
Genome Informatics 17(2): 141{151 (2006) 141

Pairwise Alignment with Rearrangements

Le Sy Vinh 1 Andr�es Var�on1;2 Ward C. Wheeler1

vle@amnh.org avaron@amnh.org wheeler@amnh.org

1 Division of Invertebrate Zoology, American Museum of Natural History, USA
2 Computer Science Department, The City University of New York, USA

Abstract

The increase of available genomes poses new optimization problems in genome comparisons.
A genome can be considered as a sequence of characters (loci) which are genes or segments of
nucleotides. Genomes are subject to both nucleotide transformation and character order rear-
rangement processes. In this context, we de�ne a problem of so-called pairwise alignment with

rearrangements (PAR) between two genomes. The PAR generalizes the ordinary pairwise align-
ment by allowing the rearrangement of character order. The objective is to �nd the optimal PAR
that minimizes the total cost which is composed of three factors: the edit cost between characters,
the deletion/insertion cost of characters, and the rearrangement cost between character orders. To
this end, we propose simple and e�ective heuristic methods: character moving and simultaneous

character swapping. The e�ciency of the methods is tested on Metazoa mitochondrial genomes.
Experiments show that, pairwise alignments with rearrangements give better performance than
ordinary pairwise alignments without rearrangements. The best proposed method, simultaneous
character swapping, is implemented as an essential subroutine in our software POY version 4.0 to
reconstruct genome-based phylogenies.

Keywords: genome comparison, pairwise alignment, gene rearrangements

1 Introduction

A large number of complete genomes has been sequenced thanks to the development of e�cient
sequencing techniques and many genome projects (http://www.ncbi.nih.gov/Genomes/). The ge-
netic divergence between genomes reects both small-scale and large-scale evolutionary processes.
An essential problem in genome comparison is the construction of pairwise alignments between two
genomes [9, 18].

The small-scale processes that act on the nucleotide level can be divided into two classes: nucleotide
substitution and nucleotide deletion/insertion (indel). In addition to the small-scale processes, the
large-scale processes act on locus level. Common operations are character loss, character duplication,
and character rearrangement. The �rst two operations cause the presence and absence of characters.
Thus, a character is present in some genomes, but is not in others. Character rearrangements are
operations that change the order of characters and can be inversion, transposition, and inverted
transposition [13, 14]. Figure 1 illustrates these rearrangement operations on a genome with six
characters.

Although traditionally research has been focused primarily at the nucleotide level, recent devel-
opments have allowed for analysis of rearrangement at the locus level [5, 6, 11, 12, 13, 14, 15, 17].
The number of rearrangements to convert the character order of one genome to the character order of
another genome tracks the genome divergence. The rearrangement distance between two genomes can
be simply calculated as the number of breakpoints between two genomes [16]. A more sophisticated
measure of rearrangement distance is the number of inversions needed to transform the character order
of one genome to the character order of another genome [11].

142 Vinh et al.

g
1

g
2

g
3

g
4

g
5

g
6Original order of characters

g
1

g
2

g
6

Inversion: Characters from position 3 to 5 are inverted −g −g−g
5 4 3

g
6

g
5

g
3

g
4 g

1
g
2Transposition:

Characters from position 3 to 5 are moved
to position 1

g
6

g
1

g
2

Inverted transposition: Characters from position 3 to 5 are moved −g −g −g
5 4 3to position 1, then inverted

Figure 1: Three types of rearrangements on a genome with six characters

A typical approach to compare the evolutionary relationships among species is to analyze the nu-
cleotide transformations among homologous sequences. The approach is su�cient for most sequences,
except distantly related sequences where nucleotide variations might be saturated. It is possible that
character orders of species are more conserved than nucleotides, thus, they can be used properly to
overcome this problem [4, 5]. However, character rearrangement-based approach is not applicable
to closely related species because their character orders are usually identical. Moreover, it ignores
all nucleotide transformations which might be orders of magnitude more information than character
orders [23].

Recently, Ward Wheeler proposed an approach incorporating information from both small-scale
and large-scale processes to reconstruct genome-based phylogenies [23]. Characters can be determined
by annotations from Genbank at NCBI (http://www.ncbi.nih.gov/), i.e., segments within and be-
tween annotated regions. They can be also determined automatically by algorithms BLASTZ [18],
Glocal [7] or Mauve [8].

