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Chapter 1

What is POY5

POY5 is a flexible, multi-platform program for the phylogenetic analysis of a
diversity of data types under different optimality criteria — parsimony and
likelihood. An essential feature of POY5 is that it implements the concept
of dynamic homology [61, 62] allowing optimization of UNALIGNED se-
quences. POY5 offers flexibility for designing heuristic search strategies and
implements a diversity of algorithms including multiple random addition
sequence, swapping, tree fusing, tree drifting, and ratcheting. As output,
POY5 generates a comprehensive character diagnosis, graphical representations
of cladograms and their user-specified consensus, support values and implied
alignments. In addition, POY5 can also output synteny block maps from the
analysis of both chromosomal and genomic data. POY5 provides a unified
approach to co-optimizing different types of data, such as morphological and
molecular sequence data. In addition, POY5 can analyze entire chromosomes
and genomes, taking into account large-scale genomic events (translocations,
inversions, and duplications).

1.1 The structure of POY5 documentation

Chapter 2, POY5 Quick Start, will get you started using POY5. The first few
sections are intended to provide detailed instructions on how to obtain and
install POY5, introduce the user to two of the program’s working environments,
the Graphical User Interface and the Interactive Console. These sections also
show how to initiate a POY5 session and point to various resources to obtain
further assistance. Subsequent sections build on that knowledge and give
step-by-step examples on how to conduct a basic analysis and visualize the
results. The following chapter, POY5 Commands, describes POY5 commands

9



10 CHAPTER 1. WHAT IS POY5

and their valid syntax. It also includes examples of simple operations for
every command. Chapter 4 discusses the heuristic procedures used in POY5.
Their understanding helps in the creation of efficient search strategies. More
advanced operations are described in the fifth chapter, POY5 Tutorials.

1.2 What’s new in POY5

There are myriad new features and options in POY5. These are described and
documented in full in the pages that follow.

• New optimality criterion–likelihood:
– Maximum Average Likelihood (MAL) analysis can now be performed
on qualitative data of any alphabet size for aligned sequence data
(including gaps as missing, independent, or coupled in 5-state models);
and fixed states for unaligned sequences.
– Most Parsimonious Likelihood (MPL) can also be employed on these
data types as well as unaligned sequences under an MPL-DO heuristic.
– Multiple models are available and different models can be assigned to
partitions within a combined analysis.
– Model selection (AIC, AICc and BIC) improved.

• The MAUVE genome aligner algorithm has been implemented as an
annotation option for unannotated chromosomal and genomic (multi-
chromosomal) data.

• The transform option level has been added to increase control and
heuristic effectiveness for amino acid and custom alphabet sequence
character types.

• Search-Based sequence optimization has been added through the trans-
form command.

• Additional median solvers implemented for rearrangement analysis in
break_inv, chromosome, and genome sequence characters.

• XML-based output for easy parsing of diagnostic information.

• A change in the default indel cost from 2 to 1. After over 20 years
(MALIGN to POY), time for a change.

• New required packages for compilation to support likelihood and median
solvers.
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• Small syntax changes in the transform command, as well as new options,
e.g. level.

• A diversity of bug fixes and smaller enhancements.
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Chapter 2

POY5 Quick Start

2.1 Requirements: software and hardware

2.1.1 Software

POY5 is a platform-independent, open-source program that can be compiled
for many operating systems and hardware configurations, including Mac
OSX, Microsoft Windows and Linux. piece of software necessary to run
POY5 Graphical User Interface of POY5 provides the functionality for running
analyses using pull-down menus and field selections, as well as creating and
running POY5 scripts. Some utility programs (such as Notepad and Ghostscript
for Windows, TextEdit for Mac, or Nano for Linux), can help preparing POY5
scripts and formatting data files, while others (such as Adobe Acrobat) can
facilitate viewing the graphical output in PDF (Portable Document Format).

2.1.2 Hardware

POY5 runs on a variety of computers from laptops and desktops to clusters
of various sizes and symmetric multiprocessing hardware. There are no
particular requirements for disk space, but XML and diagnosis report files
can be large.

2.2 Obtaining and installing POY5

2.2.1 Installing from the binaries

POY5 installers for Windows and Mac OSX, source code, and documenta-
tion in PDF format are available from the POY5 download website at the

13
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Computational Sciences site of the American Museum of Natural History:

http://www.amnh.org/our-research/computational-sciences/
research/projects/systematic-biology/poy

The latest source code can also be obtained from POY5 Google Group
website:

http://code.google.com/p/poy/source

The following detailed step-by-step instructions will guide you through
downloading and installing POY5 binaries for various platforms.

Windows

• Download the poy5 folder to the desktop by selecting the Windows
download link.

• Open the POY_version.zip. You will need Administrator privileges to
install the application. Extract the zip file to install in the desired
location and execute the poy.exe file. If you have Windows XP SP2,
Windows Vista or Windows 7 and possess more than one core or
processor, you can take advantage of this processing power by
installing the parallel components MPICH2.

[Note: The POY5 developers encountered no problems when using
MPICH2 3.0.2.]

Mac OSX

• Download poy-buildXXXX.dmg disk image to the desktop. The
complete installation of the Mac OSX version of POY5 includes
MPICH2 1.4.1, which is used to communicate processes during parallel
execution.

• Drag the POY5 application from the disk poy5 and drop it into the
Applications folder on the hard drive.

[Note: During the first execution in parallel you may be asked by the
Firewall to unblock POY5 and MPICH. This is necessary for successful
execution of the program.]

Linux

• No binaries are available for the Linux operating system. The user
should compile POY5 directly from the source (see Section 2.2.2).

http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy
http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy
http://code.google.com/p/poy/source
http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy/download
http://www.mpich.org
http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy/download
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2.2.2 Compiling from the source

For the majority of users, downloading the binaries from the POY5 download
site will suffice. However, in some cases it may be necessary: analysis of
chromosomal and genomic data (>16383 large alphabets (>255 elements),
orpreference for working in a command-line environment or running POY5
analyses in parallel (in the case of Linux machines or on a cluster computer),
or necessary (in the case of Linux users) — to compile POY5 directly from
the source code (see Table 2.1 and 2.2). If the user chooses to compile, it is
advisable to check out the various configuration options that can be found in
./configure –help of the src directory.

In order to compile POY5 the following tools are required:

1. The GNU Make 3.8 utility.

2. OCaml version 3.11.2. or later.

3. A C compiler, for example The GNU Compiler Collection.

4. The zlib compression library.

5. The Linear Algebra PACKage LAPACK must be installed in order to
use the likelihood option.

6. The ncurses library is necessary to compile the default interface, i.e.
ncurses or the Interactive Console. If this library is not available, the
flat interface will be compiled instead.

7. The Message Passing Interface MPICH2, which is used to communicate
processes during parallel execution.

8. The Concorde Package, which includes TSP median solvers used in the
calculation of chromosome and genome rearrangements.

Download, ungzip and untar the POY5 source code. In a terminal window,
change directories to the path of this uncompressed directory. In order to
compile under default setting, working in the source directory (src), type:

./configure
make
make install

http://www.gnu.org/software/make/
http://www.ocaml.org
http://gcc.gnu.org/
http://www.zlib.net
http://www.netlib.org/lapack/
http://www.gnu.org/s/ncurses
http://www-unix.mcs.anl.gov/mpi/
http://www.tsp.gatech.edu/concorde/
http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy/download


16 CHAPTER 2. POY5 QUICK START

To make install, it may be necessary to do this as the root user using
sudo. This script will compile the Interactive Console or ncurses interface
that will be found in /src/_build. Another configuration option includes a
readline interface. Similar to the ncurses interface, this allows for the use of
arrow keys to modify commands and browse command history. is available.
A flat interface is also available that supports the running of the program in
parallel, irrespective of the operating system. This version is run through
a terminal window and invoked in a script (see Section 2.3). In order to
run POY5 in parallel environments, Message Passing Interface (invoked by
mpiexec or mpirun, depending on your implementation) must be invoked.
More than likely, your system administrator already has one installed and
should be able to provide you with the proper paths to set your config file.
In order to compile this flat version with parallel support type:

./configure --enable-interface=flat --enable-mpi CC=mpicc
make
make install

[Note: CC=mpicc is not available for the Windows version of mpi, there-
fore it is not necessary to include this component in the compiling script.]

Table 2.1 should be used as a guide as to the type of interface that should
be employed depending on the type of data (‘standard’ or ‘long’).

2.3 Executing a Script

A number of startup options are available when executing a script through
the command line in a terminal window. The options below, can be viewed
by typing poy -help in a terminal window.

-w Run poy in the specified working directory
-e Exit upon error
-d Dump filename in case of error
-q Don’t wait for input other than the program argument script
-no-output-xml Do not generate the output.xml file
-plugin Load the selected plugins
-script Inlined script to be included in the analysis
-help Display this list of options

The use of these options are appropriate any time the user chooses to
execute POY5 from the command line, when working with ncurses and flat

http://www-unix.mcs.anl.gov/mpi/
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Table 2.1: Interface Guide. ‘Standard’ data equates to a molecular sequence
or single partition that is fewer than 16383 nucleotides in length or contain
fewer than 255 elements, while ‘long’ data partitions accommodate lengths
greater than these values. The field ‘config+’ indicates that the options long-
sequences and/or large-alphabets must be enabled during compilation for
these datatypes to be analyzed. A distinction is made between the Interactive
Console or ncurses that is downloaded as binaries (bins) from the website
and that which is compiled from the source (src). [Note: It is not possible
to analyze either long sequences or large alphabets using the GUI or the
Interactive Console when downloaded from the POY5 website.]

Data type GUI Interactive Console
(bins)

Interactive Console
(src)

Flat

Standard + + + +

Long – – config+ config+

interfaces. These options are also useful when operating POY5 in a cluster
environment. For example typing

poy -w /Users/username/poyfiles mol.poy

in a terminal window will invoke the program POY to run the script mol.poy
in the directory /Users/username/poyfiles. This is the equivalent of in-
cluding

cd ("/Users/username/poyfiles")

When attempting to run POY5 in parallel from the command line, the
programs MPI or Mpiexec must be used to initialize the parallel job from
within a PBS batch or interactive environment. For example typing

mpirun -np 8 ∼/POY_bins/poy5a-mpi ∼/POY_analyses/mol.poy

in the terminal window will invoke a parallel version of POY5 to run the script
mol.poy, utilizing 8 processors (Figure 2.1). The file mol.poy resides in the
directory POY_analyses, which is found in the home directory. This parallel

http://www-unix.mcs.anl.gov/mpi/
https://www.osc.edu/~djohnson/mpiexec/
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Figure 2.1: POY5 flat interface displayed in a terminal window. The interface
indicates that the program has been compiled with ‘parallel on’. The program
is running the script mol.poy in parallel over 8 processors. In this case,
MPICH is used to communicate processes during parallel execution.

version of POY5 was compiled in the directory POY_bins in the home directory.
With the flat interface, it is not possible to run parallel jobs interactively,
therefore a script must be included in the command, so that it can be passed
to the application.

2.4 The Graphical User Interface

Two of the working environments that POY5 provides are the Graphical User
Interface and the Interactive Console (also known as the ncurses interface).
The Graphical User Interface has a user-friendly appearance like other native
stand-alone applications where different functions are accessible through
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menus and windows. Thus, the entire analysis can be carried out by click-
ing on appropriate selections and, where necessary, typing specifications in
designated fields. Currently, the Graphical User Interface is designed for the
analysis of data with parsimony or likelihood (with minimal model selection)
as the optimality criterion. Unlike the Interactive Console, it is not possible
to specify all options with the Graphical User Interface. The minimum screen
size for the Graphical User Interface is 1024 x 768 pixels.

