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1 Introduction

Optimization Alignment (OA) is a method for taking unaligned sequences and
creating parsimonious cladograms without the use of multiple alignment. The
method consists of two parts. First, a “down-pass” that moves “down” the tree
from the terminal taxa (tips) to the root or base of the cladogram and, second,
an “up-pass” which moves back up from the base to the tips. The down-pass
creates preliminary (i. e., provisional) hypothetical ancestral sequences at the
cladogram nodes and generates the cladogram length as a weighted sum of the
character transformations (nucleotide substitutions and insertion-deletion
events) required by the observed (terminal) sequences. The up-pass takes the
information from the down-pass and creates the “final” estimates of the
hypothetical ancestral sequences. From these the most parsimonious synapo-
morphy scheme can be derived to show which character transformation events
characterize the various lineages on the tree. The combination of these two
procedures allows phylogenetic searches to take place on unaligned sequence
data, resulting in improvements in execution time and quality of results. This
process differs from multiple alignment procedures (such as that of Sankoff and
Cedergren [1]) in that OA attempts to determine the most parsimonious cost of a
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cladogram directly, whereas multiple alignment procedures generate column-
vector character sets, which are then analyzed phylogenetically in a separate
operation.

This OA method was proposed to allow the direct optimization of unequal
length sequences on a cladogram [2]. The determination of the length, or cost,
of the cladogram is accomplished given the observed sequences and a cost
matrix that specifies the costs of all the transformations among nucleotides and
insertion-deletion (indel) events. In this sense, the method is a generalization of
Sankoff and Rousseau [3], or matrix optimization of character states, but allows
for the insertion and deletion of characters. Sankoff and Rousseau [3] expanded
the realm of optimization allowing for unequal transformation costs among
character states, but still relied on a preexisting alignment to know which states
to compare. OA enlarges the world of transformation events that can be
optimized on a cladogram, including the creation and destruction of characters.
In doing this, OA obviates the need to perform multiple sequence alignment,
creating unique, topology-specific homology regimes for each scenario of
historical relationship. The method yields better testing of phylogenetic hypoth-
eses since provisional homologies are optimized for each cladogram individu-
ally, not a priori and universally as with the static homologies of multiple
alignment. Furthermore, by treating all sequence variation within the context
of topology-specific synapomorphy, hypotheses of molecular variation can be
seamlessly integrated with other character variation to yield simultaneous or
total evidence analysis. The OA integration of molecular and other character
information frequently generates more parsimonious cladograms than multiple
sequence alignment [4]; these results often show greater congruence among
data sets [5].

Wheeler [2] defined and illustrated OA for a simple case of short sequences,
determining the length of a cladogram in terms of nucleotide transformations
and indels. Here, I review the method in more detail. First the “down-pass” or
initial tree length determination is described in detail, and then the “up-pass” or
internal-node sequence reconstruction procedure. Since these procedures yield
approximations of the minimal length cladogram (the exact solution is thought
to be NP-complete), errors and approximations are iniroduced and their
behavior and techniques for accommodating them are described.

2 Going Down to Get Tree Length

The initial step of any phylogenetic optimization procedure is the “down-pass.”
The procedure begins at the tips of the tree with the terminal taxa, and moves
down through the hypothetical ancestral nodes to the base or root of the tree.
This initial or preliminary traverse through the cladogram yields both pre-
liminary character state assignments to the internal (i. e., ancestral) nodes and
the cladogram length or cost.
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Whether the characters are morphological additive or non-additive charac-
ters, unordered or matrix molecular variants [3, 6, 7], the basic operation
begins by choosing an internal node whose two descendants are terminal taxa
(e.g., T1 and T2; Fig. 1). The down-pass character state assignments (pre-
liminary of node A4) are determined from the two descendants and minimize
the amount of change between the ancestor and its two descendants (T1, T2
and A4). This process is repeated until all the internal nodes have been visited
(A4-A1) using the relevant ancestral preliminary states as descendants for more
basal ancestors (e. g., A4 and T2 for A3). The overall cost of the cladogram is the
sum of the costs incurred in determining each ancestral sequence.

