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Theory and practice of parallel direct optimization
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Summary. Our ability to collect and distribute genomic and other biological data is growing at a stag-
gering rate (Pagel, 1999). However, the synthesis of these data into knowledge of evolution is incom-
plete. Phylogenetic systematics provides a unifying intellectual approach to understanding evolution
but presents formidable computational challenges. A fundamental goal of systematics, the generation
of evolutionary trees, is typically approached as two distinct NP-complete problems: multiple
sequence alignment and phylogenetic tree search. The number of cells in a multiple alignment matrix
are exponentially related to sequence length. In addition, the number of evolutionary trees expands
combinatorially with respect to the number of organisms or sequences to be examined, Biologically
interesting datasets are currently comprised of hundreds of taxa and thousands of nucleotides and mor-
phological characters. This standard will continue to grow with the advent of highly automated
sequencing and development of character databases. Three areas of innovation are changing how evo-
lutionary computation can be addressed: (1) novel concepts for determination of sequence homology,
(2) heuristics and shortcuts in tree-search algorithms, and (3) parallel computing. In this paper and the
online software documentation we describe the basic usage of parallel direct optimization as imple-
mented in the software POY (ftp://ftp.amnh.org/pub/molecular/poy).

Introduction

The first step in phylogenetic analysis is to establish putative homology state-
ments for characters observed among study species. When considering mor-
phology, putative homology statements result from comparative analysis by a
trained specialist. However, the establishment of homologies across many
sequence positions and species are not easily or optimally conducted by eye
(see Giribet et al., this volume). In the analysis of molecular sequence data,
multiple alignment algorithms can assign provisional homologies among
residues (e.g., nucleotides, amino acids). Putative statements of morphological
and molecular homology are tested by phylogenetic analysis. Cladograms are
constructed from those putative homologues that are shown to be shared
derived features.

The problem

The number of cells in a multiple alignment matrix are exponentially related
to the number of taxa and sequence length. An alignment of m sequences of
length N nucleotide bases will require N™ elements of storage (Needleman and
Wunsch, 1970). One commonly used heuristic approach is to provide an ini-
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tial topology of relationships among the taxa (guide tree) for accreting
sequences into a matrix of provisional homologies (Sankoff et al., 1973). In
theory, an alignment procedure could be repeated for each possible set of rela-
tionships among taxa. However, the number of topologies is combinatorially
dependent on the number of taxa. Multiple alignment of more than a few short
sequences requires heuristics.

Furthermore, the results of heuristic multiple alignment are dependent on
the order in which the sequences are accreted and the functions chosen for the
relative costs of insertion-deletion and substitution events in sequences. For
evolutionary studies, the objective of performing a muitiple alignment is often
to proceed to a phylogenetic analysis with a set of putative homologies unbi-
ased by initial assumptions. Clearly, computationally efficient and assumption-
minimizing alternatives to the existing paradigm of multiple alignment are
essential for evolutionary and molecular biology.

A solution

Direct optimization is a novel method of comparing putatively homologous
sequence residues during cladogram diagnosis, thus obviating multiple align-
ment (Wheeler, 1996). Alignment algorithms create correspondences between
sequence strings of various lengths by inserting gaps. In multiple alignment
the relative costs of insertion-deletion and substitution events determine the
number and position of gap characters inserted in sequences. Direct optimiza-
tion works by creating parsimonious hypothetical ancestral sequences at inter-
nal cladogram nodes. The key difference between direct optimization and mul-
tiple alignment is that evolutionary differences in sequence length are accom-
modated not by the use of gap characters but rather by allowing insertion-dele-
tion events between ancestral and descendant sequences. Evolutionary base
substitution and insertion—deletion events between ancestor and descendant
sequences are treated with the same cost functions (e.g., Sankoff matrices) as
in multiple alignment.

