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Abstract

The use of likelihood as an optimality criterion is explored in the context of dynamic homology. Simple models and procedures
are described to allow the analysis of large variable length sequence data sets, alone and in combination with qualitative information
(such as morphology). Several approaches are discussed that have different likelihood interpretations in terms of maximum
parsimony likelihood and maximum average likelihood. Implementation is discussed and an example in arthropod systematics
presented. Topological congruence comparisons with parsimony are made.
� The Willi Hennig Society 2006.

Dynamic homology

Nucleic acid sequence data do not present themselves
in neat packages. Nucleotide homologies are topology
specific and identified by optimization processes that
determine nucleotide correspondence and transforma-
tion via a specific criterion. This is the concept of
dynamic homology (Wheeler, 2001; Wheeler et al.,
2005b). Methods have been proposed to apply this
manner of thinking using parsimony as an optimality
criterion (Wheeler, 1996, 1999a, 2003a,b) which have
their roots with Sankoff (1975), but less work has been
done to explore the use of likelihood as an alternate
interpretive framework.

Several methods for analyzing unaligned sequence
data using likelihood as an optimality criterion in a
dynamic homology framework are proposed here. These
techniques are optimization methods in the sense of
Wheeler (2005) in that they do not rely on a priori
multiple alignments (although they may generate them a
posteriori), but analyze variation directly, yielding opti-
mal—in this case likely—cladograms. To accomplish

this, models that can accommodate insertion-deletion
information are required.

Likelihood alignment models

Although there exist a large diversity of nucleotide
substitution models, there are far fewer which model the
insertion-deletion process. The most prominent of these
models is that of Thorne et al. (1991) (TKF) for the
statistical alignment of two sequences. TKF allows for
transitions among nucleotides, as well as their insertion
and deletion through a birth ⁄death process of gaps. The
model yields the probability of one sequence evolving
into another over a given time interval, and was
expanded in Thorne et al. (1992) to include affine gaps
and rate heterogeneity. Fleissner et al. (2005) used the
latter in their multiple-alignment approach, and
Redelings and Suchard (2005) added additional
generalizations for their Bayesian approach.

An important advance of the TKF model over
previous attempts (e.g., Bishop and Thompson, 1986)
is that the total probability of transformation between
sequences is the sum of all possible alignments between
the sequences (and there may be many of them;
Slowinski, 1998). The unique alignment that is usuallyE-mail address: wheeler@amnh.org
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presented and employed is the so-called dominant
alignment of the two sequences, that is, the one with
highest individual probability, although it is most likely
that this alignment may contain a very small fraction of
the total transformation probability (Hein et al., 2000;
Fig. 1). This behavior will reappear throughout the
likelihood models and cladogram-based optimization
implementations presented here.

The computational costs of the original TKF recur-
sive method were vastly improved by Hein et al. (2000).
Steel and Hein (2001) generalized this model to more
than two sequences including a polynomial time
approximation for three sequences. This is significant
in that it allows for the optimization of a complete
cladogram via methods akin to those of Sankoff (1975).
The thread was completed by Hein et al. (2003) who
presented a recursive method for optimizing complete (if
small) binary trees. Hein et al. stated that their
approach could be used for up to six or seven sequences,
but that larger data sets would require a radically
different method.

The limitations on the tractability and utility of the
Hein et al. (2003) approach and the even more time-
efficient Bayesian methods (Redelings and Suchard,
2005) required 1–8 days to analyze 12 taxa on a
1.7 GHz Athlon PC. Clearly, another approach is
required to analyze the data sets of hundreds to
thousands of sequences commonly available today. A

simpler, less complex model that is able to accommodate
such large data sets can have considerable utility.

