
Cladistics

Cladistics 19 (2003) 348–355

www.elsevier.com/locate/yclad
Search-based optimization

Ward C. Wheeler*

Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024-5192, USA

Accepted 25 March 2003
Abstract

The problem of determining the minimum cost hypothetical ancestral sequences for a given cladogram is known to be NP-

complete (Wang and Jiang, 1994). Traditionally, point estimations of hypothetical ancestral sequences have been used to gain

heuristic, upper bounds on cladogram cost. These include procedures with such diverse approaches as non-additive optimization of

multiple sequence alignment, direct optimization (Wheeler, 1996), and fixed-state character optimization (Wheeler, 1999). A method

is proposed here which, by extending fixed-state character optimization, replaces the estimation process with a search. This form of

optimization examines a diversity of potential state solutions for cost-efficient hypothetical ancestral sequences and can result in

greatly more parsimonious cladograms. Additionally, such an approach can be applied to other NP-complete phylogenetic opti-

mization problems such as genomic break-point analysis.

� 2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
Introduction

Systematists have consciously grappled with the NP-

completeness of phylogenetic tree searching for some
time, but as yet have not directly addressed the same

property of the optimization problem presented by se-

quence data. The problem of determining the internal

nodal sequences, such that the overall cladogram cost is

minimized for a given cladogram is known to be NP-

complete (Wang and Jiang, 1994). This is easily under-

stood when one contemplates the increasing number of

possible sequences as the number of observed sequences
increase. In principle, all possible sequences of lengths 0

to the sum of all terminals with all possible combina-

tions of nucleotides may occur. Wang and Jiang (1994)

discussed this in their proof of NP-completeness and

Wheeler (1998) in terms of Direct Optimization

(Wheeler, 1996).

The traditional approach to the estimation of clado-

gram costs has been one of constructing some sort of
point estimate for hypothetical ancestral sequences and

then using this to determine an upper-bound on clado-

gram cost. The coupled processes of multiple sequence

alignment and separate phylogenetic reconstruction
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does this through establishing global, static homologies

to deal with length variation and then using standard

optimization techniques to estimate the internal node

character states. Direct Optimization (DO; Wheeler,
1996) takes a more explicit approach to this estimation,

by establishing cladogram-specific homology schemes in

a preliminary pass and constructing ancestral sequences

in a second (up) pass. Unsurprisingly, DO usually yields

better upper bounds on cladogram cost than multiple

alignment methods. A third method, Fixed-Character

State optimization (FSO; Wheeler, 1999), estimates in-

ternal nodal sequences by requiring they be drawn from
the set defined by the terminals. In general, this yields

less satisfactory cladogram costs, but may have other

desirable properties (Wheeler, 2001).

An exact solution to this problem is obvious, if la-

borious. As with cladogram searches, one could simply

enumerate all possible sequences and try each of them in

turn at each of the internal nodes. Such an approach

would guarantee the optimal solution, but would be
impractical or impossible in all but the simplest cases. It

may be, however, that in the same way that we can ar-

rive at quite satisfactory results examining a very small

fraction of binary trees when we search for cladograms,

that we may not need to examine every possible se-

quence to arrive at a satisfactory (if not guaranteed

minimal) solution. We could then examine each of these
by Elsevier Science (USA). All rights reserved.
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candidate solutions and determine the minimum clado-
gram cost given the set of examined sequences. Noting

that we are often satisfied (achieve usable, stable results)

with examining n4of the P 2i� 5 (i ¼ 3 to n for n ter-

minals—a tiny fraction) cladograms with repeated ran-

dom addition sequences and TBR branch swapping, we

might have similar luck in finding useful solutions with

sequence optimization. This is the crux of search-based

optimization.
The method

Briefly, there are two steps to performing search-

based optimization. The first is to define the set of

possible ancestral sequences. This could be achieved in

many ways; here we will accomplish this through the use
of the final sequence states generated by DO. The sec-

ond step is to evaluate this (potentially quite large) state

set for a given cladogram via dynamic programming.

One could start with a small state set, perform the

analysis, and then enlarge the set of possible sequences

repeating the procedure. This might be done until sta-

bility or exhaustion occurred (Fig. 1).