On the other hand, the Interactive Console requires a detailed knowledge
of POY5 commands, their arguments, and the conventions of POY5 scripting.
All these features are described in the POY Commands chapter (3.1.1).

Even though the Mac OSX version of the Graphical User Interface is
used for screen shots throughout this chapter, the Windows version contains
the same items and functionality, differing only in the generic window format
specific to the platform.

When POY5 is first opened, two items appear on the screen: the POY5
menu bar across the top and the POY Launcher window (Figure 2.2).

[Note: In Windows the menu bar is within the launcher window.]

Figure 2.2: The POY5 menu bar and the POY Launcher window. These items
appear when POY5 is opened.

2.4.1 POY menu bar

The menu bar contains the following drop-down menus:

POY (Mac OSX only) Contains generic items as with other Mac OSX
applications. This pull down menu allows selection of the About POY
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window (Figure 2.3) that lists the current version of POY5, a copyright
statement, and the address of the POY5 website. In addition, it includes
a Quit POY tab that closes the program.

Analyses Contains options for different types of tree searches, calculation
of support values, tree diagnosis, and their respective outputs. Other
items in this menu open the POY Launcher (Open Launcher) and the
Interactive Console.

Edit Contains standard tools for undoing, cutting, copying, pasting, deleting,
and selecting.

View opens the Output window to display the results (including warning
and error messages) and the current state of the analysis. This Output
window also contains an update tab. It also contains the About POY
menu item in Windows.

Help Opens the POY5 Manual in PDF format (requires a PDF viewer).

Figure 2.3: The About POY window.

2.4.2 POY Launcher

The POY Launcher is the only window that automatically opens upon
starting POY5. This allows the user to import a previously created script,



2.4. THE GRAPHICAL USER INTERFACE 21

Table 2.2: Parallelization Guide. The field ‘mpi+’ indicates that mpi must
be enabled during compiling. A distinction is made between the Interactive
Console or ncurses that is downloaded as binaries (bins) from the website
and that which is compiled from the source (src).

Operating System GUI Interactive Console
(bins)

Interactive Console
(src)

Flat

Mac OSX + – – mpi+

Windows + – – mpi+

Linux N/A – – mpi+

designate a working directory, specify the number of processors, and start
the analysis.

Select the script to run Allows the user to specify the location of a POY5
script.

Select the working directory The working directory is the directory that
contains the input data and output files. By default, the working
directory is set to be the same as the directory containing the selected
POY5 script.

Select the number of processors If more than one processor or core is
available, up to 8 can be designated for running the analysis. It is
important to note that once specified, the selection is applied to all
subsequent analyses in the current POY5 session. Table 2.2 is a guide to
the parallelization ability of POY5 depending on the operating system
and the POY5 interface being used. Observe that parallelization is never
supported in interactive sessions, see Section 2.5.

Run the analysis Clicking the Run button starts the execution of the
selected script. Once the script is initiated, the Run button becomes
the Cancel button that can be used to interrupt a POY5 session.

If the Run button is clicked without the selected script and working
directory, or the names of the scripts and working directory are entered
incorrectly, POY5 issues an error message in the upper part of the POY
Launcher window, such as POY finished with an error.
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2.4.3 The Analyses menu

The Analyses menu is the main toolbox of the POY5 GUI interface (Figure 2.4,
left). Selections are subdivided into four functional categories. The first
three deal with tree searching, support calculation, and tree diagnosis; the
fourth one is used for script management or interactive command execution
that bypasses the menu-driven script generation. Each of the menu items is
described below in the order it appears on the menu.

Most options are consistently applied through different kinds of analysis.
Therefore, all options are described in detail only for the Simple Search
analysis. The descriptions of other analyses are made with reference to the
the Simple Search and focus on unique options.

Tree searching options

A number of different tree searching options are available through the Graph-
ical User Interface. These include a Simple Search, Timed Search, Search
with Ratchet and Search with Perturb.

Simple Search

The Simple Search window permits the analysis of a number of different data
types, including a range of molecular characters (from DNA sequences to
complete genomes), custom alphabet characters, and qualitative characters,
under parsimony. It is also possible to carry out a likelihood analysis of DNA
sequence, morphological and qualitative data under a number of different
models. In the simplest sense, a typical search involves a series of steps. First,
initial trees are generated by random addition sequence from the imported
character data. These trees are then subjected to branch swapping, after
which trees are selected to report. The Simple Search window (Figure 2.4,
right) provides the most common and basic options for a standard tree search
in POY5 that must be selected by either clicking the appropriate buttons or by
typing. Note that all the empty fields must be filled in (even if that means
assigning a cost of 0 to all the Sequence Parameters), otherwise the default
values will be used. The window is subdivided into five sections:

Input Files Contains the list of files that are to be input into POY5. These
include character files in nucleotide, Hennig86, and Nexus formats, as
well as tree files. Continuous characters can be input into POY5 in a
Hennig86 format matrix (see read (Section 3.3.14)). Character data in
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Figure 2.4: The Simple Search window. Selecting Simple Search from the
Analysis menu (left) opens the Simple Search window options (right).
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other formats can be input by specifying additional arguments in the
script (see read (Section 3.3.14)).

NOTE

Gap-opening cost greater than 0 can not be specified with
prealigned data as the columns are treated as independent in
this file format.

Search Parameters Holds one field to set the number of independent ran-
dom addition Wagner replicates to be generated.

Input Parameters Holds fields to specify the optimality criterion (parsi-
mony or likelihood). With Parsimony as the optimality criterion, it is
possible to select different datatypes (sequence, chromosome, genome,
custom alphabet, break inversion or qualitative) and allows the user to
select whether these data should be treated as prealigned (if possible).
Selection of different datatypes will invoke an additional subsection
(see below). Currently, it is only possible to analysis sequence and
qualitative data with the maximum likelihood criterion.

Parsimony Optimality Criterion The parameters in this section are de-
pendent on the data types selected in Input Parameters. More detailed
explanations of the different data types can be found below and in the
difference character types sections of both read (Section 3.3.14) and
transform (Section 3.3.26).

Sequence Parameters If sequence data types are chosen, the user
can specify the substitution, indel, and gap opening costs of sequences.
Enter 0 if no gap opening cost is desired. If the value of a parameter
is not specified, default values are used. The default value for both
substitutions and insertion deletion events is 1 and that of gap-opening
is 0.

Chromosome and Mauve Parameters Chromosome characters are
multi-locus nucleotide sequences and can include nuclear chromosomes,
as well as, mitochondrial and viral genomes. It is possible to submit ei-
ther annotated (by selection of the Annotated box) or Unannotated (by
leaving the Annotated box unchecked) chromosomes. Within Annotated
chromosomes, homologous regions, such as loci, are separated with
the pipe symbol (“|”). Unannotated chromosomes are entirely without
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delimiters. For Unannotated chromosomes, the Mauve Parameters,
must be set by the user. These parameters (Match Quality, Match
Coverage, Min. Match and Max. Match) are employed by the Mauve
aligner to find regions of homology or synteny blocks between chromo-
somes (see annotate (Section 3.3.27) within the command transform).
Default values for these parameters are provided in the GUI.

Within this subsection it is necessary to specify both Locus Indel
and rearrangement (Locus Breakpoint or Locus Inversion) costs. The
cost of a Locus Indel is by default set to 10 plus 0.9 times the length
of the locus (see locus_indel (Section 3.3.27) within the command
transform). Rearrangements of homologous regions—as defined by the
user in the case of Annotated chromosomes or as determined by the
Mauve aligner as in Unannotated chromosomes)—are then optimized
using either Locus Breakpoint or Locus Inversion costs (see locus_-
breakpoint (Section 3.3.27) and locus_inversion (Section 3.3.27)
within the command transform). The default cost for both is set to 10.
The user must also specify the Median solver for the optimization of
rearrangements of Annotated chromosomes. The default median solver
is Caprara, but the user can alternatively choose BBTSP, ChainedLK,
COALESTSP, MGR, Siepel, SimpleLK and Vinh (see median_solver
(Section 3.3.27) within the command transform).

The user must also specify whether the chromosome is Circular
(true) or linear (false). It is not possible to submit pre-aligned data
files for either Annotated or Unannotated chromosomes.

NOTE

Locus definition. In the Sequence Parameters section for a
parsimony analysis, the user may be required to specify the cost
associated with a Locus Breakpoint, Locus Inversion or Locus
Indel, depending on the data type. In these cases, Locus should
not be taken to be the functional, biological unit in the classical
sense, but only as a homologous segment of a sequence.

Genome and Mauve Parameters Genome characters are multi-
locus, multi-chromosomal nucleotide sequences, wherein transformations
(i.e. indels, substitutions, and rearrangements) are optimized at the
sequence, locus and chromosomal level. Within the genome data file,
individual chromosomes are separated by the at symbol (“@”) and the
individual chromosomes remain Unannotated.
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As with Unannotated Chromosome characters, homologous regions
are determined using the Mauve parameters (Match Quality, Match
Coverage, Min. Match and Max. Match). Default values for these
parameters are provided in the GUI. The Locus Indel and rearrange-
ment (Locus Breakpoint or Locus Inversion) costs are set by the user.
By default, the cost of a Locus Indel is set to 10 plus 0.9 times the
length of the locus (see the argument locus_indel (Section 3.3.27)
within the Chromosome and genome transformation methods of the
command transform). Rearrangements of homologous regions, as
determined by the Mauve aligner, are then optimized using either
Locus Breakpoint or Locus Inversion costs (see the arguments locus_-
breakpoint (Section 3.3.27) and locus_inversion (Section 3.3.27)
within the Chromosome and genome transformation methods of the
command transform). The default cost for both is set to 10. A
Median solver must also be specified for the optimization of rearrange-
ments: BBTSP, ChainedLK, COALESTSP, MGR, Siepel, SimpleLK
and Vinh (see the argument median_solver (Section 3.3.27) within
the Chromosome and genome transformation methods of the command
transform).

Two other costs must be set for the analysis of this data type–
Translocation events and Chromosome Indel. The cost of the Translo-
cation of a region of one chromosome to another chromosome is set
to 10 by default. The cost of the insertion or deletion of an entire
chromosome is by default set to 10 plus 0.9 times the length of the
chromosome.

As with Chromosome characters, it is not possible to input pre-
aligned data files.

Custom Alphabet Parameters Custom Alphabet characters are
those that employ a user-specified alphabet. With this data type, only
insertion-deletion and substitution events are allowed. Custom Alphabet
characters can be input as prealigned. Within this subsection, the user
must specify the heuristic Level of the median sequence calculation.
Direct Optimization is employed in median sequence calculation. Be-
cause calculating the median states between custom alphabet strings
becomes more computationally intensive (and time consuming) as the
number of elements in the alphabet increases, the user should select a
heuristic level of median calculation appropriate for their data. The
default level is 2.
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In addition to the data file, the user is require to upload a Cost
Matrix that specifies the substitution and indel transformation costs
for alphabet elements. By selecting the Cost Matrix button within this
subsection, the user can upload a cost matrix that specifies these costs
for their custom alphabet data. For details on the format requirements
for custom alphabet data files and their associated cost matrices see
the argument custom_alphabet (Section 3.3.14) within the command
read.