Forms of likelihood

Likelihood, at least in a phylogenetic context, is not a
monolithic entity but presents itself in a variety of
flavors. Before delving further into specifics, it is
necessary to be clear as to the type of likelihood
pursued here, and its relationship to other forms
(Fig. 2). As pointed out by Steel and Penny (2000),
Steel (2002) and Goloboff (2003), the likelihood meth-
ods used today are based on maximum relative likeli-
hood (MRL), as opposed to maximum integrated
likelihood (MIL). The distinction between these approa-
ches is that for the MRL analysis, those branch lengths
which maximize overall likelihood are used to establish
cladogram likelihood and evaluate competing topolo-
gies. In contrast, MIL integrates the total value over all
possible branch lengths for each cladogram. These two
forms of likelihood may conflict as when an unlikely set
of branch lengths (or other parameters) yields a high
overall score. The methods proposed here are based on
MRL, since a single branch length is used to determine
the likelihood of a given hypothetical taxonomic unit
(HTU) state. Within MRL, there are further subtypes.
Barry and Hartigan (1987) distinguished between

Fig. 1. A simple alignment of two nucleotides demonstrates the difference between a dominant likelihood alignment and the total likelihood.
Assuming probability of transformation between A and G [p(AG)] to have a higher probability than indels [p(–G); p(A–)], alignment 1 is the
dominant (¼ highest likelihood) alignment. The total likelihood alignment would include contributions from all possible alignments, however,
marginal. In this case, the total would include contributions from alignments 1, 2 and 3.
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maximum average likelihood (MAL) and maximum
parsimony likelihood (MPL). The MAL approach in
essence averages over all possible internal nodal states
(HTU assignments), whereas MPL assigns a single state
or sequence that maximizes the likelihood. MPL meth-
ods have the benefit of being much simpler to compute,
since only a single (but hopefully highly likely) scenario
is required, as opposed to the potentially large universe
of solutions. Both the MAL and MPL methods are
presented here. A third approach is the evolutionary
path method of Farris (1973). In this form of MRL, the
actual sequence of intermediate states is chosen to
maximize likelihood. This yields precisely the same
result as parsimony, even under variations in mutation

rates and branch lengths (Farris, 1973). The evolution-
ary path likelihood is not implemented by any of the
methods proposed here.

A simple likelihood model

A simple five-state model of sequence change can be
used (Durbin et al., 1998; McGuire et al., 2001) at the
very least to approximate the results of more complex
formalizations. In such a model, indels are accounted
for by transformations between the state of the gap and
nucleotides (Fig. 3). Such a model, coupled with a
method for determining likelihood edits between se-
quence pairs, will yield a likelihood basis for the
optimization of unequal length sequences on a clado-
gram. This type of model may be rough, but it does
allow the calculation of an optimality value. This
optimality value can then be used to choose hypothetical
ancestral sequences and to assess the relative merits of
phylogenetic topologies.

The fundamental model used in all the methods
presented here is a 10-parameter symmetrical transition
matrix Q, coupled with a five-parameter state frequency
vector (S10F5) (Fig. 4). These 15 parameters (14 inde-
pendent since the p-values must sum to 1) determine the
overall probabilities of a transformation among each
pair of nucleotides and gap (signifying an indel) for a
given time t via elementary linear algebra (equation 1):

P ðtÞ ¼ eRt; ð1Þ

where R (as in Tavaré, 1986) is derived from the
symmetrical transition matrix Q and the state vector P
(Yang, 1994; equation 2).

Fig. 3. General, though symmetrical, five state nucleotide and gap (�–�) stationary Markov model. The p components refer to nucleotide and gap
frequencies; a, b, c, d, e, f, g, h, j and m refer to the nucleotide and indel transition probabilities.

Fig. 2. Forms of likelihood after Barry and Hartigan (1987), Steel
(2002) and Goloboff (2003). ML ¼ maximum likelihood in the most
general sense, MIL ¼ maximum integrated likelihood, MRL ¼ maxi-
mum relative likelihood, MAL ¼ maximum average likelihood,
MPL ¼ maximum parsimony likelihood, and MEPL ¼ maximum
evolutionary path likelihood.
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Ri;j¼Qi;j � pj;
if i 6¼ j; else Ri;j ¼�

X
Qi;s for s 2 fA;C;G;T ;�g:

ð2Þ

The probability of change (P) between states i and j in
time t is then:

Pi;jðtÞ ¼
X

ekst � Us;i � U�1
j;k ; ð3Þ

with s as in eqn 1; ks are the eigenvalues of R and U the
associated matrix of eigenvectors and U)1 its inverse.

