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Abstract

The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-

complete. This ‘‘tree alignment’’ problem has motivated the considerable effort placed in multiple sequence alignment procedures.

Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple

sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based

procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment so-

lution, Sankoff et al. in 1976 described a heuristic procedure—the iterative improvement method—to create alignments at internal

nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement

and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) clad-

ogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this

burden. An example in arthropod systematics is discussed.

� 2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.

Systematists struggle with sequence homology. Tra-
ditionally, some form of multiple sequence alignment is

performed, perhaps manually, to create the putative

homology statements that many phylogenetic analysis

programs require. Wheeler (1996) proposed a procedure

(optimization alignment or direct optimization; DO) to

move the alignment problem to one of cladogram op-

timization. In DO, hypothetical ancestral sequences are

created through comparison of descendent sequences
and insertion–deletion (indel) events are treated as an-

other form of transformation in a series of potential

transformation events. This requires precise statements

concerning the relative cost of different types of trans-

formations and the explicit inclusion of indel events in

the calculation of cladogram cost. DO generally yields

more parsimonious (lower cost) cladograms than those

based on multiple alignment (Giribet et al., 2002). The
algorithm is not exact, however, and the general prob-

lem is known to be NP-complete (Wang and Jiang,

1994). DO provides an upper bound on the true mini-

mum cost.

In their examination of the multiple sequence align-
ment problem, Sankoff et al. (1976) proposed an exact

solution through the use of n-dimensional string

matching, given a known scheme of phylogenetic rela-

tionships. For n sequences of length m that method re-

quires storage on the order mn and would require 2n �1

calculations at each cell in the n-dimensional structure.

To be used to identify an optimal tree, furthermore, this

procedure would have to be repeated for each possible
tree. Clearly, this is intractable for even the smallest of

data sets. Sankoff et al. proposed a heuristic procedure,

however, based on iteratively solving the median prob-

lems at each internal node (Fig. 1). The median problem

is basically a three-sequence (i.e., three-dimensional)

version of the dynamic programming Needleman–
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Wunsch algorithm (Needleman and Wunsch, 1970).

Each internal nodal sequence alignment is recalculated

until a pass over the entire tree results in no novel

changes and stability is achieved (iterative improvement;

Fig. 2). The stable nodes are then used to generate a

multiple sequence alignment. As part of this alignment

process, ‘‘protosequences’’ akin to hypothetical ances-

tral sequences are also created (by majority of the three
terminal states or left ambiguous).

A similar median problem solution can be created

using a three-sequence version of DO that will then

explicitly generate hypothetical ancestral sequences in a

generalized version of Wheeler�s (1996, 2002) method.

The same iterative improvement algorithm can then be

applied to the nodes, initialized with DO-derived hy-

pothetical ancestral sequences (akin to the use of median
genomes in the breakpoint analysis of Sankoff and

Blanchette (1997)). The stable inferred sequences that

are used to calculate the overall cladogram cost given

these internal sequences do not contain ambiguities or

‘‘gaps’’ as they may in Sankoff et al.�s (1976) procedure.

An implementation of the Sankoff et al. procedure based

on the combination of a three-sequence DO with itera-

tive improvement (i.e., iterative pass optimization),
though more elaborate and time consuming than stan-

dard DO, can result in less costly cladograms.

Method

There are four segments to the procedure: (1) ini-

tialization, (2) median problem, (3) iterative improve-
ment with incremental optimization, and (4) cladogram

cost calculation.

Initialization

There are several possible ways to initialize internal

(hypothetical ancestral) sequences such that the median

optimization can begin. A simple method might be to use
the topologically nearest terminal (i.e., leaf) sequence, but

this performs poorly inmy experience (at least usingPOY;

Wheeler et al., 2002). Two other, superior options are to

use the preliminary or the final hypothetical ancestral

sequences generated by DO. In practice, initialization

with the final set of hypothetical ancestral sequences is

more time consuming and provides little, if any, extra

efficiency in the iterative improvement phase.

Median problem and direct optimization

Sankoff and Cedergren (1973) defined a minimum

mutation alignment method for three sequences. This

method is basically a three-dimensional extension of the
dynamic programming string match algorithm of Nee-

dleman and Wunsch (1970). At its core is the determi-

nation of a median sequence (S, see Fig. 3) among all

Fig. 2. Iterative improvement algorithm. The internal nodes (circled) are repeatedly determined (a to c) until a round of calculation results in no

changes in the hypothetical ancestral sequences postulated.

Fig. 3. The median sequence (S) of an internal node is determined by

minimizing the sum cost to each of the adjacent nodal sequences (X, Y,

and Z).

Fig. 4. If a hypothetical ancestral sequence (circled) changes when

reoptimized during iterative improvement, the three adjacent nodes

(arrows) must be reoptimized also.

Fig. 5. Optimization of cladogram using direct optimization (a)

Wheeler, 1996) and iterative pass optimization (b). The parentheses in

a represent ambiguous optimization with respect to sequence length.