Break Inversion Parameters Break Inversion characters are an en-
hancement of Custom Alphabet characters. In addition to allowing
substitution and insertion deletion events, element rearrangements, as
well as orientation information can also be optimized. The median
solvers provided restrict the analysis of prealigned data. The rearrange-
ment costs for Break Inversion characters can be optimized using either
Breakpoint or Locus Inversion approaches (see the arguments locus_-
breakpoint (Section 3.3.27) and locus_inversion (Section 3.3.27)
within the Chromosome and genome transformation methods of the
command transform). The default cost for both is set to 10. A Median
solver must also be specified for the optimization of rearrangements.
The default median solver is Caprara [8], but the user can alternatively
choose BBTSP, ChainedLK, COALESTSP, MGR [5], Siepel [45], Sim-
pleLK and Vinh (the TSP solvers BBTSP, CoalesTSP, ChainedLK
and SimpleLK taken from the Concorde package) (see median_solver
(Section 3.3.27) within the command transform). The calculation of
median states between Break Inversion strings becomes more compu-
tationally intensive (and time consuming) as the number of elements
in the alphabet increases, therefore a single heuristic level of median
calculation can only be employed for these character types–the default
level is 1.

The requirements for Break Inversion character types are identical to
those for Custom Alphabet characters, with respect to substitution and
indel transformation costs. By selecting the Cost Matrix button within
this subsection, the user can upload a cost matrix to specify these costs.
The user should see the argument custom_alphabet (Section 3.3.14)
within the command read for details on the format requirements for
these cost matrices, which are identical in form to those for Custom
Alphabet characters.

Qualitative Parameters Qualitative data are any non-sequence, pre-
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aligned data type (e.g. morphology, behavior). These character types
are optimized as additive, non-additive or Sankoff characters and this
information must be included in the data file when using the Graphical
User Interface.

Likelihood Optimality Criterion Currently, it is only possible to perform
a likelihood analysis of DNA sequences (prealigned being permitted),
types. Using the GUI, these data can be analyzed with likelihood
only (currently, transformation of the data to elikelihood cannot be
performed using the GUI ). More detailed explanations of these options
can be found below and in the Likelihood transformation methods section
of transform (Section 3.3.26). In this section the user can specify the
likelihood model of character substitution under which the analysis will
be performed. Available substitution models include JC69/Neyman,
F81, K2P/K80, F84, HKY85, TN93, GTR, and NCM. Users can also
perform phylogenetic model selection using AIC, AICc and BIC. Within
this section it is possible to specify the nature of among-site variation
under Rate Distribution. Rate variation distributions allow multipliers
to be applied to separate groups of characters. These distributions
can be set to Constant, Gamma (for non-zero rate variation) or Theta
(for parameterization of invariant sites). These distribution values
can be specified for all of the available models. In addition, Rate
Classes enables the user to specify the number of rate classes for the
discrete Gamma rate distribution. The user can choose up to 8 rate
classes for either Gamma or Theta models (the default is 4). Gap
Treatment specifies the treatment of indels. There are three options
missing, character, and character plus coupled. When gaps are treated
as missing, they play no role in the calculation of tree likelihoods. The
character option treats the insertion and deletion of A, C, G, and T each
as different types of events that are independently estimated (hence
additional parameters over coupled). When coupled is specified, all indel
events are treated with the same rate parameter. Cost specifies the
form of likelihood employed. The options for prealigned data (sequence
and qualitative) are MAL for maximum average likelihood and MPL for
most parsimonious likelihood [3]. Unaligned sequences can be optimized
with both MAL (by transforming the sequences to fixed_states first)
and MPL. The prior probabilities of the states are determined using
Priors. The options are equal, where each state prior is set to 1 divided
by the number of states, and estimated, where the priors are set by
their frequency in the data set. Priors for gaps are estimated by the
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maximum difference in length between input sequences.

Output Files Designates the names and locations of files containing results
of the analysis. By default, all of these output options are generated
with default names applied. The names can then be changed in the
generated script or the option can be removed entirely. As implied by
their respective titles, the tree buttons output trees in both parenthetical
(best and consensus trees) and postscript form (although this button
only outputs a PDF file of the optimal trees found, a useful commands
that the user can include in the generated script is to output a PDF file of
the consensus tree (see the argument graphconsensus (Section 3.3.19)
within the command report)).

A diagnosis file provides information relating to the analysis. Infor-
mation in this file includes the cost of the tree, the rearrangement costs
(in the case of the analysis of chromosome, genome and break inversion
data types), as well as information about each resulting node in the
tree. At each node, the user is provided with a cost of the tree down
to that node, a rearrangement cost (if applicable), the “descendant
nodes” coming from this node and information concerning individual
characters at these nodes.

NOTE

The root in the diagnosis file may not be the same as the root
set by the user. This is because the tree length heuristics may
be based on an alternate rooting scheme than that used for the
newick or graphic trees output.

The Analyzed data information outputs a summary of the input data.
Specifically, the number of terminals to be analyzed, a list of included
terminals with numerical identifications, list of synonyms (if specified),
a list of excluded terminals, the number of included characters in each
character-type category (additive, non-additive, Sankoff and sequence)
with the corresponding cost regimes, a list of excluded characters, and
a list of input files.

The Outgroup field allows the the user to specify the outgroup taxon.
The name of the taxon should reflect the name as interpreted by POY5.
Therefore, the name should take into account synonymy files, and taxon
names that contain commented out information via use of a $ sign (see
the argument rename (Section 3.3.18)).
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Figure 2.5: The Simple Search window with specified search parameters (left)
and the corresponding Script Editor window. Observe that the names of the
output files are left as the default output names.
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Once all the parameters are selected, click the Make Script button and
another window–the Script Editor–containing the generated script, appears
on screen (Figure 2.5). The script can be edited by typing in the commands
directly in the Script Editor window, saved (by clicking the Save As button),
or replaced with another script (using the Open button). To start the analysis,
click the Run button in the Script Editor window. When the Run button
is clicked, POY5 will issue a request to save the script. Thus, not only does
POY5 execute the script but it also creates the record of the type of analysis
(including all user-defined specifications) that was performed. Moreover, these
scripts can later be executed manually in the ncurses or flat interfaces, or
selected as a script to run in the Graphical User Interface.

Timed Search

Timed Search (Figure 2.6) implements a default search strategy that effectively
combines tree building with TBR branch swapping, parsimony ratchet, and
tree fusing. The Timed Search window has the same four parameter groups
described for the Simple Search. However, the Search Parameters section
(called Search and Perturb Parameters) contains four fields specifying the
search targets instead of the Repetitions field. These include the following:

Maximum time The maximum total execution time for the search. The
time is specified as days:hours:minutes.

Minimum time The minimum total execution time for the search. The
time is specified as days:hours:minutes.

Maximum memory The maximum amount of memory allocated for the
search.

Minimum hits The minimum number of times that the minimum cost must
be reached before terminating the search.

This heuristic search is a powerful tool for analyzing data. The number
of rounds of successive searching is limited only by the previously specified
search targets. Therefore, when performing a Timed Search, it is crucial to
set the maximum time such that the program has a reasonable amount of
time to perform a search. Thus, it is important to have some approximation
as to the length of time it would take to perform a single round of searching
(e.g. build (1), followed by TBR, ratchet and fusing in the case of a parsimony
analysis of DNA sequence data). Clearly, this is data and optimality criterion
dependent. With this information, the user can then estimate the amount of
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Figure 2.6: The Timed Search window. Selecting Timed Search from the
Analysis menu (left) and viewing the Timed Search window options (right).
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time necessary to perform a thorough search (perhaps 10 times the amount of
time it took to perform this single round of build, swap, ratchet and fusing).
The user should also allow some time for the program to collate and write
the results to files. If the user has opted to run this analysis in parallel, this
can take some time.

Search with Ratchet

The parsimony ratchet is a heuristic strategy to escape local optima during
tree searching [36]. The ratchet reweights a given percentage of characters for
a specified number of iterations of a search. An analysis is then performed
and the resulting tree topology is evaluated using the original data matrix
with all characters (with original weights) to determine the length of the
tree. The Search with Ratchet (Figure 2.7) follows the same basic steps of a
simple search but includes the ratchet step after the swap. In addition to the
same sequence alignment and search parameters as described for the Simple
Search window, the Search Parameters section provides the following ratchet
parameters fields:

Ratchet iterations The number of iterations for the parsimony ratchet.

Severity The severity parameter of the ratchet (the weight change factor
for the selected characters).

Percentage The percentage of characters to be reweighted during ratcheting.

Search with Perturb

Search with Perturb (Figure 2.8) provides an alternative means to escape
local optima by changing the transformation cost matrix of the sequence
characters, a procedure similar in spirit to the parsimony ratchet. In addition
to the same sequence optimization and search parameters as described for the
Simple Search window, the Search with Perturb window provides three extra
fields with the parameters for the transformation cost matrix perturbation as
follows:

Perturb iterations Sets the number of perturb iterations to be performed.

Substitutions Specifies the cost of the perturbed substitutions.

Indels Specifies the cost of the perturbed indels.

During this heuristic search, POY5 performs a parsimony ratchet search
during each iteration (default values are used, i.e. 25% probability, 2 severity).
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Figure 2.7: The Search with Ratchet window. Selecting Search with Ratchet
from the Analysis menu (left) and viewing the Search with Ratchet window
options (right).
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Figure 2.8: The Search with Perturb window. Selecting Search with Perturb
from the Analysis menu (left) and viewing the Search with Perturb window
options (right).
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Support calculation options

It is possible to calculate several support values using this interface. Two
of these measures, Bootstrap and Jackknife, involve resampling techniques,
while the third, Bremer support, is an optimality-based measure based on
the cost of the tree.

Although it is possible to calculate Jackknife and Bootstrap support values
for trees constructed using dynamic homology characters, it is recommended
against doing so as resampling of dynamic characters occurs at the fragment,
rather than nucleotide, level. Consequently, the bootstrap and jackknife
support values calculated for dynamic characters are not directly comparable
to those calculated based on static character matrices. If it is desired to
perform character sampling at the level of individual nucleotides, the dynamic
characters must be transformed into static characters using static_approx
argument of the command transform (Section 3.3.26) prior to executing
calculate_support. Of course, if the dataset of dynamic characters contains
a large number of fragments, this caveat may not be warranted.

For chromosome and genome character types, only the calculation of
Bremer support values is recommended.

None of the support calculation windows include functions for tree building
and searching. Therefore, one of the input files must contain trees for which
support values are going to be calculated.

Bootstrap

As a resampling technique, the non-parametric Bootstrap resamples the
original data (with replacement), creating a simulated dataset equal to the
size of the original dataset. The Bootstrap window (Figure 2.9) specifies
parameters for estimating the Bootstrap support values. In addition to the
Simple Search window fields, it contains a field for the bootstrap parameters,
in this case a Pseudoreplicates field, to specify the number of bootstrap
pseudoreplicates.

Pseudoreplicates Specifies the number of resampling iterations.

Jackknife

An alternative statistical measure of support is the Jackknife, wherein the
original data matrix is resampled, but in this case without replacement.
The Jackknife window (Figure 2.10) specifies parameters for estimating the
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Figure 2.9: The Bootstrap window. Selecting Bootstrap from the Analysis
menu (left) and viewing the Bootstrap window options (right).

Jackknife support values. In addition to the Simple Search window fields,
Jackknife Parameters contains fields to specify the number of Jackknife
pseudoreplicates (Pseudoreplicates) and the number of characters to be
removed (Remove) during each pseudoreplicate.

Pseudoreplicates Specifies the number of resampling iterations.

Remove Specifies the percentage of characters being deleted during a pseu-
doreplicate.