Many special cases can be generated from this general
expression (10 substitution parameters and five state
frequencies—S10F5 in POY Wheeler et al. (1996–2003)
see below) by reducing degrees of freedom and pooling
various events into classes. There are six general
substitution models and three state frequency scenarios

Fig. 4. Alternate models of both state frequencies and transition class probabilities from the most complex (S10F5) to the most simple (S1F1).
Abbreviations as in Fig. 3.
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for 18 model combinations from a InDel-Jukes-Cantor
(Jukes-Cantor + Gaps; S1F1) where all transitions and
all state frequencies are equal, to the 14 parameter
InDel-GTR (the 11 parameter would also be a GTR
model) (GTR + Gaps; Fig. 5). Furthermore, these
model parameters can be determined individually for
different fragments of DNA and even for the individual
branches of the topologies examined during a search. In
general, investigators seem to prefer homogeneous indel
probabilities (or costs) such that indels of A, C, G or T
do not differ. For this reason, the S1G, S2G, S3G and S6G
models restrict indels to a single probability. The S10
model removes this restriction. Comparison of the
behavior of these models would allow a test of the
assumption of indel homogeneity.

Following parsimony-based techniques, there are two
classes of methods presented here to employ likelihood
as a criterion for dynamic homology-based analysis:
estimation and search methods (sensu Wheeler, 2005).
The estimation methods are heuristics that seek to create
likely HTU sequences such that the overall cladogram
likelihood is maximized. Likelihood versions of Direct
Optimization (Wheeler, 1996) and Iterative-Pass opti-
mization (Wheeler, 2003a) fall into this camp. In their
focus on likely HTUs, these methods are MPL methods
in the sense of Barry and Hartigan (1987), though there
are elements that can be described as MAL. The search-
based methods, Fixed-State (Wheeler, 1999a) and
Search-Based Optimization (Wheeler, 2003b), can be
implemented as either MPL or MAL methods and both
are discussed here. All of these methods are heuristic

cladogram optimization procedures of the same basic
model. The problems of cladogram search and tree-
alignment (Wang and Jiang, 1994) are known to be NP-
complete and none of these methods (other than
exhaustive Search-Based Optimization) guarantees an
exact solution for more than two sequences.

Direct optimization (DO)

As with parsimony, Direct Optimization using likeli-
hood (DO-lik) begins by determining the HTU sequence
of a node with two terminals (OTUs) as descendants
(Two Sequences below). This is repeated for each node
in a down-pass until each HTU has been determined
from its descendants (Fig. 5). The likelihood of the
cladogram is the product of the likelihoods of the
HTUs. The differences from DO-parsimony come in the
determination of the optimization cell costs (sum versus
minimum value), the incorporation of branch-length
information, and the creation of the HTU sequence. All
these events occur within the modified Needleman and
Wunsch (1970) algorithm used to determine the HTU.

Two sequences
The core of DO-lik is the determination of an HTU

sequence from two descendant sequences. In order to
begin, three sorts of values are required. Given the
most general sequence change model (S10F5), 10
transition probabilities (Q), 5 state probabilities (P),
and a time (t) or expected branch length factor are
needed (as well as any others such as the gamma a

Fig. 5. Down-pass used to calculate likelihood values under Direct Optimization (DO; Wheeler 1996). The immediate ancestors of terminal nodes
(Ti) are optimized first then proceeding down the cladogram to the root (H4) until all internal nodes (Hi)are optimized.
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and invariant sites h). Q and P can be asserted or
estimated by various means (see Implementation
section below), but t must be determined for the
HTU problem at hand. One could simply begin at an
arbitrarily small t and determine HTU likelihood for
ever-larger values keeping the maximum. This ap-
proach could be improved by using an initial estimate
based on the parsimony-based DO. This step would
provide an estimate of the number of changes on the
branch (and potentially Q and P as well) which could
then be refined through iteration.