Optimization procedures differ in the determination of the ancestral state
reconstructions and how their costs are determined. For simple binary or non-
additive multistate characters, union and intersection operations are performed
onthe descendant character states. If the two descendants states agree (identical)
or have common states (non-empty intersection), no costis incurred and the nodal
reconstructed state is the identical or overlapping state in the two descendants. If
the descendant states disagree (empty intersection), the ancestral state receives
the union of the descendant states and the cost of that reconstruction is increased
by one (e. g., T1 {A} and T2 {C} to yield A4 {M}; Fig. 2).

The general case of multiple states, linked by arbitrary (but metric) trans-
formation cost matrices, can be determined by trying (at least implicitly) all
possible states at all internal nodes and choosing the combination which yields
the most parsimonious result (Fig. 3). As with the simple method mentioned
above, the cost of the determination of ancestral nodes at each node is summed
to get the length of the entire cladogram for that character. For the Sankoff
procedure to function, however, all possible internal states must be known and
defined a priori, which allows them all to be considered. In most situations (e. g.,
nucleotide data), this is straightforward, with only five (A, C, G, T and gap) states
possible. Methods have been proposed where the number of possible states can
be arbitrarily large (see [8]), but these character states can still be optimized via
the same process as for the five states of nucleotide data. OA generalizes this

T5 T4 Figure 1 Example cladogram with five
terminal taxa (T1-T5) and four internal
nodes (A1-A4).
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Figure 2 Fitch [7] down-pass for non-additive, or unordered DNA characters with 5
states. [UPAC codes are used to represent nucleotide ambiguity. Parentheses denote the
absence of nucleotides at that position (i.e., “gaps”).
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Figure 3 Sankoff and Rousseau [3] optimization for general character transformation
matrices. IUPAC codes and parentheses as in figure 2.

procedure by allowing the creation and destruction of characters, but employ-
ing a heuristic character optimization algorithm (Heuristic Sankoff Cost (HSC)
or Sankoff procedure) to make the calculations tractable.

The Sankoff procedure, though exact, is time-consuming. If there are “s” states,
“n” taxa and “m” characters, the cost of determining the length of a cladogram via
the exact procedure would be proportional to 2s2m(n-1) (but short-cuts exist; see
[9,10]). Anon-additive character has no dependence on the number of states (i. e.,
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would depend only on m and n), much lessits square, and can be implemented with
much more efficient bitwise operations. An approximate solution can be found,
however, by making a simplifying assumption and performing a simple weighted
version of non-additive optimization. The simplifying assumption is that we only
have to worry about the immediate descendant states. If this is the case, then we
can precalculate the outcome of all possible descendant state pairs. For five states
(A, C, G, T, and gap) there are 31 possible combinations of states a descendant can
exhibit (five single states and 26 combinations). Hence, there are only 961 possible
eventsthatcanoccur atan ancestral node. Furthermore, there are 31 cases where
the two descendants are identical; the remainders are not order-dependent so
there are only 465 calculations that are required. Each of these would resultin a
preliminary ancestral state assignment and a cost (the minimum cost transforma-
tionimplied by the descendant states). These are calculated and storedina 31 x 31
table with the descendant states asindices before any optimization or search takes
place (Fig. 4). During optimization, the results of every ancestral optimization
would just be looked up in the table (Fig. 5). The method is approximate, it ignores
intermediate, locally sub-optimal solutions that might be globally more parsimo-
nious later, but can reduce execution time considerably. Solutions can be checked
by performing a complete Sankoff down-pass on those rare occasions during a
search where a candidate tree is thought to be equally or more parsimonious than
the current best [10]. This heuristic procedure was first used in MALIGN 11, 12]
and is used in PHAST [10] and POY [13].