Theory
Determination of DNA sequence homology

The phylogenetic analysis of DNA sequences, like that of all other compara-
tive data, is based on schemes of putative homology that are then tested via
congruence to determine synapomorphy and cladistic relationships. Unlike
some other data types, however, putative molecular homologies or characters
are not directly observable. DNA sequences from various organisms are often
unequal in length. Hence. the correspondences among sequence positions are
not evident and some sort of procedure is required to determine which regions
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are homologous. This procedure is typically multiple sequence alignment.
Alignment inserts gaps to make the corresponding (putatively homologous)
nucleotides line up into columns. These columns (characters) comprise the
data used to reconstruct cladograms. Many investigators try to hand-align raw
data or hand-edit algorithmic alignments to reduce ‘“‘errors” and ambiguity, but
this is certainly a subjective and unrepeatable process. Whether alignment is
accomplished manually or algorithmically, the resultant characters are then
submitted to phylogenetic analysis as column vectors in the same manner as
other forms of data, such as morphological characters scored by an investiga-
tor. Whatever the analytical pathway, alignment is an artificial manipulation of
DNA observations via the insertion of gap characters that are not data but
rather just place-holders. The primary reason in phylogenetics to create an
alignment has only an operational basis—to make it possible to submit these
data to standard phylogeny programs that were designed to handle column
vectors of morphological characters. This is not a reason to believe that con-
struction of an alignment followed by a separate tree search procedure is the
only or the best way to do phylogenetics.

Limirations of multiple alignment

Alignment-based homology schemes rest on a notion of base-to-base corre-
spondence in which individual nucleotide bases transform among five states
(A, C, G, Tor U, and gap) within a single character. The use of a base-to-base
framework to view DNA homology is in large part responsible for the the phe-
nomenon of long-branch attraction because of the paucity of character states
(A, C, G, T/U, or -) in a column. A method available in POY, fixed-state opti-
mization, can be used to avoid this pitfall because the method views the whole
sequence, not individual bases, as characters (Wheeler, 1998, 1999b). In a
fixed-states approach the number of possible character states are related to the
length (n) of the sequences (up to 4") thus reducing the chance of random non-
historical similarity to a negligible probability.

Static versus dynamic homology

In standard phylogenetic analysis, once an alignment is created it is not revised
during or as a result of subsequent phylogenetic analysis. In this sense the
putative homologies defined in the alignment are static. Reexamination is
often done by hand but users will likely fall prey to biases and rearrange bases
in favor of preferred groups. However, as implemented in MALIGN (Wheeler
and Gladstein, 2000), randomization of an alignment’s guide tree can achieve
reexamination of putative homology and the alignments can be judged by an
optimality criterion applied to the trees produced from the alignment via phy-
logenetic analysis.
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As pointed out by Phillips et al. (2000), Mindell (1991) advocated using
“known” phylogenies to guide alignments but the required phylogenetic infor-
mation is often unavailable. In most evolutionary studies, the object of per-
forming a multiple alignment is to allow phylogenetic analysis with a set of
putative homologies unbiased by initial assumptions of relationship.
Topology-based alignment comes at the cost of results that are dependent on
the addition order of sequences as determined by the guide tree (Fitch and
Smith, 1983). Thus, preconceived notions of relationships will bias the analy-
sis. Randomization of the alignment topology is the most objective course of
action. ;

The most significant advantage of direct optimization is that homology
assessment is dynamic. In direct optimization, nucleotide homologies are fluid
in the sense that they change not only when different guide trees are used, but
also when various data are combined. Statements of putative homology depend
not only on the addition order of sequences during the initial build of a clado-
gram and base transformation costs (as with standard alignment) but aiso on
congruence among characters. In direct optimization, many optimization
schemes, each implying a distinct set of putative homologies, can be examined
via variable sequence alignments that occur concurrently with initial clado-
gram building. The diagnosis of each cladogram involves finding the lowest-
cost hypothetical ancestral sequences possible. Direct optimization is accom-
plished by examining all possible homologies between the nucleotide bases of
two descendant vertices. Dynamic programming is used (in a step akin to pair-
wise sequence alignment) to optimize each hypothetical ancestral sequence for
the minimum weighted number of insertion-deletion events and base substitu-
tions. At each vertex in a cladogram, all possible hypothetical ancestral
sequences are implicitly constructed and their costs determined. The minimum
cost ancestral sequence is retained and used to optimize the next vertex down
the cladogram. Wheeler formally describes the algorithm’s downpass in this
volume. g

Dynamic homology and combined analysis

A logical assumption is that there is one phylogeny of a natural group of
organisms because there is one evolutionary history. Comparative data of var-
ious sorts reflect the phylogeny of groups under study with different levels of
support. No one type of data has been demonstrated to have a high fidelity
record of evolutionary history across groups of very different ages. The basic
strength of the combined analysis approach lies in the ability of synapomor-
phies from different types of data to provide additive support for related
groups. Dynamic homology takes combined analysis one step further by
allowing co-optimization of molecules and morphology. Putative sequence
homologies are tested and revised via optimization of their congruence with
morphological synapomorphies. This contrasts sharply with standard com-
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- bined analyses in which prealigned sequences are attached to morphological
characters. Standard analysis is restricted by static alignment to seeking for a
common signal at the level of the tree search. It has been demonstrated that, in
terms of character congruence and topological congruence, combining pre-
aligned datasets produces cladograms which are suboptimal to those produced
when the same raw data are analyzed with direct optimization (Wheeler,
1998).