In this paper, we formulate a generalized version of pairwise alignment between two genomes
presented as two sequences of characters where the rearrangement of character order is allowed. The
objective is to construct the optimal pairwise alignment with rearrangements (PAR) between two
genomes that minimize the total cost to convert one genome into another genome. The total cost
is composed of the edit cost between characters, insertion/deletion (indel) cost of characters, and
rearrangement cost between character orders.

To motivate the necessary of constructing pairwise alignment with rearrangements, the total cost
can be used as a comprehensive measure of the genetic divergence between two genomes. Moreover,
constructing pairwise alignments with rearrangements is a crucial task in constructing genome-based
phylogenies using dynamic homology [22, 23, 24, 25]. It also can be used as a central subroutine to con-
struct multiple alignment with rearrangements using progressive multiple alignment algorithms [19].

The rest of paper is organized as follows: section 2 provides a detailed description of the PAR
problem. Since an exact solution for the PAR problem is likely intractable, we propose simple heuris-
tic methods to search e�ciently optimal PAR in section 3. All methods are described explicitly in an
algorithm-based style in order to estimate their time complexity. In section 4, we give a short intro-
duction to Metazoa mitochondrial genomes in which character rearrangements have been reported [3].
Then the e�ciency of methods based on 760 Metazoa mitochondrial genomes collected from Genbank
at NCBI is examined using di�erent criteria. Finally, discussions and open questions are addressed in
section 5.

2 Pairwise Alignment with Rearrangements

In this section, we mathematically de�ne the PAR problem between two genomes as two sequences
of characters. To do that, we �rst introduce some notations and the ordinary pairwise alignment
problem. Let � = fx1; : : : ; xp; y1; : : : ; yq; `� 'g be an alphabet of (p+ q) characters as well as a special
gap character `�' (we also denote x0=y0 as the gap character). Let X = (x1; x2; : : : ; xp) be a sequence
of p characters, Y = (y1; y2; : : : ; yq) be a sequence of q characters . Let C(xi; yj) 2 R

+ be the edit cost

Pairwise Alignment with Rearrangements 143

x4 x5

_ y		3 y		2y1y4
_

_x2x x31

Figure 2: A pairwise alignment with rearrangements between two sequences X = (x1; x2; x3; x4; x5)
and Y = (y1; y2; y3; y4).

to transform character xi into character yj for i = 1 : : : p; j = 1 : : : q. The edit cost matrix C is metric.
Note that C(xi; y0) and C(x0; yj) are costs to delete/insert characters xi and yj , respectively. Since xi
and yj are segments of nucleotides, the edit cost C(xi; yj) can be calculated as the minimum number
of nucleotide transformations between xi and yj . Let R(Y; Yr) be the rearrangement cost function
between sequence Y and its permutation Yr. Typically, R(Y; Yr) is computed as the breakpoint
distance or inversion distance [16, 11].

A sequence X 0 = (x01; x
0
2; : : : ; x

0
l) is called an edited sequence of X if and only if X is obtained from

X 0 by deleting all gap characters. In other words, sequence X is called the gapless sequence of X 0. For
example, X 0 = (`� '; 1; 2; `� '; 3; 4) is an edited sequence of X = (1; 2; 3; 4). A pair A(X;Y) = (X 0; Y 0)
of two edited sequences X 0 = (x01; x

0
2; : : : ; x

0
l) and Y 0 = (y01; y

0
2; : : : ; y

0
l) is called an ordinary pairwise

alignment of sequences X and Y . The cost C(A) of alignment A is the sum of edit cost between
characters and indel cost of characters as shown below:

C(A = (X 0; Y 0)) =
lX

i=1

C(x0i; y
0
i): (1)

The optimal ordinary pairwise alignment A�(X;Y) = argminA(X;Y)fC(A)g can be constructed in
O(pq) time using dynamic program technique [21]. An ordinary pairwise alignment is constructed
by inserting gap characters into both sequences conditioned that the order of characters in both
sequences must be kept unchanged. Since the order of characters (loci) can be rearranged in real data,
this unrealistic condition needs to be relaxed.