The OA procedure relies on a combination of HSC and the Needleman and
Wusch (NW) pairwise alignment procedure [14]. The three types of optimization
discussed above (Farris, Fitch, and Sankoff), assume that the descendant
characters to be compared or optimized are known. In other words, previous
optimization schemes assume that it is known which “A” on one sequence
corresponds to which “C” in another. This is generally not the case with
nucleotide sequence data sets, since the sequences of terminal taxa can vary
in length. In other words, these optimization procedures require pre-aligned
sequences. However, if a means can be found to create parsimonious prelimin-
ary ancestral sequences from two descendant sequences and determine the
cost of that creation, the coupling of homology assessment and testing can he
made seamless rendering multiple alignment unnecessary.

Determination of preliminary ancestral sequences is approached in the same
way that Sankoff optimization looks at all the possible state assignments and
chooses the most parsimonious, such that OA looks at all the potential corre-
spondences between the nucleotides in the descendant sequences to determine
which scheme of correspondences and transformations yields the most parsi-
monious preliminary ancestral sequence. This is done in a manner akin to the
pair-wise alignment procedure of NW. In this case, the NW procedure is
modified from one that maximizes sequence similarity to one that minimizes
the cost of the ancestral sequence as approximated by the HSC.
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Figure 4 Look-up table including hypothetical ancestral states and cost used in the Heuristic
Sankoff Cost (HSC) procedure. IUPAC codes and parentheses as in Figure 2. An IUPAC code
with parentheses denotes ambiguity with respect to that IUPAC nucleotide, or ambiguity, and
the absence of base or “gap.” These costs and states are based on a cost of 3 for indels, 2 for
transversions and 1 for transitions.

Consider four sequences T1:“AA”, T2:“A”, T3:“GG” and T4:“G”. T1 is defined
a priori as the outgroup and the indel cost set to 2 and the base change cost to 1
(transition cost = transversion cost = 1). At least initially, assume a candidate
tree (T1 (T2 (T3 T4))) (Fig. 6). As mentioned above, the process starts with a
node, both of whose descendants are terminals. Here, that is the node with
descendants T3 and T4 (A3). In order to determine the lowest cost preliminary
hypothetical ancestral sequence, a NW-type procedure is performed with a cost
matrix based on the analysis parameters mentioned above (Fig. 7). The NW
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Figure 5 The use of the
\/ \/ look-up table (Fig. 4) in the
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procedure minimizes the cost (in this case) of the nodal sequence by implicitly
determining the cost of all possible preliminary reconstructions through a
dynamic programming procedure. A matrix is set up and updated via “wave-
front” optimization [14-16 and references therein). This case requires a six cell
node (n+1 by m+1, where n and m are the lengths of the descendant sequences)
to consider the five possible homology schemes (Fig. 8). The result of this
procedure is that there are two possible reconstructions of cost 2 (a single
indel) using the HSC. The HSC is used not only to determine the cost of the
reconstruction but the state as well. In this simple case, the preliminary
ancestral sequence would be ambiguous as to the length (one or two bases)
but one of those bases would be a “G” and the ambiguous length would be either
a “G” or nothing. The “G” or nothing, represented as (G), is the result of the
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lowest cost union (via HSC) between the corresponding descendant states of “G”
and nothing (a gap if this were an alignment). An exact solution would require
that we follow both of these possibilities (and all their multiplicative deriva-
tives), but in the current implementation and description of the method a single
preliminary hypothetical ancestral sequence is chosen.

After this node, the process is repeated for all the other unoptimized nodes.
The node (A2) has descendants A3 and T2. The process is repeated as above
with the descendant sequences (G)G and A. In this case, preliminary node
reconstruction would yield “R” ambiguous with respect to A and G, but
unambiguous as to sequence length (1) (Fig. 9). The NW and HSC yield a cost
of 1 for this node (3 so far after A3 and A2 have been visited) and the ambiguity
of length in A2 is resolved since the length of T1 was also 1. The final node (root
node) is determined by comparing its descendants Al (“R”) and T1 (“AA”).
Following the same NW-HSC process yields an ambiguous preliminary root
node assignment of “A(A)” and “(A)A” (there were two paths to get there) with a
local cost of 2 and a total cladogram cost of 5 steps (Fig. 10).