Computational complexity of phylogenetics and heuristic solutions
Alignment

As introduced earlier, the number of cells in a multiple alignment matrix are
exponentially related to the number of taxa and sequence length. Furthermore,
the number of multiple alignments becomes very large with a small number of
short sequences (Slowinski, 1998). As a consequence, exact solutions are
intractable and heuristics are required to produce multiple alignments.
Heuristic alignment algorithms get the job done at the cost of alignment ambi-
guity. As discussed above, one common heuristic is the use of a guide tree to
direct the addition order of sequences.in muitiple alignment (Sankoff et al..
1973). In theory, an alignment procedure could be repeated for each possible
set of relationships among the taxa. However this is intractable because of the
large number of evolutionary trees with just a few taxa (discussed below).
Alignment heuristics are reviewed in detail in Phillips et al. (2000). In com-
mon practice, one topology is used (e.g., as implemented in CLUSTAL
[Thompson et al., 1994] and in TREEALIGN [Hein, 1990]). As discussed
above, topology-based alignment comes at the cost that results are dependent
on the addition order of sequences as determined by the guide tree (Fitch and
Smith, 1983). This bias'can be addressed by increasing the number of random
additions performed which increases runtime (e.g., as implemented in
MALIGN, [Wheeler and Gladstein, 2000]). Furthermore, various parameter
sets for base transformation costs in alignment may lead a limited set of groups
or few groups in common. In many cases when results of many parameter sets
are compared, phylogenies share few groups (e.g., W.C. Wheeler, 1995;
O’Leary, 1999; Giribet, 1999; Giribet et al., 2000; Giribet and Ribera, 2000:
Janies, 2001). However, some analyses have shown consistent results despite
parameter variation (Edgecombe et al., 1999). The implementation of topolo-
gy-based alignment can be improved by concurrent examination of many
guide trees and can be explored in reasonable time with an inexpensive cluster
of PCs using POY or MALIGN (discussed below). Parallellization of software
implemented on inexpensive computing clusters and evermore popular multi-
processing PCs provide a very efficient (in terms of maximizing analytical
rigor within available time and money) means to rationally address large phy-
logenetic datasets at the level of sequence alignment.



120 D.A. Janies and W.C. Wheeler
Topologies

The number of networks facing a topology-based alignment or a phylogenetic
tree search is combinatorily dependent on the number of taxa. Thus the num-
ber of possible topologies becomes astronomical as taxa are added to the
analysis.For example, the number of possible rooted topologies increases as a
power series (let y = the number of rooted topologies, let i = the starting point
of 3 taxa. let t = the total number of taxa) (Cavalli-Sforza and Edwards, 1967).

!
v=[1@2i-3

i=3

The number of possible rooted topologies reaches 34,459.425 with only 10
taxa, 8.2 x 10*! with 20 taxa, and 2.75 x 107° with 50 taxa.

Practice

The challenges presented by alignment of DNA and phylogenetic tree search
have prompted research in heuristics and parallellization. There are several
operational reasons to do parallel direct optimization as implemented in POY.
Commonly used alignment algorithms produce one (or sometimes many)
alignments based on a single parameter set and distance-based addition
sequence. Then the investigator has to run a phylogenetic tree search algo-
rithm. POY produces trees, is reasonably fast under a variety of platforms and
runs very fast in parallel on inexpensive clusters of PCs (Gee, 2000; Sterling
et al., 1999; Janies and Wheeler, 2001). This new paradigm offered by POY
permits the investigator to examine many alignment topologies (up to millions
of trees per second) and ratchet and swap replicates. Furthermore, the speedup
that parallelism’affords permits searching a wide parameter space in reason-
able time. New, fast phylogenetic search algorithms will produce short trees
from a single alignment at unprecedented speed (e.g., Goloboff, 1999, Nixon,
1999). However the speed and quality of the phylogeny produced by these
algorithms is dependent on the speed and quality of the alignment(s). Multiple
alignment can take weeks of processing time on desktop computers. POY chal-
lenges the existing paradigm of alignment followed by a separate tree search,
by unifying these steps into a single algorithm that is efficiently scalable to the
large datasets necessary to make sense of the large amounts of data being pro-
duced by high-throughput DNA sequencing and character coding.