It is worthwhile to note here that the ‘‘character’’ of
sequence data used in this form of analysis is the entire

contiguous sequence segment. This may be a fragment,

locus, or more extensive stretch of nucleic acid. This is

the same character concept used in DO (Wheeler, 1996)

and FSO (Wheeler, 1999).
Fig. 1. Character state set for the general problem of sequence opti-

mization. The relative sizes of the transformation cost matrices from

sequence to sequence is shown by the squares. The smallest is that

generated by Fixed State Optimization (Wheeler, 1999), the interme-

diate size represents the heuristic sequence set explored by the method

presented here, and the entire square represents the exact solution

derived form examining all possible sequences.
The first step, as mentioned above, is the generation
of a set of potential ancestral sequences. Given that the

computational cost of the dynamic programming step

which follows will be dependent on the square of the size

of this set, the collection should be as small, yet as in-

clusive of pertinent variation, as possible. As an exam-

ple, even though sequences containing many ‘‘T’’s are

possible in ancestral sequences where the terminals ex-

hibit only ‘‘G’’s and ‘‘C’’s, employment of such hypo-
thetical ancestral sequences would be inefficient since

they are very unlikely to be useful. Along these lines, one

approach is to perform a series of random addition

Wagner builds and reconstruct the ancestral sequences

using DO. Since it is crucial that these sequences be

specific (ambiguities can lead to underestimation of

cladogram cost and non-metricity), when the up-pass

optimization regime would allow multiple possible nu-
cleotides, one is chosen at random and the optimization

proceeds up the tree. In this way, non-ambiguous se-

quences are generated which are consistent with at least

some schemes of phylogenetic relationship. These

random additions are performed, and n� 1 (for n

terminals) potentially unique hypothetical ancestral

sequences accumulated at each iteration.

The reason that ambiguities can lead to problems
comes from the edit cost calculations. The edit cost

between two sequences, one consisting of A�s, C�s, G�s,
and T�s and a second of an equal number of N�s, would
be zero. This ‘‘N’’ sequence would also have a zero edit

cost to any sequence of that same length. The non-

metricity comes in when transformations between the

specific sequences (ACGT�s) could pass through an

intermediate ‘‘N’’ sequence state. This would entail zero
cost, whereas a direct transformation would have non-

zero cost—a violation of the triangle inequality.

Once the set of potential states is created (and aug-

mented with the observed sequences), the optimization

of a cladogram or cladograms can proceed via dynamic

programming (Sankoff and Rousseau, 1975), akin to a

Sankoff-style matrix character with a large number of

potential states. The time of this operation will be de-
pendent both on the number of terminal taxa (linearly)

and the number of potential states (quadratically).

Large state sets will result in lengthy searches.
A synthetic example

Consider the sequences of Fig. 2, with 9 taxa and
lengths of 2 to 12 nucleotides. Potential internal sequences

were generated with POY (vers. 3.0; Wheeler et al.,

2002) using the options ‘‘–notbr –maxtrees 1 –seed –1

–random 1 –printhypanc –diagnose.’’ The default indel

cost of 2 and base substitution cost of 1 were used as

well. This caused POY to create a single random addi-

tion Wagner tree without any refinement such as SPR or



Fig. 2. ‘‘Bad’’ sequence data set.

Table 1
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TBR branch swapping. A cladogram was saved each

time and a ‘‘random’’ optimization regime was used to
create non-ambiguous hypothetical ancestral sequences.

These hypothetical ancestral sequences were kept each

time and duplications removed. The first 100 unique

sequences are shown in Table 1.

Once defined, the potential sequence set can be ap-

plied to cladogram diagnosis and searches. Without any

additional states specified, so that the sequence set is

limited to observed sequences (fixed states), the shortest
cladogram found had a cost of 44 weighted steps. With

100 additional random addition sequences, the mini-

mum cost cladogram had a cost of 40 weighted steps.

This minimum cost was achieved at 61 additional se-

quences (for a states set of 70 including the 9 observed)

and remained at 40 through states set sizes of 2000.

Using CLUSTAL (Thompson et al., 1994, 1997),

PHAST (Goloboff, 1996), and MALIGN (Wheeler and
Gladstein, 1994, 1991–1998) by way of comparison,

conventional multiple sequence alignment followed by

standard phylogenetic analysis yielded less parsimoni-

ous results. CLUSTAL+PHAST resulted in a clado-

gram of cost 56, and MALIGN+PHAST at cost 43.

DO (via POY) generated a cladogram of weighted cost

40. This difference was even more pronounced when a

second sequence file was added which did not allow
consistent accommodation of sequence length varia-

tion. This data set (Fig. 3) is a permutation of the

sample data set of Fig. 2. Although each sequence file

can yield a minimum cost cladogram of 40 steps, to-

gether the minimum for search-based optimization
(with the same 100 random additional sequences) is 84.