A sequence X 0
r = (x01; x

0
2; : : : ; x

0
l) is called an edited rearrangement sequence of X if the gapless

sequence Xr of X 0
r is a permutation of X. For instance, X 0

r = (` � '; 1; 4; 2; ` � '; 3) is an edited
rearrangement sequence of X = (1; 2; 3; 4). We are now ready to formulate the pairwise alignment with
rearrangements problem. A pairAr = (X 0

r; Y
0
r) of edited rearrangement sequencesX 0

r = (x01; x
0
2; : : : ; x

0
l)

and Y 0
r = (y01; y

0
2; : : : ; y

0
l) is called a pairwise alignment with rearrangements (PAR) of two sequences

X and Y . The cost Cr(Ar) of PAR Ar is the sum of edit cost between characters, indel cost of
characters and rearrangement cost between character orders. Precisely:

Cr(Ar = (X 0
r; Y

0
r)) =

lX
i=1

C(x0i; y
0
i) +R(X;Xr) +R(Y; Yr) (2)

The objective is to �nd the optimal PAR A�
r which minimizes the total cost. Mathematically,

A�
r = argminAr

fCr(Ar)g: (3)

Figure 2 illustrates a PAR Ar between two sequences X = (x1; x2; x3; x4; x5) and Y = (y1; y2; y3; y4).
Note that the PAR problem does not require genomes to have the same number of characters. Since an
exact solution for PAR problem is likely intractable, heuristic approaches which compromise between
computational expense and alignment quality need to be developed.

144 Vinh et al.

3 Algorithms

In this section, we propose hill climbing methods to search the optimal PAR A�
r su�ciently. In

general, the methods compose two phases. In the �rst parse, an initial PAR Ar is constructed. Then
the second phase searches the optimal PAR A�

r by improving the quality of Ar in a step-by-step
manner.

Algorithm 1: Stepwise addition method

begin1.1

Yr ;1.2

for j = 1 to jY j do1.3

bestCost +1; bestP nil1.4

foreach position p in Yr do1.5

Insert yj into Yr at position p1.6

Ar A�(X;Yr)1.7

if Cr(Ar) < bestCost then1.8

bestCost Cr(Ar); bestP p1.9

Remove yj from Yr1.10

end1.11

Insert yj into Yr at position bestP1.12

end1.13

return A�(X;Yr)1.14

end1.15

In particular, the �rst phase creates an initial PAR Ar by employing stepwise addition algorithm.
The algorithm starts from an incomplete PAR Ar = (X 0

r = X;Y 0
r = ;) and sequentially inserts

characters yj 2 Y; j = 1 : : : jY j into the nascent Y 0
r to construct a �nal PAR Ar. Character yj is

inserted into the position such that the cost of new PAR Ar is minimized. The method is explained
in details in algorithm 1.

The second phase is the modi�cation mechanism to improve the quality of current Ar [1]. To this
end, we propose character moving and simultaneous character swapping techniques.

3.1 Character Moving

Consider a PAR Ar = (X 0
r; Y

0
r), an operation M(i; j; t j i � j < t � 1) on gapless sequence Yr =

(y1; y2; : : : ; yq) moves characters (yi; : : : ; yj) to position t resulting in new gapless sequence Yr. Thus,
we have a new PAR Ar = A�(Xr;Yr) with new cost Cr(Ar). A move M(i; j; t) is said to be possible
if and only if Cr(Ar) < Cr(Ar). In other words, the move M(i; j; t) leads to a new PAR Ar with
smaller cost than current Ar. The character moving algorithm applies sequentially possible moves to
improve the current PAR. The process is repeated until no possible move is available (see Algorithm
2).

3.2 Simultaneous Character Swapping

Here we describe a more e�cient and complicated technique to re�ne current PAR Ar = (X 0
r; Y

0
r).