This signifies an equally costly scenario during the downpass of DO.
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sequences that, given a transformation cost matrix
among A, C, G, T, and ‘‘gap,’’ satisfies

minðdðS; XÞ þ dðS;YÞ þ dðS;ZÞÞ:
In the general (n-taxon) case, the cost function used

to calculate the median sequence (and multiple align-

ment) is a ‘‘known’’ or at least prespecified phylogeny

(Sankoff et al., 1976). Here, the multiple alignment is

neither desired nor performed and the median sequence
(‘‘protosequence’’ of Sankoff et al.) is constructed by the

three-dimensional version of DO (Wheeler, 1996, 2002),

for i¼ 0 to length X + 1 do

for j¼ 0 to length Y +1 do

for k¼ 0 to length Z + 1 do

M_cost(i, j, k)¼min{

M_cost(i � 1, j � 1, k � 1) +Cost(Xi, Yj, Zk);

Fig. 6. Arthropod cladogram of Giribet et al. (2001). This cladogram weights all changes equally for a total cost of 27,393 steps for DO (a) and 27,198

steps for iterative pass (b).

256 W.C. Wheeler / Cladistics 19 (2003) 254–260



M_cost(i � 1, j � 1, k) +Cost(Xi, Yj, gap);

M_cost(i � 1, j, k � 1) +Cost(Xi, gap, Zk);

M_cost(i � 1, j, k) +Cost(Xi, gap, gap);

M_cost(i, j � 1, k � 1) +Cost(gap, Yj, Zk);

M_cost(i, j � 1, k) +Cost(gap, Yj, gap);

M_cost(i, j, k � 1) +Cost(gap, gap, Zk);

}

M_direction(i, j, k)¼ source cell to M_cost(i, j,
k);

done

done

done,

where M_direction is used for the traceback (not re-

quired, but saves on calculations) and where cost (a, b,

c) is the median cost among states a, b, and c (A, C, G,

T, gap, or any combination of the five) for s (the median

state) such that

s ¼ minðs in A; C; G; T; gapÞminðdðs; aÞ þ dðs; bÞ
þ dðs; cÞÞ:

Fig. 6. (continued )
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During the traceback when the hypothetical ancestral
sequences are created, ‘‘gaps’’ in median sequences are

removed (s¼ ‘‘)’’), and ambiguously determined me-

dian sequences are resolved to single nucleotides. This

resolution can be accomplished in different ways, such as

arbitrarily, randomly, to ‘‘accelerate’’ or ‘‘delay’’ trans-

formation. Since the median problems are solved itera-

tively and this is a heuristic procedure, this choice may

affect the final cladogram length calculations. In DO
and other optimization procedures, these ambiguities

are required to correctly calculate cladogram cost during

the downpass, yet in this procedure this will cause in-

correct cladogram cost calculation (underestimates)

since the overall cladogram cost is derived from sum-

ming branch costs, as is explained below.

Iterative improvement

A heuristic solution for the n-taxon case can be con-

structed by solving the median problem above over the

entire cladogram (n-2 internal nodes or vertices; Fig. 1). In

each case, the median optimization would use the three

adjacent nodes (whether terminal or DO initialized in-

ternal) to calculate the unique hypothetical ancestral se-

quence for that internal node. Since any change in the
reconstructed sequence of a node will potentially affect

those nodes adjacent to it, this process must be repeated

until all the internal nodal sequences are stable. This is the

iterative improvement method of Sankoff et al. (1976).

Sankoff et al. (1976) reported that in their experience no

more than five iterative rounds usually were required.

A form of incremental attribute evaluation (reviewed

by Hudson (1991) and Gladstein (1997)) can be used to
reduce the number of nodes calculated during each

round of the iterative improvement. Since each internal

node is directly connected to only three other nodes, a

change in its sequence will require revisiting those three

(or fewer if one or two are terminal) nodes (Fig. 4).

In my experience, rarely are more than three iterative

passes required to attain stability when DO is used to

initialize the internal nodes. Furthermore, the incremen-
tal attribute evaluation progressively reduces the number

of median problems required by successive iterations such

that usually fewer than 2n (n¼ number of terminals)

medianoptimizations are required. This is, of course, a far

cry from the average of two or so nodal optimizations

required when incremental optimization is applied to

character data (Gladstein, 1997), but it is manageable.

Cladogram cost calculation

The fourth and final step is cladogram cost calcula-

tion based on the optimized hypothetical ancestral se-

quences. This is accomplished quite simply by summing

the pairwise cost of each ancestor–descendant path over

the ð2n� 3Þ branches of the tree. This manner of cal-

culation requires the specificity of hypothetical ancestral
sequences discussed above. If these (inferred, not ob-

served) sequences were to contain ambiguities (to reflect

legitimate multiple equally costly nucleotide states or

uncertainty in length), the cost calculation would be

erroneously low. The cost can be further refined by

adding a step that calculates the cladogram cost using

the homologies implicit in the cladogram and the dy-

namic programming procedure of Sankoff and Rous-
seau (1975; Wheeler, in press; ‘‘exact’’ option in POY).