With the necessary parameters in place, dynamic
programming can be used to determine the HTU
likelihood and sequence. The procedure would follow
the parsimony DO procedure (Wheeler, 1996) with two
modifications. First, the transformation costs between
nucleotides and indels would follow the usual absolute
value of the logarithm of the transition probabilities
determined from the likelihood model and t (eqn 3).
This makes the costs additive and the problem one of
minimization; hence we can follow the modified Nee-
dleman–Wunsch algorithm. Second, the costs (ci,j) of
individual cells in the Needleman–Wunsch matrix would
be calculated from the sum of the three paths to that cell
as opposed to the minimum value (eqn 4).

ci;j ¼ðPi;j � ci�1;j�1ÞþðPi;gap �ci�1;jÞþðPgap;j �ci;j�1Þ: ð4Þ
Following Thorne et al. (1991), this yields the total

likelihood value of the transformation between the two
input sequences. If the minimum value alone were used,
the dominant likelihood value would be produced (this
may yield different homologies). This is a noteworthy
distinction, since a unique HTU (although it might have
ambiguities) is produced. Operationally, this HTU is

created during the traceback step of the procedure based
on the minimum cost ⁄maximum likelihood match ⁄ indel
patterns in the Needleman–Wunsch matrix. Since the
method produces a single HTU, this is a MPL procedure
and the use of dominant likelihood values most consis-
tent. The total likelihood cost would be a MAL method
for two sequences.

After the HTU likelihood (total or dominant) is
determined for a given t, transition probabilities would
be recalculated for a new t, and the process repeated
iteratively until a stable solution was found.

Iterative-Pass (IP)

The likelihood version of Iterative Pass (IP-lik)
follows the steps of its parsimony incarnation (Wheeler,
2003a) with initialization, three-way HTU determin-
ation, and cladogram cost calculation (Fig. 6). The
modifications are quite straightforward. The HTUs are
initialized with DO-lik and then updated using a three
sequence version of the DO-lik described above. In this
case, all three branches leading to the HTU are iterated
and the optimization itself is more time consuming. The
HTUs are revisited in turn (and minimally) until they
are stable in sequence. The cladogram cost determin-
ation uses the two-sequence DO-lik above, to determine
the branch-likelihood for each ancestor–descendant pair
on the cladogram and this sum is the cladogram
likelihood (Fig. 7).

As with DO-lik, the method has total and dominant
likelihood calculations based on summing (over seven
paths in this 3-D case) or taking the maximum likelihood
path for HTU determination. A single HTU is produced
either way however, hence the method is MPL.

Fig. 6. Calculation of HTU sequence under likelihood using Iterative-Pass optimization (IP; Wheeler 2003a). HTUi is chosen such that it minimizes
the sum of the likelihoods of transformation to each of the three adjacent nodes (one ancestor and two descendants).
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Fixed-State ⁄Search-Based Optimization

These methods are referred to as search methods as
opposed to estimation methods (Wheeler, 2005) due to
their reliance on the examination of a heuristic subset
of the known range of possible sequences. Sequences,
like cladograms are (in principle) enumerable before
any analysis. Fixed-States (FS; Wheeler, 1999a) and
Search-Based Optimization (SBO; Wheeler, 2003b)
examine very small sets of possible sequences as
HTU states. They do not attempt to construct HTU
sequences (as do the estimation methods above) in
creating optimal cladograms, but choose among pre-
specified sequences. For FS, the search set is defined
by the observed sequences, yielding a minimum-size
search space. SBO expands the sequence state set,
hence producing better, i.e. more optimal, cladograms
at a cost of increased execution time (scaling quad-
ratically with the number of states). In principle, SBO
could examine all possible sequences yielding an exact
solution for that cladogram. This is unlikely to be
tractable for anything but the shortest sequences.

As with the parsimony version of these methods,
dynamic programming (Sankoff and Rousseau, 1975) is
used to determine both the optimal cladogram cost and
the HTU state set. The fundamental requirement for
this is a sequence edit cost matrix. As the parsimony cost
matrix is determined by the pair-wise parsimony DO,
the likelihood edit costs are determined by the DO-lik
described above.