An operation S(k; t) on gapless sequence Yr = (y1; y2; : : : ; yq) swaps two characters yk and yt to create
a new gapless sequence Yr = (y1; : : : ; yk�1; yt; yk+1; : : : ; yt�1; yk; yt+1; : : : ; yq). The swapping cost of
operation S(k; t) is the cost Cr(Ar) of new PAR Ar = A�(Xr;Yr). Similar to character moving, we
can simply apply possible swaps to re�ne current Ar. However, an observation is that a swap S(k; t)
can be possible at the current time, but might not be possible at the next time due to the performance

Pairwise Alignment with Rearrangements 145

Algorithm 2: Character moving method

begin2.1

Build an initial PAR Ar = (X 0
r; Y

0
r) by stepwise addition algorithm2.2

iteration 02.3

repeat2.4

possibleMove false2.5

foreach triple positions (i; j; t j i � j < t� 1) in Yr do2.6

if M(i; j; t) is a possible move then2.7

Move characters (yi; : : : ; yj) in Yr to position t2.8

possibleMove true2.9

end2.10

end2.11

iteration iteration+ 12.12

until possibleMove = false2.13

return A�(Xr; Yr)2.14

end2.15

of another swap. If multiple possible swaps are available at the same time, a ranking function is needed
to determine their priority. The swapping cost of S(k; t) can be used as a proper ranking function
for swaps. More precisely, the swap with the smallest cost will be executed �rst. However, execution
time is a problem if we perform only the smallest cost swap at each time. Inspired by the success of
simultaneous nearest neighbor interchanges technique in phylogenetic tree reconstruction [10, 20], we
propose a simultaneous character swapping algorithm to overcome the problem.

Consider two possible swaps S(k1; t1) and S(k2; t2), without losing the generality we assume that
k1 < t1; k2 < t2, and k1 < k2. S(k1; t1) and S(k2; t2) are said to be independent if either k2 > t1
or t2 < t1 as illustrated in Figure 3 (left). Experiments show that performing simultaneously two
independent possible swaps typically leads to a better PAR (data not shown). If two possible swaps
are not independent, the swap with higher cost is ignored.

The idea is to swap simultaneously a set of r best independent possible swaps (see Figure 3). If
multiple r independent possible swaps does not lead to a better PAR, the number swaps r is reduced
to r=2. The swapping process is performed iteratively until r = 1. It is guaranteed that a better
PAR will be obtained when r = 1. The simultaneous character swapping process terminates when no
possible swap is available. The �nal PAR is considered as the optimal one. The method is described
in details in algorithm 3.

t1k1 k2
t2

k1 k2 t1t2

Figure 3: Two possible swaps S(k1; t1) and S(k2; t2) are independent (left). A simultaneous swap of
independent possible swaps presented by half circles (right).

146 Vinh et al.

Algorithm 3: Simultaneous character swapping method

begin3.1

Build an initial PAR Ar = (X 0
r; Y

0
r) by stepwise addition algorithm3.2

minCost Cr(Ar)3.3

iteration 03.4

repeat3.5

possibleSwap false3.6

Find independent possible swaps L and sort L increasingly3.7

if jLj > 0 then3.8

r jLj3.9

repeat3.10

Swap simultaneously L1; : : : ; Lr in Yr to get Yr3.11

Ar A�(Xr;Yr)3.12

if Cr(Ar) < minCost then3.13

possibleSwap true3.14

minCost Cr(Ar); Yr Yr3.15

else3.16

r r=23.17

until possibleSwap = true3.18

end3.19

iteration iteration+ 13.20

until possibleSwap = false3.21

return A�(Xr; Yr)3.22

end3.23

3.3 Complexity

To estimate the time complexity of algorithms, we assume that the edit costs C(xi; yj) and the
indel cost of characters are computed in advance. To simplify the time complexity estimation, the
rearrangement cost R(Y; Yr) is computed as the breakpoint distance [16]. Thus, the time complexity
of calculating the rearrangement cost R(Y; Yr) is O(q).

First, we compute the time complexity of constructing a PAR Ar using the stepwise addition
method described in algorithm 1. Since the time complexity of lines 1.6 to 1.10 is O(pq), the time
complexity from line 1.5 to line 1.11 is O(pq2). Therefore, the algorithm can be completed in O(pq3)
time.