Bremer

As an optimality-based measure of calculating tree support, Bremer values
are the number of extra steps required before a clade is lost in the most
parsimonious or strict consensus of the most parsimonious trees. Bremer
support under likelihood is equivalent to the log of the likelihood ratios for
each branch [67]. There are two ways to determine Bremer support values in
POY5. The first involves performing a series of searches, where each group
supported on the examined cladogram is constrained not to occur in the result.
The second does not involve constraining the tree but collects information
for all the clades not present in the set visited trees. Currently, calculating
support via “visited” trees can only be performed sequentially and not parallel.
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Figure 2.10: The Jackknife window. Selecting Jackknife from the Analysis
menu (left) and viewing the Jackknife window options (right).

The Bremer option (Figure 2.11) is divided into two windows: the Search
for Bremer window, that specifies the Bremer support [6, 28] calculation
parameters, and the Report Bremer window to format the output of the
results (Figure 2.12).

Figure 2.11: Selecting the Bremer windows from the Analysis menu.

Search for Bremer The script produced in this window collects trees
visited during a search for Bremer support calculations. This search can take
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Figure 2.12: Viewing the options of the Search for Bremer (left) and the
Report Bremer(right) windows.

a long time, as the goal of this search strategy is to broadly sample variation
among trees, and guarantee that all clades have Bremer support values.

In addition to the standard four sections defined for the Simple Search
window, that one of the output files is the Temporary Trees file, which
contains all the information required to produce the Bremer support tree
results in the Report Bremer window. Make sure to choose a file name that
does not overwrite this output.

If the search does not finish within the time frame available to the user
the search can be interrupted and the intermediate results remain stored in
the Temporary Trees file. As Bremer calculations are upper-bound values,
terminating the search prior to completion and, thus, storing a smaller pool
of visited trees may inflate support values relative to those generated by a
more exhaustive search. The trees from the Temporary Trees file can then be
reported using the Report Bremer window.

Report Bremer The script produced in this window takes the Temporary
Trees file generated in the Search for Bremer window in the File with trees
for Bremer calculation field.
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Diagnosis

Diagnose Tree

The Diagnose Tree window (Figure 2.13) specifies parameters for reporting a
diagnosis of the input tree. This window lacks the Search Parameters section
because the diagnosis is performed on the trees resulted from prior searches
and no new trees are generated during the diagnosis procedure. In addition
to the tree (or trees) file, the user must have input the data file associated
with this tree file, in order to diagnose the tree(s) in this file.

Figure 2.13: The Diagnose window. Selecting Diagnose Tree from the
Analysis menu (left) and viewing the Diagnose window options (right).
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Script editing and the Interactive Console

Open POY Launcher

Selecting Open POY Script (Figure 2.14) displays the POY Launcher window
(Figure 2.2), the function of which is described above.

Figure 2.14: The Open POY Launcher selection opens the POY Launcher
window.

Run Interactive Console

Selecting Run Interactive Console (Figure 2.15) opens the ncurses interface
that enables the user to run the analysis interactively by entering POY5
commands directly via the command-line interface of the Interactive Console
See Using the Interactive Console (Section 2.5).

Create Script

The Create Script selection opens a blank Script Editor window that allows
opening, creating, modifying, saving, and executing a customized script.

2.4.4 The View menu

The View menu contains the Output window which is subdivided into two
fields: the upper Results and Errors and lower Status of Search (Figure 2.16).
These fields display, respectively, the results (including warning and error
messages) and the current state of the analysis. These fields are not updated
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Figure 2.15: The Run Interactive Console selection (left) opens POY5 interac-
tive console in a new window. The Create Script selection opens the Script
Editor window (Figure 2.5).

automatically and in order to display the current state of the analysis the
user must click the Update button. The View menu also contains the About
POY window in Windows.

2.5 Using the Interactive Console

This section will help you get started using the POY5 Interactive Console
and will prepare you for the more extensive, technical descriptions in the
next chapter, POY5 Commands. This section will illustrate how to input data
files, check the data you are analyzing, generate a set of initial trees, do
basic branch swapping to find a local optimum, and, finally, produce and
visualize the resultant trees, their consensus, and generate support values in
a command-line environment rather than using a Graphical User Interface.

For the purpose of this exercise, two data files, which are included in the
download package, are available at the POY5 download page.

http://www.amnh.org/our-research/computational-sciences/
research/projects/systematic-biology/poy/download

• 28s.fas contains unaligned DNA sequences (partial 28S ribosomal
RNA) in FASTA format. [37]

http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy/download
http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy/download
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Figure 2.16: Selecting the Output window (left) and viewing the Results and
Errors and Status of Search fields.

• morpho.ss contains a morphological data matrix in Hennig86 for-
mat. [12]

Once POY5 has been launched and the interface (Figure 2.17) appears
on the screen, data can be input and analysis can proceed. As you follow
the instructions, you are encouraged to consult the help file by using the
command help (see Section 2.7 to learn more about POY5 commands and
their arguments).

2.5.1 The interface

The Interactive Console provides a terminal environment with enhanced
ability to display the results and the state of the analysis. We recommend
the use of the console to explore and verify the data in the early steps of
the analysis, and to learn the scripting language. Using the console requires
familiarity with POY5 commands, their arguments, and the conventions of
POY5 scripting (which are discussed in the POY Commands chapter). It has
four windows: POY Output, Interactive Console, State of Stored Search, and
Current Job (Figure 2.17):

POY Output (Figure 2.17, upper box) displays the status of the
imported data, outputs the results of the phylogenetic analyses (such
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Figure 2.17: POY5 interface displayed in the Terminal window prior to analysis.
Observe the cursor at the POY5 prompt in the Interactive Console and note
that the State of Stored Search and Current Job windows are empty.
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as trees, character diagnoses, and implied alignments), reports errors,
and displays descriptions of POY5 commands.

Interactive Console (Figure 2.17, mid-left box) is used to issue the
commands interactively and to execute the commands by clicking the
Return key. (See Section 3.1.1 on the description of POY5 commands.)

State of Stored Search (Figure 2.17, mid-right box) displays the
time (in seconds) elapsed since the initiation of the current operation.
This window also reports the number of trees currently in m emory and
displays the range of their costs.

Current Job (Figure 2.17, lower box) describes the currently running
operation. When the operation is completed, the box is blank.

2.5.2 Starting a POY5 session using the Interactive Console

Windows

• Start>All Programs>POY>Interactive Console

Mac OSX

• Double-click POY5 application icon to start the program.

• Select Run Interactive Console from the Analyses menu.

Linux

• Add /opt/poy5/Resources/ (or the location you plan to install) to
your PATH and run ncurses_poy from a terminal.

2.5.3 Entering commands

Once this POY5 interface is opened, the cursor appears in the Interactive
Console portion of the window and is ready to accept commands. The
Interactive Console does not support using the mouse and, as is true for most
command-line applications, the cursor can be moved using the left and right
arrow keys, and the Backspace (in Windows) or Delete (in Mac) keys are
used to erase individual characters to the left of the current cursor position.
To eliminate the need for retyping commands anew during a POY5 session,
keyboard shortcuts can be used: control-p (“previous”) and control-n (“next”)
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Figure 2.18: POY5 Interactive Console during a process. The POY Output
window displays (by default) the information on the input data files. The
Interactive Console lists the commands that have been executed. The Current
Job window shows the state of the current operation and the current tree
score. The State of Stored Search shows the time elapsed since the last
command swap, was initiated.
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will scroll through the commands previously entered during the session. In
addition, the Interactive Console is equipped with the autocomplete feature:
it involves POY5 predicting a command, an argument, of file name that the
user wants to type from the first letter(s) entered. Upon typing the first
letter or part of the phrase, repeatedly pressing the TAB key scrolls through
the list of command, argument, and file names that begin with that letter or
phrase. Autocomplete simplifies interaction with the program.

2.5.4 Browsing the output

As output is reported in the POY Output window, only the most recent
reports will be seen in the window. Using the Up and Down keys allows the
user to scroll up and down the POY Output window to see the welcome line,
and previously printed reports and help descriptions. Pressing Up and Down
keys automatically places the cursor in the lower left corner of the POY
Output window indicating that you are interacting with that window. Only
1000 lines are stored in the memory and the output that was reported before
that will not be accessible by scrolling. The number of lines, however, can be
modified by the user using the command set(), see history (Section 3.3.24).
If the user desires to keep the entire output or specific items in the output, a
log can be created using the command set(), see log (Section 3.3.24)) or
specific outputs can be redirected to files (see report (Section 3.3.19)). The
user should be aware that outputting a log file can slow down the program
due to IO (input/output) delay.

2.5.5 Switching between the windows

To return to the Interactive Console, start typing and the cursor will au-
tomatically be placed back at the POY5 prompt. When an operation is in
progress (shown in the Current Job window), the cursor stays in the upper
left corner of the State of Current Search window, and switching between the
Interactive Console and the POY Output window is disabled. There are no
user interactions in the Current Job or State of the State of Current Search.

2.5.6 Input of data

The basic command to input data in POY5 is read(), which includes the list of
files (in quotation marks and separated by commas) enclosed in parentheses.
Suppose that we would like to simultaneously analyze morphological and
molecular datasets, contained in separate data files, morpho.ss and 28s.fas,
respectively. We can issue a pair of read() commands (Figure 2.19):
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Figure 2.19: Importing data files using the Interactive Console. Two consecu-
tive read commands specify both the morphological data file in Hennig86
format (morpho.ss), and the molecular data file in FASTA format (28s.fas).
Observe that POY5 automatically reports in the POY Output window the
names and types of files that have been imported.

read("morpho.ss")
read("28s.fas")

The syntax of read, like every command in POY5, contains two elements:
the name of the command, in this case read, followed by an optional list of
arguments separated by commas and enclosed in parentheses. All filenames
read into POY5 should include the appropriate suffix for the file type (e.g.
.fas, .ss, .aln, .tre etc:). Typically, the arguments of the command read()
are names of data files, each being enclosed in double quotes (as shown in
the example above). Even though there might be only one argument or none
in some commands, parentheses (e.g. pwd()) always follow the command
name. An exhaustive discussion of POY5 command structure and detailed
descriptions of all commands with examples of their usage are provided in
the POY Commands chapter (3.1.1).

In order to import data by entering the names of the files, the directory
containing these files must be identified. This can be established in two
ways–by using the command cd to redirect the path to the directory where
the data are found and then reading in the data file:

cd("/Users/username/docs/poyfiles")
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read("28s.fas")

or by including the full path in the argument of read:

read("/Users/username/docs/poyfiles/28s.fas")

Most of the time users are interested in importing multiple data files to
analyze an entire dataset. In this case, multiple data files can be specified
as arguments for a single command. For example, importing both files,
morpho.ss and 28s.fas, can be written more succinctly:

read("morpho.ss","28s.fas")

or if the full path is included in the argument of read as:

read("/Users/username/docs/poyfiles/morpho.ss",
"/Users/username/docs/poyfiles/28s.fas")

This is equivalent to sequentially importing each file as shown in (Figures
2.19 and 2.20).

Figures 2.19 and 2.20 also illustrate an important feature that makes
POY5 different from many other phylogenetic analysis programs: every time a
file is imported during a POY5 session, the input data are added to the data in
memory and do not replace them. This allows additional analytical flexibility.
For example, if only morphological data are read and trees are built based on
these data alone, a subsequently imported molecular character dataset will be
used in conjunction with the previously imported morphological data, despite
the fact that current trees in memory were generated only from morphological
data (Figure 2.20):

read("morpho.ss")
build()
read("28s.fas")
rediagnose()
swap()

It must be noted that if the numbers of terminals differ among data files,
only the data that correspond to the terminals used to generate the trees (in
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Figure 2.20: Building trees with morphological data only but continuing the
analysis using combined morphological and molecular data. This example
shows how we can add data to the analysis incrementally by loading files at
different points in the search. First, the morphological data are imported
from morpho.ss file using read() and trees are built based on these data.
Then molecular data from the 28s.fas file are loaded into memory. Finally,
subsequent analyses, rediagnose() and swap(), are conducted using all the
data in memory, that is the trees based on morphological data, and both
morphological and molecular character sets.
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this case, the morphological data file) are used. The rest of the character data
are ignored, unless the trees are built again with the data files containing
the expanded number of terminals. Also, because POY5 appends trees and
data in memory, it is a good practice when starting a new analysis within
the same interactive session to clear the data using the command wipe().