DO yielded a cladogram of 86 weighted steps, MA-

LIGN+PHAST 106, and CLUSTAL+PHAST 120.

Clearly, this form of optimization is yielding shorter

cost cladograms than other methods. The cladogram

cost with no additional states (Fixed-States cladogram)

had a cost of 91 weighted steps (Fig. 4). The search-

based optimization cladogram is 2% shorter than DO
and over 20% shorter than the multiple alignment

methods. These differences are quite startling given the

small size of the test data set.



Fig. 3. ‘‘Bad’’ sequence data set permuted in taxa such that the two

versions cannot be simultaneously accorded optimal arrangement.

Fig. 4. Cladogram cost as a function of extra sequence states. As ad-

ditional potential ancestral sequences are considered during cladogram

search, overall cladogram cost decreases.

Table 2

Unique candidate hypothetical ancestral sequences for the arthropod

data set (after Giribet et al., 2001)

Fragment Number unique sequences

18s1 737

18s2 1038

18s3 2210

18s4 122

18s5 564

18s6 30

18s8 1647

18s9 263

18s10 32

18s11 763

18s12 139

18s13 172

18s14 23

18s15 372

18s17 30

18s18 1472

18s19 328

18s20 155

18s21 102

18s23 62

28s1 35

28s2 1253

28s4 1651

28s5 254

16s1 681

16s2 52

16s3 27

16s4 183

16s5 1727

16s6 1037

16s7 1809

16s8 1819

16s9 670

16s10 1529

U2 1021

H3 1809

EF1b 1999

Pol1 1908

Pol2 1212

Pol3 829

Pol5 828

COI 2232
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Real examples

A demonstration of search-based optimization ap-

plied to a real data set concerns arthropod and centipede
relationships. In their multilocus molecular se-

quence+ anatomy (and non-sequence molecular data)

total evidence analysis of 54 arthropod taxa, Giribet

et al. (2001) reported support for ‘‘Pancrustacea’’ a

somewhat surprising grouping of insects and crusta-

ceans. To do this, Giribet et al. presented 303 morpho-

logical characters and 8 nuclear and mitochondrial loci.

They analyzed their data-using DO and their congru-
ence-based sensitivity analysis favored a cladogram
employing completely homogeneous weighting (in-
dels¼ transversions¼ transitions) at 27,375 steps.

In order to prepare the set of potential ancestral se-

quences, a procedure similar to that used for the test case

above was performed. For each locus, or fragment of a

locus, 50 random addition Wagner trees were calculated

using DO. No branch swapping was performed and se-

quence variation was optimized on the resulting clado-

gram and final hypothetical ancestral sequences
reconstructed. To this were added the optimized best re-

sults from searches of the individual loci (or fragments)

and a combined run. A total of 2756 hypothetical ances-

tral sequences were generated for each locus/fragment.

Therewas often considerable redundancy and the number

of unique potential sequences varied greatly (Table 2).
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Due to memory constraints, up to the first 550 of these
unique sequences were chosen as the potential state set (in

addition to the observed sequences). This is the set used

for subsequent search-based optimization analyses.

When the cladogram of Giribet et al., was diag-

nosed, the original cladogram cost of 27,375 was re-

covered (Fig. 5), for DO, and 24,107 steps for the

search-based approach (FSO yielded 26,969 steps).

When a complete search was performed (using POY
on 50 1GHz PIII processors in parallel) a cost of

23,408 steps was found (Fig. 6) a decrease in clado-

gram cost of 17%. A FSO search resulted in a
Fig. 5. Cladogram of arthropod relationships of Giribet et al. (2001). Optim

changes were given equal weight (indel¼ transversion¼ transition).
cladogram of cost 26,066 (Fig. 7). Given that the FSO
analysis yielded a less costly cladogram than the DO,

ambiguities in the observed sequences (mainly terminal

N�s) may have artificially reduced cost in the FSO and

the search-based cladograms. The additional decre-

ment, however, from the search-based analysis over

the FSO (11.8%) suggests that this is not the entire

effect. The following example has no such potentially

confounding factors.
A second example comes form Edgecombe et al.�s

(2002) centipede data, which are very complete with

few sequence ambiguities (N�s). As with the previous
ization was used to search for this cladogram at cost 27,375 steps. All



Fig. 6. Search-based optimization of the cladogram of Giribet et al. (2001) data. Cladogram cost was 23,408 steps. All changes were given equal

weight (indel¼ transversion¼ transition).

