows indicated by the table below. For example, use five double-headed arrows to connect Hackberry to Piute Range

Breeding Evidence of Hackberry Sheep		
	Hackberry Sheep	
Wood Sheep	‡ ‡‡‡‡‡	
Piute Range Sheep	11111	
Providence Sheep	11111	

Step 3: Compare your predictions from step 1 with the data from step 2:


Instructions:

- 1) Answer questions below
- 2) Use your answers to the questions to make a prediction of where the highway is located. Draw the highway onto the map.

A. Based upon distance, what sheep population would you have expected Hackberry sheep to breed with most frequently?	
<u>Wood</u>	
B. B. What do the genetic data show? With which population do they breed with most frequently?	
<u>Wood</u>	

C. Where do you predict the highway lies amongst these mountain ranges? Can you find an obvious place to put the highway?

I cannot find an obvious place to put the highway.

1) Find the minimum distance between the bighorn sheep populations on the map. Measure the distance between the <u>boundaries</u> (not the centers) of the Indian Spring Mountain population and:
a. Old Dad Peak
Distan

Distance = 1.0 (cm) x 10 = 10 (mm)
Distance = 3.2 (cm) x 10 = 32 (mm)
Distance = 5.5 (cm) x 10 = 55 (mm)

b. Clark Mountainsc. Providence Mountains

Which population is closest to the Indian Spring Mountain bighorn sheep?
 Old Dad Which is the farthest? Providence

3) Which population would you predict to breed the most with Indian Spring
Mountain sheep Old Dad The least? Providence

Clark sheep Providence sheep Old Dad sheep Indian Spring sheep $\updownarrow \updownarrow \updownarrow \updownarrow \updownarrow$ old Dad Peak Spring Unclen

Indian Spring Mountain

SCALE: 1 cm = 4 km = 44 football fields

Providence Mountains

INDIAN SPRING MOUNTAIN

Step 2: How much mating is taking place between sheep populations on neighboring mountains?

By looking at the genes of different populations, scientists can tell how much breeding takes place between neighboring populations.

The genetic data below translated into arrows indicate breeding levels between sheep populations from different mountains:

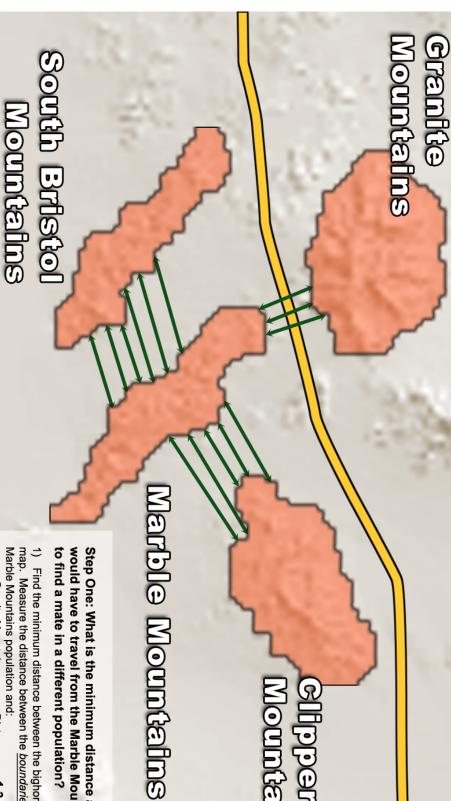
Many arrows (\$\$\$\$\$\$) means that more breeding occurs between two populations Few arrows (\$) means that less breeding occurs between populations – Inbreeding

Instructions:

- 1) Draw double-headed arrows on your map to connect the sheep populations from different mountains to one another.
- 2) Use the number of arrows indicated by the table below. For example, use two double-headed arrows to connect Clark and Indian Spring sheep.

Breeding Evidence of Indian Spring Sheep		
	Indian Spring	
Clark Sheep	‡‡	
Old Dad Sheep	‡ ‡‡‡	
Providence Sheep	‡ ‡‡‡	

Step 3: Compare your predictions from step 1 with the data from step 2:


- 1) Answer questions below
- 2) Use your answers to the questions to make a prediction of where the highway is located. Draw the highway onto the map.
- **A.** The data show that Indian Spring Mountain sheep breed less frequently with Clark Mountain sheep than with Providence sheep. Why do you think this is so?

 <u>Because a highway prevents breeding between the populations</u>
- B. Where do you predict the highway lies amongst the mountain ranges? Draw your prediction on the map.

The highway lies between Indian Spring and Clark Mountains.

SCALE: 1 cm = 3.8 km = 42 football fields

Mountains

Step One: What is the minimum distance a bighorn sheep to find a mate in a different population? would have to travel from the Marble Mountains population

- 1) Find the minimum distance between the bighorn sheep populations on the map. Measure the distance between the <u>boundaries</u> (not the centers) of the Marble Mountains population and:
- a. Granite Mountains Distance = $\frac{1.3}{1.5}$ (cm) x 10 = $\frac{13}{1.5}$ (mm) b. South Bristol Mountains Distance = $\frac{1.5}{1.6}$ (cm) x 10 = $\frac{15}{1.6}$ (mm) c. Clipper Mountains Distance = $\frac{1.6}{1.6}$ (cm) x 10 = $\frac{16}{1.6}$ (mm)

Breeding Evidence:

Marble sheep

- 2) Which population is closest to the Marble Mountains bighorn sheep?

 Granite Which is the farthest? Clipper
- 3) Which population would you predict to breed the most with Marble Mountains sheep **Granite** The least? **Clipper**

Clipper sheep

 $\updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow$

South Bristol sheep

Granite sheep

 $\mathop{\downarrow}\mathop{\downarrow}\mathop{\downarrow}\mathop{\downarrow}\mathop{\downarrow}$

MARBLE MOUNTAINS

Step 2: How much mating is taking place between sheep populations on neighboring mountains?