Results

An example

Consider five simple sequences related by a pectinate
cladogram (Fig. 5). When optimized under DO with

indel cost 2 and base substitution cost 1, the cladogram

cost is 5 weighted steps. From the downpass states (Fig.

5a), it is clear that the greediness of the algorithm has

resulted in over counting cladogram cost. Even though

it is obviously more efficient to posit two insertions (A

and G in five and three), DO presumes an extra nucle-

otide change in comparison to that required by inde-
pendent insertions.

When iterative pass optimization is applied, the

cladogram cost is 4 weighted steps, correctly minimizing

the weighted events. This is because the first round of

median state calculations converts the DO downpass

preliminary states to single ‘‘A’’s (Fig. 5b) immediately.

These are stable to the next round of median state

optimizations and the cladogram cost is calculated
correctly.

An empirical example comes from the arthropod data

set of Giribet et al. (2001). These data contain informa-

tion from 54 taxa of both anatomical and nonsequence

molecular variation (303 characters) and molecular

(eight loci) origin. The original cladogram cost, with

indels, nucleotide changes, and morphological transfor-

mations weighted equally was 27,393 steps (Fig. 6a). This
cladogram, when diagnosed with iterative pass optimi-

zation yields a cladogram cost of 27,207 steps. Branch

swapping (TBR) on this cladogram using iterative

pass optimization and the ‘‘exact’’ option resulted in a

further reduction in cladogram cost to 27,198 steps. This

made several topological changes but kept the Tetraco-

nata of the original analysis (Fig. 6b).

Shortcuts, speedups, time, and memory

That reduction of 0.69% in number of steps came at the

premium of a 29-fold increase in execution time (419.5 s

versus 14.62 s on a 500-mhz PIII) and a 9-fold increase in

memory utilization (288 MB versus 31 MB). Both the

execution time and the storage requirements of this op-
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timization procedure are much greater than those of DO.
In essence, both are proportional to the cube of the

lengths of sequences as opposed to their square. These

requirements can be reduced tremendously by taking

advantage of several properties of the data at hand.

First, given that there are only five states (A, C, G, T,

and ‘‘gap’’), all triplet combinations of states and gaps

in the three sequences can be precalculated to reduce the

execution time of the three-dimensional string match in
both the cost phase and the determination of hypo-

thetical ancestral sequences. This requires that 313

(29,791) costs and outcomes be calculated and stored,

certainly not an onerous burden. This reduces the indi-

vidual base median problem to a simple look-up.

Second, when sequences are similar in length, the

algorithm of Ukkonen (1985) can be used to reap great

economies. The general Needleman and Wunsch (1970)
algorithm implicitly examines all possible correspon-

dences among the three input sequences, even those with

absurdly large numbers of indels. Given that systemat-

ically related sequences are extremely unlikely to require

such extensive ‘‘gapping,’’ a temporary maximum gap

size can be set with only those scenarios within a box

whose sides are defined by the maximum gap size being

examined (which can be an extremely reduced space;
Fig. 7). After the optimization is performed, if the

number of indels implicit in the resultant hypothetical

ancestral sequence is greater than the current maximum

gaps size, the gap size is increased (doubled) and the

process repeated until the maximum gaps size is no

longer limiting. This can reduce storage and execution

times by orders of magnitude.

Third, and most obviously, given the strong depen-
dence of both execution time and storage on sequence

length, splitting up sequences on the basis of primer

areas or other landmarks will be of great benefit. If long

sequences were divided into ‘‘n’’ equal segments,
speedups of the order of n2 may be realized. Care is

needed, however, or such splitting may result in con-

straining the homology search aspect of the procedure.

This can be checked, however, by rediagnosing a clad-

ogram based on chopped up sequences with the se-

quence in its entirety. If the splitting has not affected

homology and has only aided in accelerating the search,

cladogram rediagnosis will return the same cost in both
cases. This could also be used as a heuristic search

technique, with segmented sequences used for initial

searches, which would then be refined using the con-

tiguous data.

Discussion

Although proposed originally for multiple sequence
alignment, the median optimization of Sankoff and

Cedergren (1973) has been used most in the optimiza-

tion of genomic rearrangement data. When coupled with

the incremental attribute optimization and the initiali-

zation values of DO with its rationale for the emphasis

on cladogram cost estimation, the resultant iterative

pass optimization is an extremely effective means of

determining parsimonious cladogram costs. Especially
when coupled with full dynamic programming cost de-

termination (Sankoff and Rousseau, 1975), this proce-

dure can optimize cladograms more efficiently (i.e., with

lower cost) and potentially ameliorate some of the root-

based greediness of the DO algorithm. The extreme

computational cost of the operation may reduce its

heuristic use to a refinement step in a real search pro-

cedure, but the reduction in cladogram cost is impossi-
ble to ignore.
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