W.C. Wheeler / Cladistics 19 (2003) 348–355 353
example, there were multiple molecular loci (5) and a

morphological data set. Analysis proceeded as in the
previous example with two exceptions. First, only 10

random replicates were used to generate candidate

ancestral sequences, and second, all resultant states

were held and used for diagnosis and search. For ho-

mogeneous weighting (all transformations¼ 1), using

DO, the published lowest cost cladogram is at 4376,

this was based on 1000 replicate runs with elaborate

search options. A single addition sequence run with
DO yielded a cladogram cost of 4394. FSO yielded

4810, and search-based optimization yielded a clado-

gram at cost 4307 (1.98% less costly) for this simple

search.
Shortcuts and speed-ups

As mentioned above, the execution time of Search-

based optimization is almost entirely dependent on the

number of potential states (Table 3). This suggests two

possible avenues for reduction in execution time. The first

is to employ approximate solutions based on the recon-

structed final states of the internal nodes, and the second

to dynamically alter the number of states during analyses.

A full down-pass dynamic optimization of a cla-
dogram of ‘‘n’’ taxa and ‘‘m’’ states would have a

complexity on the order of nm2 for each character. This

dependence on n taxa can be reduced almost to a con-

stant factor of 2 via the shortcuts described by Goloboff



Fig. 7. Fixed-states optimization of the cladogram of Giribet et al. (2001) data. Cladogram cost was 26,670 steps. All changes were given equal weight

(indel¼ transversion¼ transition).

Table 3

Search-based optimization execution times

No.

sequences

Cladogram

cost

No.

cladograms

Time Cladograms/s

17 476 5208 0 >5208

25 467 8580 1 8580

50 456 14,304 2 7152

100 435 10,030 4 2508

200 416 12,412 32 387.9

400 392 9551 114 83.78

1000 388 10,100 1262 8.003
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(1993) and would also greatly reduce m2 to as low as 1

or 2. This is because the Goloboff shortcuts are depen-

dent on the final ancestral states reconstructions.
Although there are m possible states, the number of

states reconstructed at the internal nodes is more usually

one or two. These cost calculations are approximate

however, and require checking with a down-pass cost

calculation that is dependent on the full state set.

Incremental optimization can reduce the complete
down-pass costs as well from n to approximately log n

(Gladstein, 1997).

A second possibility is to reduce the number of states

examined during the search. It is possible to note the

states used in intermediate solutions, perhaps during the

initial cladogram building steps, and remove unused

states for an initial refinement step. After this refinement

went to completion, the state set could be returned to its
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full complement and refinement repeated. Such an op-
eration could be performed iteratively until stability oc-

curred. This compression of states should accelerate

cladogram cost calculation considerably. This might also

have the additional benefit of decreasing the memory

consumption of the procedure (currently also nm2).
Discussion

There are only two required elements for Search-

based optimization. The first is a set of possible states,

and the second a cost function to determine the trans-

formation costs between each pair of states. In the case

of DNA sequences, the state set consists of the possible

sequences (or a heuristic subset) and the cost matrix of

the pair-wise minimum edit costs between the sequences.
If the characters were binary, there would be only two

states and the single edit cost would be one step. If the

characters were prealigned nucleotide positions, there

would be 5 states and a traditional Sankoff and Rous-

seau (1975) matrix would specify all the possible trans-

formations. Hence, this type of optimization is a

generalization of other character types and even can be

applied to the character data generated by gene order
studies.

Genomic breakpoint or rearrangement data are a

source of information that has been available from

complete mtDNA sequences for some time (Boore et al.,

1995) but only recently have the tools become available

for its analysis (Blanchette et al., 1997; Sankoff and

Blanchette, 2000). As with sequence data, the world of

possible sequence rearrangements is huge and the
transformation paths among these correspondingly di-

verse. Algorithms to optimize these variations parsi-

moniously have been developed by Blanchette et al.

(1997) and Sankoff and Blanchette (2000) but they can

be very time consuming. A simple application of Search-

based optimization can also deal with such problems

through a priori definition of possible genomes and their

edit costs. Using the data of Blanchette et al. (1999) on
arthropod gene order, search based optimization yields

the same solution as that of Blanchette et al. (201 steps)

when using only the observed genomes as a state set.
Conclusions

Search-based optimization promises to be an efficient
and effective means of optimizing sequence and many

other types of complex phylogenetic data. At present this

effectiveness is limited by the computational problems

inherent in dynamic programming of such large state

sets. These are likely to be ameliorated by algorithmic

improvements for a given states set, and by methods to

define the states set in a more efficient manner.
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