Once more, this raises the issue of total ⁄dominant
likelihood. When intermediate costs ⁄ likelihoods are
calculated, either the minimum cost ⁄maximum likeli-
hood can be assigned to HTU sequence states, or the
sum of all paths to that state (Fig. 8).

This corresponds to the dynamic programming oper-
ations for DO-lik above. If the total likelihood cost is
calculated for the edit cost matrix, and HTU state
likelihoods are summed as well, FS ⁄SBO will be a MAL
method, if dominant (minimum cost ⁄maximum likeli-
hood) are used on both, a MPL version will result.

Another point worth noting concerns the interpret-
ation of branch-lengths in the FS ⁄SBO context. Whether
under MAL or MPL, the likelihood sequence edit cost

Fig. 7. Determination of cladogram likelihood in IP-lik. The total log-likelihood is the sum of the log-likelihood values of each branch.
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matrix is the likelihood of transforming one sequence into
another. This requires an estimate of t, the branch length.
The likelihood values for all the sequence pairs are
unlikely to be the same. Hence, each sequence state
change implies a different branch length and this is
embedded in the sequence edit cost. These differing
branch lengths imply heterogeneity in models of change
among the sequences and amixedmodel among sequence
states and fragment characters. The lack of a necessary
homogeneous model may alleviate some of the problems
in likelihood analyses of real data, discussed theoretically
by Chang (1996) and through simulation by Kolaczkow-
ski and Thornton (2004). These results show that likeli-
hood methods will be inconsistent (Chang, 1996) and
under-perform parsimony (Kolaczkowski and Thornton,
2004) in an environment of heterogeneous evolutionary
processes (a point also made by Steel and Penny, 2000).
The FS-SBO procedures do not truly create a mixed
model among nucleotides, but do among sequence
fragments. The dynamic homology framework cannot
accommodate (at least at present) such a mixing of
models. This is due to the necessary interrelationship
among the nucleotides in homology determination. A
truly heterogeneous model approach would have to
assign parameters to each nucleotide in some manner
akin to that of Tuffley and Steel (1998).

Simultaneous analysis

One of the great advances of recent systematics is the
integration of disparate sources and forms of data to
simultaneously test cladistic hypotheses. There is no

reason why likelihood methods must be left out of the
total evidence (Kluge, 1989) approach (the Bayesian
approach implemented in MrBayes (Huelsenbeck and
Ronquist, 2003) allows this). The missing component
has been likelihood models for morphological features.
The most general of these is that of Tuffley and Steel
(1998). This followed that of Goldman (1990) and
preceded others (e.g., Lewis, 2001). As the most general
model, Tuffley and Steel (NCM; no common mechan-
ism) likelihood values can be used in combination with
those determined from molecular data. The r-states
Jukes and Cantor (1969); Neyman (1971) model used,
conforms to a nonadditive, or unordered character
interpretation. Furthermore, since additive characters
can be transformed into a series of binary nonadditive
characters, the vast majority of qualitative morphologi-
cal data can be analyzed this way. An additional
attractiveness of the NCM model is its identity with
parsimony (the same can be said for Goldman, 1990).

In combination with the methods proposed here, a
likelihood-based total evidence analysis of morphologi-
cal and unaligned molecular sequence data can be
performed.

Support

It is worthy of mention that given a common
interpretive framework for analysis, several support
measures have convergent meaning. Such measures as
Bremer support (Bremer, 1994) and Jackknife values
(Farris et al., 1996) can be calculated under likelihood.
Quite clearly, the log-likelihood ratio of cladograms

Fig. 8. Calculation of total and dominant likelihood values under Search-Based optimization procedures. The total likelihood sums the likelihood
contributions of all possible sequence state assignments at each HTU, whereas the dominant likelihood is found by determining the highest likelihood
sequence state for each HTU.
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with and without a clade is identical to the Bremer
support, which is based on log-likelihood cladogram
costs. Jackknife values may prove to be especially
interesting if the summary cladogram is determined
from weighted (likelihood weighted) cladogram costs.
The clade support values can be quite similar to those
proposed as posterior probabilities by Bayesian phylo-
genetic software (Huelsenbeck and Ronquist, 2003).
This is an area for future investigation.