By looking at the genes of different populations, scientists can tell how much breeding takes place between neighboring populations.

The genetic data below translated into arrows indicate breeding levels between sheep populations from different mountains:

Many arrows (‡‡‡‡‡) means that more breeding occurs between two populations Few arrows (‡) means that less breeding occurs between populations – Inbreeding

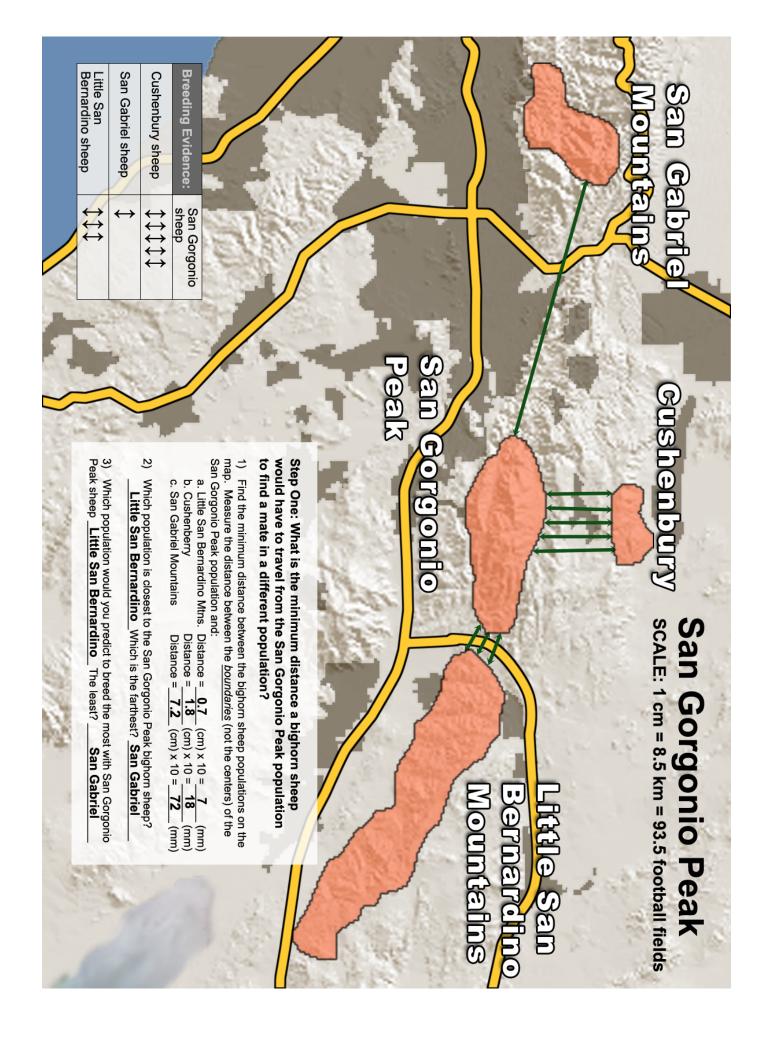
Instructions:

- 1) Draw double-headed arrows on your map to connect the sheep populations from different mountains to one another.
- 2) Use the number of arrows indicated by the table below. For example, use four double-headed arrows to connect Marble sheep and Granite sheep.

Breeding Evidence of Marble Sheep		
	Marble Sheep	
Granite Sheep	‡ ‡‡‡	
South Bristol Sheep	‡ ‡‡‡‡‡	
Clipper Sheep	‡ ‡‡‡‡	

Step 3: Compare your predictions from step 1 with the data from step 2: Instructions:

- 1) Answer questions below
- 2) Use your answers to the questions to make a prediction of where the highway is located. Draw the highway onto the map.
- **A.** Based upon distance, what sheep population would you have expected Marble sheep to breed with most frequently?


Granite Mountain sheep

B. What do the genetic data show? With which population do they breed with most frequently?

They breed most frequently with South Bristol sheep.

C. Where do you predict the highway lies amongst the mountain ranges? Draw your prediction on the map.

The highway must lie between Marble Mountain and Granite Mountain.

SAN GORGORNIO PEAK

Step 2: How much mating is taking place between sheep populations on neighboring mountains?

By looking at the genes of different populations, scientists can tell how much breeding takes place between neighboring populations.

The genetic data below translated into arrows indicate breeding levels between sheep populations from different mountains:

Many arrows (‡‡‡‡‡) means that more breeding occurs between two populations Few arrows (1) means that less breeding occurs between populations – Inbreeding

Instructions:

- 1) Draw double-headed arrows on your map to connect the sheep populations from different mountains to one another.
- 2) Use the number of arrows indicated by the table below. For example, use five double-headed arrows to connect Cushenbury sheep and San Gorgonio sheep.

Breeding Evidence of San Gorgonio Sheep		
San Gorgonio		
Cushenbury Sheep	‡ ‡‡‡‡	
San Gabriel Sheep	‡	
Little San Bernardino Sheep	‡ ‡‡	

Step 3: Compare your predictions from step 1 with the data from step 2: Instructions:

- 1) Answer questions below
- 2) Use your answers to the questions to make a prediction of where the highway is located. Draw the highway onto the map.
 - A. The sheep from San Gorgonio Mountain live very close to the sheep from Little San Bernardino Mountain. Why do the data show that they breed with those sheep less frequently than they do with Cushenbury sheep? There must be a highway between them.

B. Where do you predict the highway lies amongst the mountain ranges? Draw your prediction on the map.

Between San Gorgonio and Little San Bernardino Mountains. San Gabriel might also be separated by a highway.