Second, we estimate the time of character moving in algorithm 2. Line 2.2 requires O(pq3) time.
Since lines 2.7 to 2.10 can be done in O(pq) time, lines 2.6 to 2.11 take O(pq4) time. In short, the
time complexity of character moving method is O(pq4 � iteration+ pq3) = O(pq4 � iteration).

Finally, we calculate the time complexity of the simultaneous character swapping method in al-
gorithm 3. Line 3.2 takes O(pq3) time. The time complexity of line 3.7 is O(pq3). Since jLj � q,
lines 3.8 to 3.19 are completed in O(pq2). Therefore, lines 3.6 to 3.20 are done in O(pq3 + pq2) =
O(pq3). In summary, the time complexity of the simultaneous character swapping algorithm is
O(pq3 � iteration+ pq3) = O(pq3 � iteration).

Pairwise Alignment with Rearrangements 147

4 Experiments

4.1 Data

To date, thousands of mitochondrial genomes (mtDNA) have been sequenced. In this paper, we
collected 760 Metazoa (animals) mtDNA genomes from Genbank at NCBI (http://www.ncbi.nih.
gov/) to test the method. Metazoa mtDNA genomes are typically closed-circular, about 16kb long,
and usually contain the same 37 genes [3]. It is known that mtDNA genomes undergo not only
nucleotide transformations but also gene arrangement processes. A survey and summary of Metazoa
mtDNA genomes is given by Boore [3].

We divide each genome into sequence segments based on annotations from Genbank at NCBI,
e.g., segments within and between annotated regions. Segments without annotations are also kept
in the analysis. Each segment is now considered as a character. On average, each genome contains
a sequence of about 50 characters. The cost between two characters x and y is calculated as the
minimum number of nucleotide transformations between x and y. More precisely, the nucleotide
substitution cost, nucleotide indel cost are set to 1 and 2, respectively. The indel cost of a character
x or y equals to the number of its nucleotides.

Since we are not able to test all genome pairs (� 32 million), 760 genomes are divided randomly
into 38 groups each containing 20 genomes. The PAR between any two genomes in the same group
is constructed. Precisely, 7980 pairs of genomes were analyzed.

4.2 Measurements

The quality of a PAR Ar = (X 0
r; Y

0
r) is measured by both criteria: the cost Cr(Ar) and the percentage

of correctly aligned pairs H(X 0
r; Y

0
r) as calculated below:

H(X 0
r; Y

0
r) =

PjArj
i=1 �(X

0
r(i); Y

0
r (i))

Number of pairs (xi; yj) where xi and yj are annotated the same
� 100 (4)

where

�(X 0
r(i); Y

0
r (i)) =

(
1 If X 0

r(i) and Y 0
r (i) are characters with the same annotations

0 Otherwise
(5)

Note that, the smaller cost denotes the better alignment. In contrast, the higher percentage of correctly
aligned pairs H(X 0

r; Y
0
r) is the better alignment.

4.3 Results

We compared the quality of PAR constructed from di�erent methods: stepwise addition, character
moving, and simultaneous character swapping. To test the e�ect of rearrangements, we also compared
the quality of PAR to the best ordinary pairwise alignment A�(X;Y).

Table 1(a) shows that the PAR gives better result than the ordinary pairwise alignment. For ex-
ample, the cost of the PAR constructed by simultaneous character swapping method is approximately
16% less than that of the ordinary pairwise alignment. The percentage of correctly aligned pairs
of simultaneous character swapping method is approximately 14% higher than that of the ordinary
pairwise alignment. Table 1(a) shows that simultaneous character swapping is the best method. It
is better than character moving method both in terms of alignment cost and percentage of correctly
aligned pairs.

148 Vinh et al.

Table 1: The performance of di�erent methods based on Metazoa mitochondrial genomes.

Name Alignment cost Percentage of correctly aligned pairs

Ordinary alignment 10154 66
Stepwise addition 8826 66
Character moving 8684 66
Simultaneous character swapping 8490 75

(a) The rearrangement cost is calculated as the breakpoint distance

Name Alignment cost Percentage of correctly aligned pairs

Ordinary alignment 10154 66
Stepwise addition 8824 66
Character moving 8687 66
Simultaneous character swapping 8489 75

(b) The rearrangement cost is calculated as the inversion distance

We tested the e�ect of rearrangement cost function R(Y; Yr) to the PAR. To this end, the cost
function R(Y; Yr) is measured as the inversion distance between Y and Yr using the GRAPPA pro-
gram [2]. Table 1(b) shows similar results to the Table 1(a). That is to say, in these experiments
inversion distance does not boost the quality of PAR compared to breakpoint distance.