Implementation

An implementation was created in the computer
program POY (Wheeler et al., 1996–2003, 2005a) to
explore these models and procedures. Several general
topics merit discussion here, and more option specific
information can be found in the POY documentation
(ftp.amnh.org ⁄pub ⁄molecular ⁄poy).

Estimation of model parameters

Estimates of model parameters are required for HTU
likelihood calculations. In the most complex of cases,
the 10 values of the R matrix, five of P, as well as the
gamma shape parameter a and invariant sites propor-
tion h will need to be determined (and the number of
discrete classes for the gamma shape distribution spe-
cified). In general, these parameters can be calculated by
two distinct methods: (1) before any search begins via
pair-wise comparisons, or (2) during the search on a
branch-by-branch basis.

The most simple and straightforward manner of
estimating R and P parameters is to perform a series
of pair-wise parsimony alignments, enumerate the
number of transitions of each type (including indels),
and count the relative numbers of each nucleotide state
and gap. Such an empirical process would not be an
explicit attempt at maximizing any likelihood, but
provides a useful estimate. This could be refined by
iterating the values of the parameters until a summed
likelihood value was optimized, but this would be
extremely time consuming (PAUP (Swofford, 2003)
can use a cladogram to estimate many parameters).
Such a refinement for a and h would be quite reasonable
and is the default for POY.

A second, more specific, estimation occurs during the
determination of each HTU. A preliminary parsimony
alignment of the two descendant sequences (in the case
of DO-lik) or three adjacent sequences (in the case of IP-
lik) could be used to estimate transition and state
frequency parameters specific to a branch of a clado-
gram. The strength of such an estimate is that it
would be tailored to that area of a cladogram. A
drawback would be the large multiplication of effective
parameters.

Estimation of branch lengths

An initial t (expected number of changes) is calculated
from parsimony DO and iteration proceeds from there.
The branch length is incremented and decremented by a
factor (step interval) and likelihoods recalculated. For
Iterative Pass Optimizations, each of the three branches
connected to the HTU are iterated in turn and repea-
tedly until all are stable.

Dominant and total likelihood

As mentioned above, dominant and total likelihood
costs can be calculated for DO-lik and IP-lik as well as
the FS ⁄SBO procedures. For reasons of efficiency,
dominant likelihoods are usually calculated; hence, the
methods are MPL by default. The only real difference in
the calculation for DO ⁄IP is found in Needleman and
Wunsch’s (1970) cell costs; summed for total likelihood
and maximum value for dominant.

For FS-lik ⁄SBO-lik, the total likelihood option is
exact (given the state set) summing the likelihoods of all
the paths to a given state (i.e., from all others).

Combination of data

The combination of data for total evidence analysis
proceeds by adding the log likelihoods of the component
characters. Qualitative morphological likelihoods are
determined under No CommonMechanism (Tuffley and
Steel, 1998). Molecular likelihood values are determined
by the analytical procedure (DO-lik, IP-lik, FS-lik or
SBO-lik).

Cladogram likelihood

Cladogram log-likelihood is determined by summing
the log-likelihoods of the HTUs for DO-lik, the branch
log-likelihoods for IP, and the final root-state log-
likelihoods for FS ⁄SBO with the log probability of the
root node.

An example

To illustrate the behavior of these methods, the
arthropod data set of Giribet et al. (2001) was used.
This data set contains 54 taxa, 303 morphological
characters and eight molecular loci (16S mt rRNA, 18S
rRNA, 28S rRNA, mt cytochrome c oxidase subunit I,
elongation factor-1a, RNA Polymerase II, histone H3
and U2 snRNA). Not all taxa were complete for all loci.
Other examples can be found in Okusu et al., (2003) and
Edgecombe and Giribet (2004).