This completes the down-pass. Here the total cost (based on an indel cost of
two and base change cost of one) was five with two indels and a single base
change. In a search, other cladograms would be optimized and another solution
of equal cost would have been found. For example, the cladogram (T1 (T3 (T2
T4))) also requires 5 steps, but with three base changes and a single indel.

An obvious conclusion of this dependence on the indel and base change costs is
that the preferred (i. e., most parsimonious) cladogram may vary with the para-
meter values. For this example ifthe indel costisincreased by one tothree, only the
cladogram linking T2 and T4 is chosen (length 6), minimizing the now more costly
indels. Alternatively, if the gaps cost is reduced by one to one, the cladogram
linking T3 and T4 is favored (length 3), minimizing base changes.
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Figure 9 The determina-
tion of the preliminary se-
quence for node A2 of the
cladogram in Figure 6.
There are five possible
paths through the matrix
and five possible prelimin-
ary ancestral sequences.

Figure 10 The determina-
tion of the preliminary se-
quence for node Al of the
cladogram in Figure 6.
There are five possible
paths through the matrix
and five possible prelimin-
ary ancestral sequences.
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3 Going Up to Get Ancestral States

In order to reconstruct a parsimonious set of character states at the internal
(hypothetical) nodes, a second or up-pass is required. This process moves from
the root of the cladogram “up” to the tips, incorporating the information from a
node’s ancestor as well as its descendants. As originally described [2] and
implemented in POY [13], the process is extremely simple, basically trying all
possible states (based on the down-pass homologies) in turn and keeping those
with the lowest cost.

More specifically, the starting point is the root node. There is no true up-pass
for this node, since it has no ancestor. The final states for the root node are
simply assigned from the preliminary states or the final states of the cutgroup
taxon. The descendants of this node are then visited. These nodes are the first
ones with both descendants and ancestors. The preliminary homologies among
the preliminary down-pass states and the two descendant sequences are known
(saved) from the down-pass step and the correspondences with the final states
of its ancestor are determined by the same NW-HSC process used in the down-
pass, but between the preliminary states of the node and the final states of its
ancestor. For each position then, the two descendant and ancestral states are
known. Each state is tried in turn as the final state, and the most parsimonious
set taken as the final state set for that node (Fig. 11). The process then moves on
to the next node and so on until final state sets are determined for each non-
terminal node. The final state sets for the terminals and the root node are of
course identical to the preliminary states.

Given that the final states are based on the same “greedy” short-sighted
simplifications of the down-pass (locally lowest cost reconstructions), the final
state sets are approximations as well. In addition to erroneously estimating

Amm e G\ ﬁG T4:G T3:GG T2:A
A 4 .
a 3 G G «G(G)® T1:AA
GG 5 |
AA T A A <R (%
Af
. AR
Ancestral Sequence e G(G) A
A 1 \®/
AA 4 N|A)

Figure 11 The determination of the final hypothetical ancestral sequences viaz an up-
pass.
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hypothetical ancestral sequences, this can cause problems with many phyloge-
netic search shortcuts, which rely on these hypothetical ancestral sequences as
a surrogate for the information within their descendant clade.

4 Short-cuts and Errors

This form of sequence optimization makes two sorts of errors. The first
concerns the down-pass tree lengths. Since the method determines local node
costs based only on the descendant sequence information, the estimated cost
must be equal to, or more likely greater than the minimal cost (Fig. 12). This
effect can be compounded by the fact that the optimization regime is simulta-
neously determining homology relationships among the nucleotides as well
from this same restricted (only descendant) sequence set. These two factors
together ensure that the down-pass tree length is an upper bound on the
minimal cost.

The second source of error comes from the establishment of the set of final
(up-pass) states for the hypothetical ancestral sequences. Since the preliminary
(down-pass) sequences are constructed in a myopic manner, these errors are
carried along into the up-pass phase. This can result in both the inclusion of
nucleotide states that should not be there, as well as missing those nucleotide
states that should be there. When these reconstructions are used as part of
short-cut methods during phylogenetic searches, this can cause the short-cuts
to over- or underestimate candidate tree lengths. In general, these errors are

AA AA Figure 12 The down-pass
calculation of length (left)

showing how the value can
be overestimated compared
to the actual minimum
length (right).