Valid input files include nucleotide and amino acid sequence files in many
formats, and morphological data in Hennig86 and Nexus formats. (For
information on specific formats supported by POY5 and other types of input
files see read (Section 3.3.14).)

2.5.7 Inspecting data

Once a dataset (or multiple datasets) is imported, POY5 automatically reports
a brief description of contents for each loaded file in the POY Output (Figure
2.19). However, it may be desirable to inspect the imported data in greater
detail to ensure that the format and contents of the files have been interpreted
correctly. This practice helps avoid common errors, such as inconsistently
spelled terminal names, which may result in bogus results, produce error
messages, and aborted jobs.

The basic command for outputting information is report(). One of its
arguments, data, outputs a set of tables showing the list of terminals, the
number and types of characters, and the lists of terminals and characters
excluded from the analysis. To produce a report of the data files that were
used in the previous example (morpho.ss and 28s.fas), we import the data
and execute report(data):

read("morpho.ss","28s.fas")
report(data)

This will generate an extensive, detailed output, partial views of which
are shown in Figure 2.21. Obviously, the entire report will not be visible
in the POY Output window. Therefore, the Up and Down arrow keys and
Page Up and Page Down keys can be used to scroll. By default, POY5 reports
the results of executed commands to the POY Output window. However,
the same output can be redirected to a file simply by adding the name of
the output file in the list of argument of the command report() before the
argument specifying the type of the requested report (in this case data, see
the command report (Section 3.3.19) ). For instance, to output the data
into the file data_analyzed.txt we would enter:

read("morpho.ss","28s.fas")
report("data_analyzed.txt",data)
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Figure 2.21: Inspecting imported data. The figure shows segments of a data
report generated by report(data). The left and right panels demonstrate a
typical table output the character and terminal data respectively.

In this example, all the imported data are analyzed and, therefore, the
report fields that list excluded data will appear empty. One can, however,
exclude specific characters or terminals from the analysis using additional
commands (see the command report (Section 3.3.19)).

Another useful argument of report is cross_references. This argument
displays whether character data are present or absent for each terminal in
each one of the imported data files. This provides a comprehensive visual
overview of missing data. Building on the previous example, such output can
be generated by the following sequence of commands:

read("morpho.ss","28s.fas")
report("cross_refs.txt",cross_references)

A typical output of cross_references command is shown in Figure 2.22.
This argument is a very useful tool for visual representation of missing data.
Moreover, reporting all the data to a cross references file can also highlight
inconsistencies in the spelling of taxon names in different data files.

2.5.8 Building the initial trees

The command to build trees is build() (already mentioned in Section 2.5.6).
After importing morpho.ss and 28s.fas, executing the command build()
without specifying any arguments (default settings) generates 10 Wagner
trees by random addition sequence.

Many POY5 commands operate under default settings when executed
without arguments. To learn what the default settings are for a particular
command use either the help() command with the command name of interest
inserted in parentheses or consult the POY Commands chapter (3.1.1).
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Figure 2.22: Visualizing missing data. The command cross_references
displays a table showing whether a given terminal (in the left column) is
present (“+”) or absent (“–”) in each data file. In this example, 28s.fas is
missing for Amblypygid and morpho.ss for Hypochilus.
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Figure 2.23: Generating Wagner trees. During the process of tree building
(left panel), the Current Job window displays how many builds have been
performed so far (57 of 100), the number of terminals added in the current
build (13 of 17), the cost of a current tree recalculated after each terminal
addition (362), and the estimated time (in seconds) for the completion of
the operation (4 s). Because the process is not complete, the State of Stored
Search window contains no trees. Once tree building is complete, the State
of Stored Search window displays the best (451) and worst (472) costs, the
number of trees stored in memory (100), and the number of trees with the
best cost (2).

If the user would like to specify a number of tree building replicates
different from the default value of 10, the argument trees followed by a colon
(“:”) and an integer specifying the number of trees must be included in the
argument list of the build command: build(trees:100). This command
has a shortcut that omits the argument trees. Thus, build(trees:100)
is equivalent to build(100). As defaults, the shortcuts are fully described
in Section 3.1.1. The entire sequence of commands minimally required to
import the data and build 100 trees is the following:

read("morpho.ss","28s.fas")
build(100)

As the tree building advances, the Current Job window displays the
current status of the operation (Figure 2.23). This window shows how many
Wagner builds have been performed out of the total number requested, the
number of terminals added in the current build, the cost of the current tree
(recalculated after each terminal addition), and the estimated time for the
completion of all the builds. When all the trees are generated, the State of
Stored Search window displays the range of tree costs (the best and worst
costs), the number of trees stored in memory, and the number of trees with
the best cost (Figure 2.23).
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Figure 2.24: Performing a local search. When searching (left panel), the
Current Job window reports the number of the tree that is currently being
analyzed (73 of 100), a method of branch swapping (Alternate), a function
being currently performed (SPR search), and a cost of the current tree (456).
When the searching is finished (right panel), the State of Stored Search
window displays the best (446) and worst (463) costs, the number of trees
stored in memory (100), and the number of trees of the best cost (9) recovered
from independent tree builds and swaps. Notice that these trees may not
necessarily have unique topologies.

2.5.9 Performing a local search

Now that the trees have been generated and stored in memory, a local search
can be performed to refine and improve the initial trees by examining addi-
tional topologies of potentially better cost. The command swap() implements
an efficient strategy by performing SPR and TBR branch swapping alternately.
As with other commands, the arguments of swap() allow the customization of
the swap algorithm. In the following example, branch swapping is performed
under the default settings on each of the 100 trees build in the previous step:

read("morpho.ss","28s.fas")
build(100)
swap()

Branch swapping is performed sequentially on all trees stored in memory.
During swapping, the Current Job window reports the number of the tree
that is currently being analyzed, the method of branch swapping, the specific
routine being currently performed, and the cost of the current tree (Fig-
ure 2.24). When the process is complete, the State of Stored Search window
displays the range of tree costs (the best and worst costs), the number of trees
stored in memory, and the number of trees with the best cost (Figure 2.24).
Notice that the local search had reduced the costs of the initial best (from
451 to 446) and narrowed the range of tree costs.
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Using different combinations of swap() arguments allow the designation
of a large number of search strategies with different levels of complexity. Some
simple options allow the choice between SPR and TBR. More complex strate-
gies allow keeping a specific number of best trees per single initial tree (gener-
ated during the building step). For example, the command swap(trees:10)
will keep up to 10 best trees generated during branch swapping on a single
initial tree. Consequently, if 100 trees were built initially, this command will
produce up to 1,000 trees. The argument threshold allows the retention
of suboptimal trees within a specified percent of cost difference from the
current best tree. For example, swap(trees:20,threshold:10) will execute
a swap considering trees within a ten percent cost difference of the current
best tree and retain the 20 minimal length swapped trees for each initial
build. Other options provide the means to sample trees as they are evaluated,
timeout after certain number of seconds, transform the cost regime, and other
functions in conjunction with many POY5 commands.

2.5.10 Selecting trees

Having performed the basic steps of importing character data, building initial
trees, and conducting a simple local search, we obtained a set of locally
optimal trees in memory. Generally, a user would like to select only those
trees that are both optimal and topologically unique. The default setting
of the select() does exactly that. Adding select() to our example of
command sequence for the basic analysis

read("morpho.ss","28s.fas")
build(100)
swap()
select()

selects only unique trees of best cost. The remaining trees are deleted
from memory. The State of Stored Search window reports the number and
the cost of the best tree(s) (Figure 2.25).

As an alternative, the user may choose to select topologically unique trees,
regardless of the cost, using select(unique). This may ensure that a larger
tree space is explored. If this is used as an option during the search, the user
should remember to select() at the end of the run, prior to reporting the
results.

The command select(), is another multifunctional command the argu-
ments of which are also used to select (include or exclude) specific terminals,
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Figure 2.25: Selecting unique best trees. Executing select() keeps only
unique trees of best cost. The State of Stored Search window reports that
there is only one unique tree of best cost (446).

characters, and trees.) Comparing the output reported in the State of Stored
Search before (Figure 2.24) and after (Figure 2.25) executing select() shows
that swapping on 9 of 100 initial trees produced the trees of best cost (446),
but these trees are identical, because only one was retained when filtered
using select().

2.5.11 Visualizing the results

There are several options for visualizing results in POY5 (see report (Sec-
tion 3.3.19)). The command report("my_first_tree",graphtrees) out-
puts a cladogram in PDF format (Figure 2.26), which can be displayed,
edited, and printed using graphics software (such as Adobe Illustrator or
Preview). POY5 also appends the “pdf” extension when generating graphic
output to a file. A quick way to see the tree(s) on screen is to use the
command report(asciitrees) that draws a cladogram in the POY Output
window (Figure 2.26). The ascii tree(s) can also be reported to a file, if an out-
put file name is specified within the command (report("my_first_trees",
asciitrees)). These trees will be saved to a text file.

The command report("my_first_trees.txt",trees) reports the trees
in memory in parenthetical notation to the file my_first_trees that can be
imported in other programs. Supported tree output formats include Newick
and Hennig86. report() can also generate consensus trees in the graphical
and parenthetical formats when appropriate arguments are specified (for
example, report("strict_consensus",graphconsensus)).
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Figure 2.26: Visualizing trees. An ascii tree (left) is generated using the
command report(asciitrees). The same tree is reported to a file in a PDF
format (right) using report("my_first_tree",graphtrees). Observe that
both representations of trees are preceded by their costs.
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2.5.12 Interrupting a process

To interrupt a process, press control-c. By default, an error, Error:
Interrupted, is reported in the POY Output window. The program does
not close, however, and a new command can be entered. Interrupting the
analysis cancels the execution of the last command requested by the user
and restores the data and trees in memory before that last command. For
example, the following two session are equivalent:

read("morpho.ss") <ENTER>

and

read("morpho.ss") <ENTER>
read("28s.fas") <CONTROL-C>

In both of these sessions, only the morphological dataset “morpho.ss” is
read into POY5.

2.5.13 Reporting errors

If there is an error pertaining to incorrect syntax (such as a typo in a
command name), POY5 will indicate the location of the error by underlining
the problematic part of the input with a hat symbol (“ˆ”) in the Interactive
Console (Figure 2.27). The description of the corresponding command, its
syntax, and examples of its usage from the help file are automatically printed
in the POY Output window. As noted above, the Up and Down keys can
be used to scroll through the output and determine the source of the error.
Certain types of errors are reported explicitly (Figure 2.27).

2.5.14 Exiting

To finish a POY5 session, enter the command exit() (Figure 2.28) or quit().
This will close the POY5 interface and resume the Terminal window (Mac
OSX) or the Command Prompt window (Windows).