All searches were performed using POY ver. 3.0.11
(Wheeler et al., 1996–2003) on the AMNH DEMETER
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cluster computer (2.8 GHz PIV Xeon CPU Linux) using
50 processors. Searches were based on a single addition
sequence, followed by TBR branch swapping and tree
fusing (Goloboff, 1999) if thereweremultiple cladograms.
Up to 25 equally costly cladograms were stored, ran-
domly adding new cladograms if the buffer were full
(option fitchtrees). A final round of TBR swapping
was performed examining cladograms within 1% of the
minimum cost to control errors in the cladogram length
heuristic calculations. The following command line
options were used for all runs: -norandomizeout-
group -treefuse -checkslop 10 -maxtrees 25
-fitchtrees. Additionally, indel cost were set to two
and nucleotide substitutions to one. These would be
constant for parsimony, but revised under likelihood as
model parameters (including indels) were estimated.
Morphological changes were accorded a weight of two
to equal the indel cost, and this weighting was carried
through the likelihood analysis. Likelihood runs added
the options -likelihood -totallikelihood
-gammaclasses 2 -invariantsitesadjust to
use the sum of dynamic homology alternatives (as
opposed to the dominant likelihood), G rate distribution
with two classes (default), and adjustment for invariant
sites. Likelihood calculations were based on the S6GF5

model (default) where nucleotide and indel frequencies
were initially estimated via pair-wise comparison andheld
constant over the search. The nucleotide–indel substitu-
tion model (S6GF5) is equivalent to GTR+GAPS where
there is a single indel transition probability for all
nucleotides. This matrix was estimated, eigenvalues
calculated, and transition probabilities derived uniquely
for each branch of each cladogram examined. Morpho-
logical likelihood values were calculated using the meth-
ods of Tuffley and Steel (1998).

These are not the analytical parameters used by
Giribet et al. (2001) in their analysis. The searches here
were much less exhaustive and only a single (and
different) parameter set used. This was largely due to
the time requirements of the likelihood analyses.

Analyses were performed on each of the nine data
partitions (morphology and eight molecular loci) sepa-

rately and in combination. Each data set was analyzed
under likelihood and parsimony optimality criteria
using the four heuristic methods (except for the mor-
phological data) described above, resulting in a total of
78 analyses.

Results

The cladograms produced by the data set-criterion-
heuristic combination are shown in Fig. 10. These are
summarized in Tables 1 and 2. As an example of
comparative execution times, the 5S data set of Rede-
lings and Suchard (2005) required 8 s on a 2.4 GHz PIII
running Linux to complete a simple search with TBR
branch swapping using Direct Optimization and Fixed
States, and 86 s for Iterative-Pass. Their 12 taxon EF-1a
data set (as DNA not the amino acids originally
analyzed) required 1072 s for Direct Optimization and
7 s for Fixed States, both supporting their ‘‘eocyte’’
result.

Morphological analysis
Parsimony analysis of the 303 morphological charac-

ters resulted in 12 cladograms of length 596, while

Table 1
Optimality values for partition analyses under parsimony and likelihood (-log). Data of Giribet et al. (2001)

Optimality Method

Cladogram costs

Total Morph 16S 18S 28S COI EF1a H3 POL1 U2

Parsimony DO 35262 596 2865 13176 552 3311 5679 1189 4746 304
IP 35006 596 2832 13027 546 3307 5689 1188 4751 305
FS 42412 596 3477 14528 630 4541 7976 1507 6332 385
SBO 37026 596 3204 14116 569 3383 5829 1209 4915 312

Likelihood DO 113090.23 766.90 6942.82 33611.75 2125.98 13033.37 23795.95 5427.81 17727.47 1477.40
IP 113459.95 766.90 6892.47 33621.80 2147.69 13147.63 23619.13 5415.99 17835.97 1485.03
FS 116570.82 766.90 7364.70 32242.45 1907.76 15789.13 28795.68 6037.71 21311.82 1497.24
SBO 109441.22 766.90 6998.29 30431.90 1762.34 14456.72 25995.42 5730.46 20227.55 1358.63

Table 2
Topological incongruence among data partitions under parsimony and
likelihood