Both experiments show that simultaneous character swapping performs better than all other meth-
ods tested. Moreover, the simultaneous character swapping needs only approximately 5 re�ning iter-
ations to obtain the optimal PAR (see Algorithm 3). That means the multiple character swapping is
much faster than character moving and as fast as the stepwise addition algorithm.

5 Conclusion

Since number of available genomes is increasing quickly, using total information, i.e., nucleotide trans-
formation, character loss, character duplication, and character rearrangement information, is necessary
in genome comparisons. We de�ned the pairwise alignment with rearrangements problem between two
genomes presented as two sequence of characters. The objective is to �nd the optimal alignment that
minimizes the cost to transform one genome to another genome.

The ordinary pairwise alignment between two sequences X and Y can be done in O(pq) time where
p and q are numbers of characters in sequencesX and Y , respectively. However, the pairwise alignment
with rearrangements is much more di�cult. It can be solved exactly by examining ordinary pairwise
alignments between sequence X and all permutation sequences Yr of Y . The time complexity of the
exact approach is O(pq � q!). Thus, it is not applicable to sequences with more than 20 characters.

To solve the PAR problem, we proposed simple and e�cient heuristic methods. The combination
of stepwise addition method and simultaneous character swapping technique is the most e�cient
approach to search the optimal PAR. The approach needs less than one minute to construct an
optimal PAR for Metazoa mtDNA genomes on a 3.0 GHz PC.

Two rearrangement cost functions, i.e., breakpoint distance and inversion distances were tested.
Interestingly, the inversion distance does not overcome the simple breakpoint distance in these exper-
iments. Of course, proposed algorithms are not restricted to breakpoint and inversion distance, they
can work with any rearrangement cost function.

Pairwise Alignment with Rearrangements 149

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000 25000 30000

P
er

ce
nt

ag
e

of
 c

or
re

ct
ly

 a
lig

ne
d

pa
irs

Cost of pairwise alignment with rearrangements

Figure 4: The relationship between the cost of pairwise alignment with rearrangements and the
percentage of correctly aligned pairs. The result is from simultaneous character swapping method.

It is not surprising to see from Figure 4 that the percentage of correctly aligned pairs typically
increases with a decreasing alignment cost. When the alignment cost is smaller than 5000, we get a
high probability that characters with the same annotations are paired correctly.

There are some open problems involving with the rearrangements of character orders. Although we
have proposed simple heuristic methods, more e�cient approaches to construct the pairwise alignment
with rearrangements certainly must be developed. Moreover, comparisons between phylogenies which
are constructed with and without character rearrangements are necessary to examine. Last but not
least, analysis of multiple alignment with rearrangements which is much more di�cult than analyzing
the pairwise alignment with rearrangements needs to be studied in the near future.

Acknowledgments

We would like to thank Megan Harrison for her carefully reading the manuscript. This paper is based
upon work supported by the U.S. Army Research Laboratory and the U.S. Army Research O�ce
under grant \Novel analytical and empirical approaches to the origin and prediction of pathogenicity"
(#W911NF-05-1-0271) and NSF-ITR grant \Information technology research: Phyloinformatics."

References

[1] Aarts, E. and Lenstra, J. K., Local Search in Combinatorial Optimization, Wiley, Chichester, UK,
1997.

[2] Bader, D. A., Morret, B. M., and Yan, M., A linear-time algorithm for computing inversion dis-
tance between signed permutations with an experimental study, Journal Computational Biology,
8:483{491, 2001.

[3] Boore, J. L., Animal mitochondrial genomes, Nucleic Acids Res., 27:1767{1780, 1999.

[4] Boore, J. L. and Brown, W. M., Big trees from little genomes: mitochondrial gene order as a
phylogenetic tool, Curr Opin Genet Dev, 8:668{674, 1998.