2.6 Creating and running POY5 scripts

So far, we have communicated with POY5 interactively through the Graphical
User Interface or by executing commands from the Interactive Console.
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Figure 2.27: Displaying errors. POY5 displays error messages in several ways.
In the example in the left panel, the command build was entered without
parentheses, which is required for a valid POY5 command syntax; the exact
place of the error is marked by “ˆ”, in this case following the build commands.
Examples of the proper usage of the command are automatically displayed in
the POY Output. In other cases (right panel), error messages are explicitly
reported in the POY Output window. The first and second error messages
indicate that the data file SSU.seq is not present, which could have been
caused either by a mistake in the name of the file, or missing file, or the
location of the file in a directory, other than the one specified prior to starting
the POY5 session. The third error message indicates that the valid syntax of
exit requires the parentheses following the command name (also shown by
“ˆ” in the Interactive Console).
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Figure 2.28: Exiting POY5

Another way of conducting an analysis is to run a script, a simple text file
containing a list of commands to be performed (Figure 2.29).

Running analyses using scripts has many advantages: not only does it
allow for the entire analysis to proceed from the beginning to the end at one
click of a button, but it also provides means to examine the logical dependency
of the commands and optimize memory consumption (see the description of
script_analysis argument of the command report in the POY Commands
chapter). Submitting jobs using scripts may produce results faster because
POY5 automatically optimizes the workflow of the entire analysis by taking
into account the functional relationships among various tasks and efficiently
distributing the jobs and resources (such as memory and multiple processors).

Another advantage of using scripts is that they may contain comments
that are ignored by POY5 but can be helpful to describe the contents of the
files and provide other annotations. The comments are enclosed in parenthesis
and asterisks, e.g. (* this is a comment *). Comments can be of any
length and span multiple lines.

Obviously, using scripts requires the user to design the workflow of the
process prior to conducting the analysis. POY5 scripts can be created and
saved using the Script Editor window of the POY5 Graphical User Interface
or any conventional text editor (such as TextPad, TextWrangler, BBEdit,
Emacs, or NotePad).

POY5 scripts are extremely useful in cases when operations may take a
long time to complete, eliminating the need to wait for a part of the analysis
to finish in order to proceed to the next step. Moreover, scripts can contain a
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Figure 2.29: Using POY5 scripts. The list of commands executed interactively
using the Interactive Console (left) and a script containing the same list
of commands (right). Observe that the header of the script is a comment,
enclosed in “(* *)”, that is ignored by POY5. Also note that commands can
either be listed in a row or in a column (compare build() and swap() in the
console and in the script) and different arguments of the same command can
either be specified separately or combined in a single argument list (compare
report() in the console and in the script). (Both conventions are valid for
interactive command submission and for scripts.)

series of individual scripts that are run sequentially (see for example tutorial
5.4.

There are two ways to import and run a script:

• using the POY Launcher in the Graphical User Interface;

• using the command run() of the Interactive Console; for example,
run("script.txt"), where script.txt is the name of the file contain-
ing the script. Within this script it is also possible to specify additional
scripts to run.

It is critical to include the command exit() at the end of the script.
Otherwise POY5 will be waiting for further instructions to be entered after
executing the script’s contents.

2.7 Obtaining help

Instructions to run POY5, command descriptions, and the theory behind POY5
can be obtained from a variety of sources.

POY5.0 Program Documentation (this manual) is a comprehensive and
detailed manual on all the aspects of using POY5, from installation to
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output and visualization of results. Included are Quick Start, POY5 com-
mand reference, practical guides and tutorials that make the program
immediately accessible for beginners and provide in-depth informa-
tion for experienced users. As with any PDF, this document is easily
searched using key words or phrases. The documentation in PDF format
can be accessed from the Help menu of the graphical user interface or
downloaded separately from POY5 web site at

http://www.amnh.org/our-research/computational-sciences/
research/projects/systematic-biology/poy/download

POY interactive help can be obtained by entering help() at the POY5
Interactive Console. To obtain help on a particular command, the name
of the command must be specified in the parentheses following help().
For example, to learn about the command exit, type help(exit).
(Figure 2.28.)

POY5 Mail Group is an Internet-based forum for discussing all issues
related to POY5 and provides the best way to communicate with POY5
developers on specific issues (see WWW resources below). The web-
site is located at https://groups.google.com/forum/#!forum/poy4.
Questions relating to both POY4 and POY5 can be posed to this group.

POY Book (Wheeler et al., 2006 Dynamic Homology and Phylogenetic
Systematics: A Unified Approach Using POY [69]) provides a review
of the theory behind POY4 and by extension POY5, and contains formal
descriptions of many algorithms implemented in the program and the
descriptions of commands of the earlier version, POY3. A PDF version of
the book is available at http://research.amnh.org/scicomp/pdfs/
wheeler/Wheeler_etal2006b.pdf

POY Paper (Varón et al., 2010. POY version 4: Phylogenetic analysis
using dynamic homologies [54] provides a description of the overall
goals, implementation and philosophy of POY.

2.8 WWW resources

POY5 is an ongoing project and new versions are being continuously developed
to include new procedures, improve performance, and eliminate reported
bugs. Therefore, it is imperative to keep up with the program’s development

http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy/download
http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy/download
https://groups.google.com/forum/#!forum/poy4
http://research.amnh.org/scicomp/pdfs/wheeler/Wheeler_etal2006b.pdf
http://research.amnh.org/scicomp/pdfs/wheeler/Wheeler_etal2006b.pdf
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Figure 2.30: The POY Book.

and check regularly for updates. There are several Internet-based resources
that offer this information.

POY5 Web Site Has downloadable compressed files of POY5 binaries, source
code, and documentation in PDF format. It also provides a links to
the POY Mail Group. The website is hosted by AMNH Computational
Sciences at

http://www.amnh.org/our-research/computational-sciences/
research/projects/systematic-biology/poy

POY5 source code repository Contains has downloadable POY5 source
code. The site is powered by Google at

http://code.google.com/p/poy/source

POY5 Mail Group Informs registered users via email of new developments,
such as new versions and updates. It also provides additional resources
for obtaining help and a way for reporting bugs and other problems
with POY5 and its documentation. In addition, it allows users to receive
and respond to each other’s questions thus providing an open forum to
discuss the methods and applications of POY5. The users who choose
not to register, have access to the archives of the postings but will not
be able to either submit or receive emails from other users and POY5
developers. The POY5 Mail Group is hosted by Google at

https://groups.google.com/forum/#!forum/poy4

http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy
http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy
http://code.google.com/p/poy/source
https://groups.google.com/forum/#!forum/poy4


Chapter 3

POY5 Commands

3.1 POY5 command structure

3.1.1 Brief description

POY5 interprets and executes scripts issued by the end user. These can come
from the Graphical User Interface and the command line in the Interactive
Console of the program, or from an input file. A script is a list of commands,
separated by any number of whitespace characters (spaces, tabs, or newlines).
Each command consists of a name in lower case (LIDENT), followed by a list
of arguments separated by commas and enclosed in parentheses. Most of the
arguments are optional, in which case POY5 has default values.

In POY5, we recognize four types of command arguments: primitive values,
labeled values, lists of arguments, and commands.

Primitive values can be either an integer (INTEGER), a real number
(FLOAT), a string (STRING), or a boolean (BOOL).

Labeled arguments are lowercase identifiers (which are referred to as
label), and an argument, separated by the colon character (“:”). Examples of
identifiers include items such as characters, terminals, all, characters,
names of files, missing, codes etc: In contrast to lists of arguments,
which are enclosed in parentheses (see below), when only one argument can
follow a command, parentheses are not required.

List of arguments are several arguments enclosed in parenthesis and
separated by commas (“,”).

65
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Commands are standard commands that can affect the behavior of another
command when included in its list of arguments.

Thus, certain commands can function as arguments of other commands.
Moreover, some commands share arguments. Although such compositional
use of commands might seem complex, this structure provides much more
intuitive control and greater flexibility. The fact that the same logical
operation that functions in different contexts maintains the same name
(typically suggestive of its function), substantially reduces the number of
commands without limiting the number of operations. Using a linguistic
analogy, POY5 specifies a large number of procedures by a more complex
grammar (specific combinations of commands and arguments), rather than by
increasing the vocabulary (the number of specific commands and arguments).
For example, the command swap specifies the method of branch swapping.
This command is used to conduct a local search on a set of trees. In
addition, swap functions as an argument for calculate_support to specify
the branch swapping method used in each pseudoreplicate during jackknife
or bootstrap resampling. swap can also be used to set the parameters for
local tree search based on perturbed (resampled or partly reweighted) data
as an argument of the command perturb. Therefore, to take the maximum
advantage of POY5 functionality, it is essential to get acquainted with the
grammar of POY5.

3.1.2 Grammar specification

The following is the formal specification of the valid grammar of a script in
POY5:

script: = | command
| command script

command: = LIDENT "(" argument list ")"

argument list: = |
| arguments

arguments: = |
| argument
| argument "," arguments

argument: = | primitive
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| LIDENT
| LIDENT ":" argument
| command
| "(" argument list ")"

primitive: = | INTEGER
| FLOAT
| BOOLEAN
| STRING

LIDENT: = [a-z_][a-zA-Z0-9_]*

INTEGER: = [0-9]+

FLOAT: = | INTEGER
| [0-9]+ "." [0-9]*

STRING: = """ [^"]* """

The following examples graphically show a typical structure of valid POY5
commands formally defined above. The Figure 3.1 illustrates the syntax of
the command swap. The name of the command, swap, is followed by a list
of two arguments, tbr and trees:2, enclosed in parentheses and separated
by a comma. Note that trees:2 is a labeled-value argument that contains a
label (trees) and a value (2) separated by a colon.

Figure 3.2 shows a more complex command structure, using the command
perturb as an example. This is a compound command because the list of
its arguments contains another command, swap. This means that executing
perturb performs a set of specified operations that contains a nested set of
operations specified by swap. Note also, that in contrast to the first labeled-
values argument iterations, the second labeled-values argument ratchet
has multiple values (a float and an integer). When multiple values are specified,
they must be enclosed in parentheses and separated by a comma. The third
argument is a command (swap), therefore it is syntactically distinguished
from other arguments, labeled and unlabeled alike, by having parentheses
following the command name. It must be emphasized that the parentheses
always follow the command name even if no arguments are specified. If no
arguments are specified, a command is executed under its default settings
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Figure 3.1: The structure of a simple POY5 command. The entire command
(highlighted in blue), consists of a command name followed by a list of
arguments (enclosed in red box). See text for details.

provided it has default settings. If a command has no default settings e.g.
transform, then typing transform () does nothing.

Figure 3.2: A structure of a compound POY5 command. Note that the list of
arguments (enclosed in red box) includes a command (highlighted in blue).
Also, note that ratchet accepts multiple values, a float and an integer, that
are inclosed int parentheses and separated by a comma. See text for details.

3.2 Notation

Some arguments are obligatory, whereas others are not; some commands
accept an empty list of arguments, but others do not; some argument labels
have obligatory values, some have optional values. The POY5 commands and
arguments are listed alphabetically in the next section. In the descriptions
of POY5 commands below, the elements of POY5 grammar are defined in the
text using the following conventions:

• A command that could be included in a POY5 script (that is can be
entered in the interactive console or included in an input file) is shown
in terminal typeface.
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• Optional items are inclosed in [square brackets].

• Primitive values are shown in UPPERCASE.

Each command description entry contains the following sections:

• The name of the command.

• The valid syntax for the command.

• A brief description of the command’s function.

• A list of descriptions of valid arguments.

• Description of default settings.

• Examples of the command’s usage.

• Cross references to related commands.

NOTE

Default syntax. The default syntax for all commands is the same:
it includes the command name followed by empty parentheses, e.g.
swap(). However, within the descriptions of each command the default
settings include the entire argument list for illustrative purposes
only (i.e. in the case of swap() the entire argument list appears as
swap(trees:1,alternate,threshold:0,bfs)).