Optimality Method

Topological
congruence

TILD RILD

Parsimony DO 0.495 0.691
IP 0.422 0.699
FS 0.450 0.751
SBO 0.427 0.709

Likelihood DO 0.380 0.637
IP 0.357 0.601
FS 0.415 0.687
SBO 0.409 0.703
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Fig. 9. Parsimony (a) and likelihood (b) analysis of arthropod morphological data Giribet et al. (2001). The likelihood analysis was performed
using the model of Tuffley and Steel (1998). The differences between the two cladograms are due to the differential weight factor assigned to
transitions by likelihood based on the number of states (r) in each character.
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Fig. 10. Total evidence cladograms resulting from parsimony and likelihood analysis using the four heuristic procedures described in the text.
Cladograms a, b, c and d are parsimony based, while e, f, g and h are likelihood. DO was used for a and e; IP for b and f; FS for c and g; SBO for d
and h.
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likelihood analysis resulted in 6 cladograms of cost 766.9
(-log likelihood; Fig. 9). The consensus cladograms of
these two analyses are largely similar, but with a few
differences (such asmyriapodmonophyly). It is often said
that the Tuffley and Steel (1998) likelihood model shows
the identity of parsimony and likelihood however, this is
not strictly the case. In Tuffley and Steel (1998), the
weight function of the contribution of an individual
change is inversely proportional to the number of states.
Although a given character or a suite of characters with
identical numbers of states will yield identical results,
data sets without such homogeneity will not, hence the
differences between Figs 9a and b. The differences are
subtle but real.

Molecular loci
The individual cladograms for the molecular parti-

tions-optimality-heuristic procedure are contained in the
accessory materials. In general, the results of IP analyses
were superior (lower cost) to those of DO for parsimony
but not under likelihood. SBO outperformed FS for
both parsimony and likelihood.

Combined analysis
Strict cladograms for these eight analyses are shown

in Fig. 10. The parsimony and likelihood results for
SBO were identical. As expected, IP outperformed DO
for parsimony runs. FS were more costly than IP, DO
and SBO. For the likelihood analysis, SBO was by far
the lowest cost (minimum -log lik) at 109 441.22 versus
113 090.23 for DO (Table 1). This is consistent with the
MAL version of likelihood employed here. SBO
summed the likelihoods (however marginal) of a larger
set of potential HTU sequences than FS.

It is somewhat surprising that SBO outperformed all
the other heuristics,whichwas not the case for parsimony.
While the parsimony scores for the heuristics can be
compared (since the tree lengths all represent the same
weighted sum of events), it is not clear if the likelihoods
can be. Certainly FS and SBO can be compared, as they
are attempting to do the same thing (using the same form
of likelihood and HTU determination). The estimation
heuristics (DO and IP) are approaching the likelihood
problem in a very different way.

Comparison

The numerical values (character congruence) pro-
duced by likelihood and parsimony analyses are largely
incomparable. In order to assess their behavior, a
comparison can be made, however, through an analysis
of topological consistency among data partitions. Such
an analysis was performed here using the topological
incongruence metrics of Wheeler (1999b; Table 1).

Overall, parsimony outperformed likelihood, with
each heuristic procedure having higher topological
congruence values (TILD or RILD) for the parsimony
version. These differences are not great (about 9% for
the TILD values and 7.5% for RILD) and it is hard to
say whether such distinctions are significant in a
statistical sense. Furthermore, given the abbreviated
nature of the searches and parameter space explored,
this example is more of a demonstration than a general
analysis of a congruence-based comparison technique.

The heuristics that yielded the highest congruence are
the Search-Based FS and SBO. This holds for both
parsimony and likelihood. While SBO also yielded the
best likelihood score, this was not true of parsimony.
The Search-Based techniques have the virtue of conver-
ging on an exact solution as the potential state set
enlarges, for both optimality criteria. This convergence
behavior may be keeping the partitions more consistent
with each other as they add additional HTU options.

Discussion

The simple models presented here show that likelihood
methods can be applied to scenarios of dynamic homol-
ogy and combined analysis for real-sized data sets. This
enlarges the world of problems amenable to likelihood
analysis and allows us to bring to bear the greatest
diversity of evidence to systematic problems within this
probabilistic framework. More parameterized models
(including affine gaps, lineage heterogeneity, etc.) might
well improve the quality of the likelihood results, but the
approximate techniques employed here are certainly
usable now and provide a productive heuristic for more
elaborate and time-consuming procedures.
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