Efficiency of parallel direct optimization

Four major algorithms of POY were tested for parallel efficiency: two types of
initial cladogram building and two types of branch swapping. Random repli-
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cates of initial cladogram builds were distributed to several processors via a
one-processor-per-replicate strategy (via the commands -parallel -multibuild
n). Alternatively, single cladogram builds were partitioned across many
processors (via the command -parallel). Branch swapping jobs were parti-
tioned across many processors (via the commands -parallel -tbr -spr). These
algorithms were tested on several datasets comprised of DNA and morpholo-
gy ranging from 40-500 taxa (Janies and Wheeler, 2001).

The results of these studies are straightforward and very informative on the
scaling properties of POY on large and small clusters. The results on the large
cluster (256 processor cluster comprised of Intel Pentium 500 MHz PIIIs net-
worked via 100 Mbps switched Ethernet) contrast significantly (for some but
not all algorithms) with those derived from similar studies on a small cluster (11
processor cluster comprised of Intel Pentium 200 Mhz PIIs networked via a 10
Mbps Ethernet hub) previously in service at the AMNH. Various algorithms in
POY show fundamentally different properties within and between clusters.

The multibuild command exhibits excellent parallel efficiency in the large
cluster (Fig. 1). Speedup (trees examined per second) is very close to linear
with the addition of processors regardless of dataset or cluster size. In contrast,
parallel building shows poor parallel efficiency in the large cluster with only
slight speedup up to 128 slave processors (Fig. 2). This result is similar in large
and small clusters. Branch swapping commands show excellent speedup for 10
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Figure 1. Parallel efficiency of the one-processor-per-replicate strategy using the POY commands (-
parallel -multibuild n). The dotted line represents perfect parallel speedup. The solid line represents
actual speedup. The multibuild command exhibits excellent parallel efficiency for 264 mammal 128
rDNA and results are similar for other large datasets.
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264 mammal 12S rDNAs, parallel building
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Figure 2, Parallel efficiency of a strategy in which work of each single cladogram build is partitioned
across many processors using the POY command -parallel, The dotted line represents perfect parallel
speedup. The solid line represents actual speedup. The parallel command exhibits poor parallel effi-
ciency for 264 mammal 12S rDNA and results are similar for other large datasets.

slave processors on the small cluster and excellent speedup for 32 slave
processors on the large cluster (Fig. 3.). However, there is no appreciable
speedup with the addition of slave processors and this result is independent of
dataset size.

These results are fundamental to improving the algorithms for hierarchical
parallelism and multi-user load balancing to achieve maximum performance
per unit investment. Furthermore, the excellent parallel efficiency of the multi-
build command is very encouraging. This result demonstrates the viability of
building clusters comprised of several hundred of processors without investing
in expensive, non-standard, network hardware. Also, it will be important to
invest resources in obtaining higher clockspeed processors to shorten per—-node
runtimes when using multibuild.

Progress in phylogenetic analysis of DNA sequence data is limited by com-
putational capacity. Advances in DNA sequencing technology have permitted
the accumulation of phylogenetic data sets with hundreds to thousands of taxa,
each with thousands of nucleotides. Parallelism offers a tractable means to cre-
ate the computational power required for aggressive heuristic searches. The
ongoing 'development of parallel algorithms combined with the low cost and
simplicity of off-the-shelf hardware make cluster computing a revolutionary
technology for evolutionary biology.
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264 mammal 12S rDNAs, branch swapping
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Figure 3. Paralle] efficiency of branch swapping using the POY commands -parallel -tbr -spr. The dot-
ted line represents perfect parallel speedup. The solid line represents actual speedup. Branch swapping
on trees based on 264 mammal 128 rDNAs in paraliel shows excellent speedup for 32 slave nodes but
additional processors provide no appreciable speedup. This result is independent of dataset size.
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