NOTE

Command order. The effect of the order of arguments in a com-
mand depends on the context. If arguments are not logically inter-
connected, their order is not important. For example, the commands
build(10,randomized) and build(randomized,10) are equivalent.
However, executing the commands transform(tcm:(1,1),gap_-
opening:4) and transform(gap_opening:4,tcm:(1,1)) will pro-
duce different results because gap_opening modifies the values set by
tcm, while tcm overrides the values set by gap_opening.

NOTE

Output files. When an output file is specified, the file name (in
double quotes and followed by a comma) must precede the argument,
e.g. report("first_trees", trees).
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3.3 Command reference

3.3.1 build

Syntax

build([argument list])

Description

Builds Wagner trees [11]. Building multiple trees with a randomized addition
of terminals allows for the evaluation of many possible tree topologies and
generates a diversity of trees for subsequent analysis. The arguments of
the command build specify the number of trees to be generated and the
order in which terminals are added during a single tree building procedure.
During tree building, POY5 reports in the Current Job window of the ncurses
interface which of the terminal addition strategies (e.g. as_is or randomized)
is currently used.

By default POY5 replaces the trees stored in memory with those gener-
ated in a subsequent build. For example, executing build(10) followed by
build(20) will replace the 10 trees generated during the first build with 20
new trees. However, it might be desirable to generate a large number of
trees by appending trees from multiple separate builds. To keep trees from
consecutive builds, a tree output file must be specified using the command
report (Section 3.3.19) that must precede the build command. This will
produce a file containing the trees appended from all builds. If the same
file name is used for reporting trees for other analysis, the new trees are
appended. Alternatively, trees from different builds can be redirected to
separate files if different file names are specified.

The command build is also used as an argument for the command
calculate_support.

Arguments

all[:INTEGER ] Turns off all preference strategies for adding branches and
simply tries all possible addition positions for all terminals. By default
ten trees are built but the number of trees can be specified by the
integer or by the argument trees.

as_is Indicates that in one of the trees to be built, the terminals are added
in the order in which they appear in the imported data files, and all
others are built using a random addition sequence.
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branch_and_bound[:FLOAT ] Calculates the exact solution using the Branch
and Bound algorithm [25]. By default only one optimal tree is kept
but the number of optimal trees to be retained can be specified by the
argument trees. The optional float value specifies the initial bound
(either tree cost or likelihood score).

constraint[:STRING ] Builds trees using the set of constraints specified by
a consensus tree input file. If no input file is provided, the constraint
is calculated as the strict consensus of the trees in memory. Every
tree built using this method is subjected to the same randomization as
Wagner builds within each constraint. Constraining a tree is useful in
hypothesis testing.

INTEGER The integer argument specifies the number of independent, individ-
ual Wagner tree builds. This is a shortcut of the argument trees.

lookahead:INTEGER The number of trees that can be kept at each build
step. If the lookahead argument specifies a number n, and the best tree
found has cost c, then the best n trees with cost at most c+ threshold
as specified by the threshold (Section 3.3.1) command are held for the
next build step. If no threshold command is specified, then it is set
to 0.

of_file:STRING Imports a tree file included in the file path of the argument.
This command is useful for importing starting trees for calculating
bremer (Section 3.3.2) support. In other contexts the command read
(Section 3.3.14) can be used with the same effect.

optimize(model[:LIDENT ],branch[:LIDENT ]) Specifies when the likeli-
hood model and how the branches are optimized during the build
routine. These options are also available in the fuse and swap com-
mands. In all cases a complete round of optimization will occur after
the completion of a build.

model:always Optimize the model after every additional taxon is
added.

model:max_count:INTEGER Optimize the model after every defined
number (INTEGER) of taxa are added to the tree.

model:never Do not optimize the model during the build (the de-
fault).
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branch:all_branches Optimize all branch lengths after each taxon is
added.

branch:join_region Optimize a maximum of five branches; the edge
connecting the new taxa to the tree, and the two sides of that
joined edge (the default).

branch:never Do not optimize the branches during the build pro-
cess. We use an estimate based on the proportion of sites that
transform.

nj Creates a tree using the Neighbor Joining algorithm [41]. If more than
one tree is requested, all the trees will be the same (the algorithm
implementation is deterministic).

random Generates a tree at random. All possible trees have equal probabil-
ity.

randomized Indicates that terminals are added in random order on every
Wagner tree built. This is a default tree-building strategy.

STRING This is a shortcut of the argument of_file.

threshold:FLOAT The numerical value specifies the extra cost over the
current best tree that makes another tree acceptable for the lookahead
list. This parameter is only useful if lookahead (Section 3.3.1) is used.

trees:INTEGER The integer value specifies the number of independent,
individual Wagner tree builds. The label trees is optional: it is
sufficient to specify only the integer value. Therefore, build(5) is
equivalent to build(trees:5). Note that trees is also used as an
argument of the command swap (Section 3.3.26) but with different
meaning.

The value 0 generates no trees but it retains all trees in memory. This
is useful, for example, in the bremer (Section 3.3.2) support calculation,
where instead of generating new trees per each node, the searches are
performed on the trees in the neighborhood of the current trees in
memory.

Defaults

build(trees:10,randomized,lookahead:1,threshold:0) By default, POY5
will build 10 trees using a random addition sequence for each of them.



3.3. COMMAND REFERENCE 73

Examples

• build(20)
Builds 20 Wagner trees randomizing the order of terminal addition
[Note: because the argument randomized is specified by default, it can
be omitted].

• build(trees:20,randomized)
A more verbose version of the previous example. By default a build is
randomized, but in this case the addition sequence is explicitly set. For
the total number of trees, rather than simply specifying 20, the label
trees is used. The verbose version might be desirable to improve the
readability of the script.

• build(all:30)
Builds 30 Wagner trees, trying all possible addition positions for all
terminals.

• build(15,as_is)
Builds the first Wagner tree using the order of terminals in the first
imported data file and generates the remaining 14 trees using random
addition sequences.

• build(branch_and_bound,trees:5)
Builds trees using branch and bound method and keeps up to 5 optimal
trees in memory.

• build(constraint:"cstree.tre")
Builds trees using using the set of constraints specified by the consensus
tree file "cstree.tre".

• build(trees:100,optimize(model:max_count:5,branch:
all_branches))
Builds 100 trees and optimizes the likelihood model after every 5 taxa
are added to the tree. All branch lengths are optimized after the
addition of each taxon to the tree.

3.3.2 calculate_support

Syntax

calculate_support([argument list])
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Description

Calculates the requested support values. POY5 implements support estimation
based on resampling methods (Jackknife [14] and Bootstrap [17]) and Bremer
support [6, 28]. The Jackknife and Bootstrap support values are computed
as frequencies of clades recovered in trees specified (see below). All the
arguments of calculate_support command are optional and their order
is arbitrary. For examples of scripts implementing support measures see
tutorials 5.4, 5.5 and 5.6.

The calculate_support command does not output support values by
default. The output of support values must be requested using the com-
mand report (Section 3.3.19). This is particularly important for Jackknife
and Bootstrap support values, as these sampling techniques do not require
the presence of trees in memory. Therefore, it is possible to perform the
sampling for support values before the tree of interest has been found.

NOTE

In the context of dynamic homology, the characters being sampled
during pseudoreplicates are entire sequence fragments, not individual
nucleotides. Consequently, the bootstrap and jackknife support val-
ues calculated for dynamic characters are not directly comparable to
those calculated based on static character matrices. If it is desired
to perform character sampling at the level of individual nucleotides,
the dynamic characters must be transformed into static characters
using static_approx argument of the command transform (Sec-
tion 3.3.26) prior to executing calculate_support. Alternatively, an
output file in Hennig86 format can be generated based on an implied
alignment using phastwinclad (Section 3.3.19) that can subsequently
be analyzed using other programs.

Of course, if the dataset of dynamic characters contains a large
number of fragments, this caveat may not be warranted.

It is important to remember that the local optimum for the dy-
namic homology characters can differ from that for the static homology
characters based on the same sequence data. Therefore, it is recom-
mended to perform an extra round of swapping on the transformed
data to reach the local maximum for the static homology characters
prior to calculating support values.
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NOTE

The placement of the root affects calculation of Bremer support
values. Therefore, it is critical to specify the root prior to execut-
ing calculate_support. See the description of the command set
(Section 3.3.24) on how to specify the root.

Arguments

Support calculation methods The following commands allow selection
among several methods for calculating support.

bootstrap[:INTEGER | LIDENT ] Calculates Bootstrap support [17]. The
INTEGER and LIDENT are both optional. The integer value specifies
the number of resampling iterations (pseudoreplicates)—if the value
is omitted, 5 pseudoreplicates are performed by default. The lident
specifies the tree for which bootstrap support values will be calculated:
if individual (the default), bootstrap values will be calculated and
reported for each of the optimal trees stored in memory (these will be
reported sequentially); if consensus, a consensus tree based on the best
trees recovered in each replicate with zero-length branches collapsed
will be calculated and chosen; if STRING, a tree file containing a single
tree, in parenthetical notation, is chosen.

bremer Calculates Bremer support values [6, 28] for each tree in memory
by performing independent constrained searches for each node. The
parameters for the searches can be modified using arguments described
under Search strategy. [Note: an alternative, more timely way of
calculating Bremer support valves is to use the “visited” option (see
tutorial 5.4).]

jackknife[:([argument list])] Calculates Jackknife support [14] using
the sampling parameters specified by the arguments. The arguments
of jackknife are optional and their order is arbitrary. If these are not
specified, default values for each of these arguments will be used. As in
the case of bootstrap support calculation, the tree for which jackknife
supports will be calculated is determined by the lident value specified
(individual, consensus or STRING). Additional arguments include:

remove:FLOAT The value of the argument remove specifies the per-
centage of characters being deleted during a pseudoreplicate. The
default of remove is 36 percent.
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resample:INTEGER The value of the argument resample specifies the
number of resampling pseudoreplicates. The default of resample
is 5.

Search strategy The calculation of the support values requires a local
search, that is performed under the default settings unless the values of the
following arguments are specified.

build For calculating Bremer support, the integer value of build specifies the
number of independent Wagner tree builds per node. The integer value
0 (build:0) specifies that Bremer support values are calculated on the
starting trees currently in memory, rather than on newly generated trees.
The initial trees for calculating Bremer support can also be imported
using the argument of_file of the command build (Section 3.3.1).

For calculating Jackknife and Bootstrap supports, build specifies
the number of Wagner tree builds per pseudoreplicate. Single best trees
from all pseudoreplicates are used to calculate the support values. If
multiple best trees are recovered in a pseudoreplicate, one is selected.
If build is omitted from the argument list of calculate_support, a
single random addition Wagner tree per pseudoreplicate is built by
default. This is equivalent to build(trees:1,randomized). See build
(Section 3.3.1) for a detailed discussion of arguments of the command
build.

swap Specifies the method and parameters for local tree search. If search
parameters are not specified, the search is performed under the default
settings of swap (Section 3.3.26).

Defaults

calculate_support(bremer,build(trees:1,randomized),swap(trees:1))
By default POY5 will calculate the Bremer support for each tree in memory
node by node. However, if no trees are stored in memory, executing the
command calculate_support() does not have any effect.

Examples

• calculate_support(bremer)
Calculates Bremer support values by performing independent searches
for every node for every tree in memory. This is equivalent to executing
calculate_support(), the default setting.



3.3. COMMAND REFERENCE 77

• calculate_support(bremer,build(trees:0),swap(trees:2))
Calculates Bremer support values by performing swapping on each tree
in memory for every node and keeping up to two best trees per search
round.