Length=5 _ Length=4



66 Ward C, Wheeler

not large (less than 1%) and can be accommodated by checking tree length
calculations with full down-pass optimization on candidate trees. In POY, the
options “slop” and “checkslop” allow the verification of trees within a specified
difference in tree length from the current best. Although this slows things down,
it increases confidence that the search is proceeding on verified shortest trees.

Another expression of this effect is the apparent dependence of cladogram
length on root position. This would seem to be counterintuitive, given that the
parameters (indel cost, transition-transversion ratio, etc.) are symmetrical. As
mentioned before [2], this is also due to the heuristic tree length procedures. In
the example of Figure 12, if rooted at sequence “AA” instead of sequence “A”,
the minimal tree length of 4 is produced (Fig. 13).

5 Improvements

Many improvements could be made to these procedures. Three general classes
would involve multiple solutions, sub-optimal solutions and character-specific
virtual roots.

5.1 Multiple solutions

During the down-pass, the consideration of multiple equally parsimonious
preliminary sequences would be an obvious step. Since each node would be
likely to generate its own multiple solutions which should be multiplied down
the cladogram, extremely large potential sets of preliminary sequences could be
generated. Although it might not be practical to maintain multiple solutions
throughout the entire down-pass, these solutions (or a set of them) could be
maintained and considered at the optimization of the next (parent) node (or
some other range down the cladogram). The NW-HSC process would be

A A Figure 13 Rerooted diagnosis of Figure 13
showing the achievement of minimum length.

AC

A (C)
AA

Length = 4 A (A)
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performed on each combination of the candidate preliminary sequences for the
two descendants of a node. This would generate a new set of equally costly
preliminary sequences for this node and the process would be repeated until the
entire cladogram was optimized.

The up-pass determination of the final hypothetical ancestral sequences
could also be improved by maintaining multiple equal cost solutions. Here
would be the product of the multiple preliminary solutions and those of the final
assignment of the parent node, which would be more computationally intensive,
but surely tractable. The same decisions would be required on the size of the set
of solutions to be maintained (this could be large, or a smaller random sample
could be stored) and the reach over which to hold and test these multiple
solutions.

5.2 Sub-optimal solutions

One of the principal reasons for the myopia of the down-pass (and up-pass)
methods is that they ignore locally sub-optimal solutions which might turn out
to be globally optimal. In the example of Figure 12, the assignment of pre-
liminary sequence “A” is globally optimal, but ignored as too expensive initially.
If some set of sub-optimal solutions were considered, they might prove useful in
subsequent optimization stages. Unfortunately, there are many sub-optimal
solutions and many of them are sub-optimal for good reasons. It is unclear
whether this notion would prove practicable.

5.3 Virtual roots

As the examples of Figures 12 and 13 show, rooting can affect the behavior of
the down- and up-pass algorithms. Certain characters might well behave bhetter
(i.e., generate shorter cladogram lengths) given certain roots. Unfortunately, it
is unlikely that these roots will be identical for all characters. Perhaps a system
of “virtual” roots could be erected with each character having its own “best”
root, and then optimized on that basis. The overall cladogram would then be
more explicitly unrooted and presented in a rooted fashion only at the end of the
analysis.

6 Remarks and Conclusions

This explicit discussion of the procedures involved in the diagnosis of sequence
data on cladograms shows both the strengths and weaknesses of this approach.
Not requiring a priori sequence alignment and generating cladogram-specific
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homology schemes would seem to be strengths. The heuristic nature of the
cladogram length and ancestral sequence reconstruction would seem to be
weaknesses. These can be improved, however, as described above. Although
the problem is unlikely to be solved exactly, improvements along the lines
suggested here could well bring incremental benefits and, combined with ideas
of others, generate more satisfactory methods and more reliable results.
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