[5] Boore, J. L., Lavrov, D. V., and Brown, W. M., Gene translocation links insects and crustaceans,
Nature, 392:667{668, 1998.

150 Vinh et al.

[6] Bourque, G. and Pevzner, P. A., Genome-scale evolution: Reconstructing gene orders in the
ancestral species, Genome Res., 12:26{36, 2004.

[7] Brudno, M., Malde, S., and Poliakov, A., Do, C. B., Couronne, O., Dubchak, I., and Batzoglou,
S., Glocal alignment: �nding rearrangements during alignment, Bioinformatics, 19:i54{i62, 2003.

[8] Darling, A. C., Mau, B., Blattner, F. R., and Perna, N. T., Mauve: Multiple alignment of
conserved genomic sequence with rearrangements, Genome Res., 14:1394{1403, 2004.

[9] Delcher, A. L., Kasif, S., Fleishman, R., Peterson, J., White, O., and Salzberg, S. L., Alignment
of whole genomes, Nucleic Acids Res., 27:2369{2376, 1999.

[10] Guindon, S. and Gascuel, O., A simple, fast and accurate algorithm to estimate large phylogenies
by maximum likelihood, Syst. Biol., 52:696{704, 2003.

[11] Hannenhalli, S. and Pevzner, P. A., Transforming cabbage into turnip. (polynominal algorithm for
sorting signed permutations by reversals, Proceedings of the 27th Annual ACM-SIAM Symposium

on the Theory of Computing, 178{189, 1995.

[12] Larget, B., Simon, D. L., Kadane, J. B., and Sweet, D., A bayesian analysis of metazoan mito-
chondrial genome arrangements, Mol. Biol. Evol., 22:486{495, 2004.

[13] Moret, B. M., Tang, J., Wang, L.-S., Warnow, T., Steps toward accurate reconstructions of
phylogenies from gene-order data, J. Comput. Syst. Sci., 65:508{525, 2002.

[14] Nadeau, J. H. and Talor, B. A., Lengths of chromosome segments conserved since divergence of
man and mouse, Proc. Natl. Acad. Sci. USA, 81:814{818, 1984.

[15] Sanko�, D., Genome rearrangement with gene families, Bioinformatics, 15:909{917, 1999.

[16] Sanko�, D. and Blanchette, M., Multiple genome rearrangement and breakpoint phylogeny, J.
Comput. Biol., 5:555{570, 1998.

[17] Sanko�, D. and Nadeau, J. H., Comparative Genome: Empirical and Analytical Approaches to

Gene Order Dynamics, Map Alignment and the Evolution of Gene Families, Kluwer, �rst edition,
2000.

[18] Schwartz, S., Kent, W. J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R. C., Haussler D., and
Miller, W., Human mouse alignments with BLASTZ, Genome Res., 13:103{107, 2003.

[19] Thompson, J. D., Higgins, D. G., and Gibson, T. J., CLUSTAL W: improving the sensitiv-
ity of progressive multiple sequence alignment through sequence weighting, position-speci�c gap
penalties and weight matrix choice, Nucleic Acids Res., 22, 1994.

[20] Vinh, L. S. and von Haeseler, A., IQPNNI: Moving fast through tree space and stopping in time,
Mol. Biol. Evol., 21:1565{1571, 2004.

[21] Waterman, M. S., Introduction to Computational Biology, Chapman and Hall, London, UK, 1995.

[22] Wheeler, W. C., Alignment, dynamic homology, and optimization, Albert, V., ed., Parsimony,

Phylogeny, and Genomics, Oxford University Press, 73{80, 2005.

[23] Wheeler, W. C., Chromsomal character optimization, Mol. Biol. Evol., Submitted.

[24] Wheeler, W. C., Fixed character states and the optimization of molecular sequence data, Cladis-
tics, 15(4):379{385, 1999.

Pairwise Alignment with Rearrangements 151

[25] Wheeler, W. C., Optimization alignment: The end of multiple sequence alignment in phylogenet-
ics?, Cladistics, 12(1):1{9, 1996.

	15-Le-pagesetI.pdf
	15-Le-pagesetII.pdf