• calculate_support(bremer,build(of_file:"new_trees"),
swap(tbr,trees:2))
Calculates Bremer support values by performing TBR swapping on
each tree in the file new_trees located in the current working directory
for every node and keeping up to two best trees per search round.

• calculate_support(bootstrap)
Calculates Bootstrap support values under default settings. This com-
mand is equivalent to calculate_support(bootstrap:5,build(trees:1,
randomized),swap(trees:1)).

• calculate_support(bootstrap:100,build(trees:5),swap(trees:1))
Calculates Bootstrap support values performing one random resampling
with replacement, followed by 5 Wagner tree builds (by random addition
sequence) and swapping these trees under the default settings of the
command swap, and keeping one minimum-cost tree. The procedure is
repeated 100 times.

• calculate_support(jackknife)
Calculates Jackknife support values under default settings. This com-
mand is equivalent to calculate_support(jackknife:(resample:5,
remove:36),build(trees:1,randomized),swap(trees:1)).

• calculate_support(jackknife:(resample:1000,remove:25),
build(100),swap(tbr,trees:5))
Calculates Jackknife support values randomly removing 25 percent of
the characters, building 100 Wagner trees by random addition sequence,
swapping these trees using tbr, and keeping up to 5 minimum-cost
tree in the final swap per swap (totaling up to 500 stored trees per
replicate). The procedure is repeated 1000 times.

See also

• report (Section 3.3.19)

• supports (Section 3.3.19)

• graphsupports (Section 3.3.19)
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3.3.3 clear_memory

Syntax

clear_memory([argument list])

Description

Frees unused memory. Rarely needed, this is a useful command when the
resources of the computer are limited. The arguments are optional and their
order is arbitrary.

Arguments

m Includes the alignment matrices in the freed memory.

s Includes the unused pool of sequences in the freed memory.

Defaults

clear_memory() By default POY5 clears all memory except for the pool of
unused sequences and the matrices used for the alignments.

Examples

• clear_memory(s)
This command frees memory including all alignment matrices but
keeping unused pool of sequences.

See also

• wipe (Section 3.3.30)

3.3.4 cd

Syntax

cd(STRING)
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Description

Changes the working directory of the program. This command is useful when
data files are contained in different directories. It also eliminates the need to
navigate into the working directory before beginning a POY5 session.

With the Interactive Console, the path of the directory can be completed
by dragging and dropping the icon of the directory into the terminal window
of this interface.

To display the path of the current directory, use the command pwd
(Section 3.3.12).

Arguments

STRING The value specifies a path to a directory.

Examples

• cd("/Users/username/docs/poyfiles")
Changes the current directory to the directory poyfiles in a Mac OSX
environment. Filenames with spaces between words need to be escaped,
e.g. “poy files” should be typed as “poy\ files”. When using a PC, the
forward slashes should be replaced with backslashes.

See also

• pwd (Section 3.3.12)

3.3.5 echo

Syntax

echo(STRING, output class)

Description

Prints the content of the string argument into a specified type of output.
Several types of output are generated by POY5 which are specified by the
“output class” of arguments (see below). If no output-class arguments are
specified, the command does not generate any output.
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Arguments

Output class

error Outputs the specified string as an error message (stderr in the flat
interface).

info Outputs the specified string as an information message (stderr in the
flat interface).

output[:STRING ] Reports a specified string (stdout in the flat interface)
to screen or file, if the filename string (enclosed in parentheses) is
specified following output and separated from it by a colon, “:”.

Examples

• echo("Building_with_indel_cost_1",info)
Prints to the output window in the ncurses interface and to the standard
error in the flat interface the message Building_with_indel_cost_1.

• echo("Final_trees",output:"trees.txt")
Prints the string Final_trees to the file trees.txt.

• echo("Initial_trees",output)
Prints the string Initial_trees to the output window in the ncurses
interface, and to the standard output (stdout in the flat interface).

See also

• report (Section 3.3.19)

3.3.6 exit

Syntax

exit()

Description

Exits a POY5 session. This command does not accept any argument. The
exit command is equivalent to quit.
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NOTE

To interrupt a process without quitting a POY5 session, use control-c.
It aborts a currently running operation but keeps all the previously
accumulated data in memory. It does not abort the current session
permitting the entry of new commands and continuing the session.

Examples

• exit()
Quits the program.

See also

• quit (Section 3.3.13)

3.3.7 fuse

Syntax

fuse([argument list])

Description

Performs Tree Fusing [20] on the trees in memory. Tree Fusing can be used
to escape local optima by exchanging clades with identical composition of
terminals, differing in arrangement between pairs of trees. Only one exchange
between pairs of trees is evaluated during a single iteration.

Arguments

iterations:INTEGER Specifies the number of iterations of tree fusing to
be performed. The number of iterations is effectively the number of
pairwise clade exchanges. The default number of iterations is four times
the number of retained trees (as specified by keep).

keep:INTEGER Specifies the maximum number of trees to keep between
iterations. By default, the number of trees retained is the same as the
number of starting trees.

optimize(model[:LIDENT ],branch[:LIDENT ]) Specifies when the likeli-
hood model and how the branches are optimized during the fuse routine.
These options are also available in the build() and swap() commands.
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In all cases a complete round of optimization will occur after the
completion of a build.

model:always Optimize the model after every join.

model:never Do not optimize the model during the fuse (the default).

branch:all_branches Optimize all branch lengths on each join.

branch:join_region Optimize a maximum of five branches; the new
edge, and the two edges on either side (the default).

branch:never Do not optimize the branches during the fuse process.
Estimates are made based on the proportion of sites that would
undergo a transformation.

replace:LIDENT Specifies the method for tree selection. Acceptable argu-
ments are:

best Keeps a set of trees of the best cost regardless of their origin.

better Replaces parent trees with trees of better cost produced during
a fusing iteration.

The default is best.

swap Specifies tree swapping strategy to follow each iteration of tree fusing.
No swapping is performed under default settings. See the description
of the command swap (Section 3.3.26).

Defaults

fuse(replace:best) By default POY5 performs fusing, keeping the same
number of trees per iterations as the number of the starting trees. The
number of iterations is four times the number of starting trees. During
this procedure, only the best trees are retained. No swapping is performed
subsequent to tree fusing.

Examples

• fuse(iterations:10,replace:best,keep:100,swap())
This command executes the following sequence of operations. In the first
iteration, clades of the same composition of terminals are exchanged
between two trees from the pool of the trees in memory. The cost of
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the resulting trees is compared to that of the trees in memory and a
subset of the trees containing up to 100 trees of best cost is retained
in memory. During each iteration of fuse, the trees are subjected to
swapping under the default settings of swap. The entire procedure is
repeated nine more times.

• fuse(optimize:(model:never,branch:join_region))
This command performs tree fusing, specifying that the likelihood model
is never optimized after each round of fusing , but that a maximum of
five branches are optimized each round.

• fuse(swap(constraint))
This command performs tree fusing with modified settings for swapping
that follows each iteration. Once a given iteration is completed, a
consensus tree of the files in memory is computed and used as constraint
file for subsequent rounds of swapping (see the argument constraint
(Section 3.3.26) of the command swap).

See also

• swap (Section 3.3.7)

3.3.8 help

Syntax

help([argument])

Description

Reports the requested contents of the help file on screen.

Arguments

LIDENT Reports the description of the command, the name of which is
specified by the LIDENT value.

STRING Reports every occurrence in the help file of the expression specified
by the string value.

Defaults

help() By default POY5 displays the entire content of the help file on screen.
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Examples

• help(swap)
Prints the description of the command swap in the POY Output window
of the ncurses interface or to the standard error in the flat interface.

• help("log")
Finds every command with text containing the substring log and prints
them in the POY Output window of the ncurses interface or to the
standard error in the flat interface.

3.3.9 inspect

Syntax

inspect(STRING)

Description

Retrieves the description of a POY5 file produced by the command save
(Section 3.3.21). If the description were not specified by the user, inspect
reports that the description is not available. If the file is not a proper POY5
file format, a message is printed in the POY Output window of the ncurses
interface or to the standard error of the flat interface.

These POY5 files are not intended for permanent storage. They are
recommended for temporary storage of a POY5 session, checkpointing the
current state of the search (to avoid losing data in case the computer or the
program fails), or reporting bugs. POY5 also automatically generates POY5 files
in cases of terminating errors (an important exception is an out-of-memory
error).

Examples

• inspect("initial_search.poy")
Prints the description of the POY5 file initial_search.poy located
in the current working directory in the POY Output window of the
ncurses interface or to the standard error in the flat interface. If,
for example, the file was saved using the command save ("initial_-
search.poy","Results_of_Total_Analysis"), then the output mes-
sage is: Results_of_Total_Analysis.
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See also

• save (Section 3.3.21)

• load (Section 3.3.10)

• cd (Section 3.3.4)

• pwd (Section 3.3.12)

3.3.10 load

Syntax

load(STRING)

Description

Imports and inputs POY5 files created by the command save. The name of
the file to be loaded is included in the string argument. All the information
of the current POY5 session will be replaced with the contents of the POY5 file.
If the file is not in proper POY5 file format, an error message is printed in the
POY Output window of the ncurses interface, or the standard error in the
flat interface. See the description of the command save (Section 3.3.21) on
the POY5 file and its usage.

Thses POY5 files are not intended for permanent storage: they are recom-
mended for temporary storage of a POY5 session, checkpointing the current
state of the search (to avoid losing data in case the computer or the program
fails), or reporting bugs. POY5 also automatically generates POY5 files in cases
of terminating errors (an important exception is out-of-memory error).

Examples

• load("initial_search.poy")
Reads and imports the contents of the POY5 file initial_search.poy,
located in the current working directory.

See also

• save (Section 3.3.21)

• inspect (Section 3.3.9)

• cd (Section 3.3.4)
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• pwd (Section 3.3.12)

3.3.11 perturb

Syntax

perturb([argument list])

Description

Performs branch swapping on the trees currently in memory using temporarily
modified (“perturbed”) characters. Once a local optimum is found for the
perturbed characters, a new round of swapping using the original (non-
modified) characters is performed. Subsequently, the costs of the initial
and final trees are compared and the best trees are selected. If there are n
trees in memory prior to searching using perturb, then the n best trees are
selected at the end. For example, if there are 20 trees currently in memory,
20 individual perturb procedures will be performed (each procedure starting
with one of the 20 initial trees), and 20 final trees are produced.

This command allows for movement from a local search optimum in the
tree space by perturbing the character space (hence the name). The arguments
specify the type of perturbation (ratchet, resample, and transform), the
parameters of the subsequent search (swap), and the number of iterations of
the perturb operation (iterations).

No new Wagner trees are generated following the perturbation of the
data; the search is performed by local branch swapping (specified by swap). If
perturb is executed with no trees in memory, an error message is generated.
The arguments of perturb are optional and their order is arbitrary.

Arguments

iterations:INTEGER Repeats (iterates) the perturb procedure the number
of times specified by the integer value. The number of iterations is
reported in the Current Job window of the ncurses interface and to the
standard error in the flat interface.

ratchet[:(FLOAT,INTEGER)] Perturbs the data by implementing a vari-
ant of the parsimony ratchet [36] by reweighting characters listed in
report(data). For unaligned data, the ratchet randomly selects and
reweights a fraction of sequence fragments (not individual nucleotides)
specified by the float (decimal) value, upweighted by a factor specified
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by the integer value (severity). Thus, the number of sequence frag-
ments into which the data is partitioned will impact the effectiveness of
using the ratchet on dynamic character matrices. For static matrices,
such as those obtained using the command transform (Section 3.3.27),
ratchet randomly selects and reweights individual nucleotide positions
(column vectors), as in Nixon’s original implementation [36]. Under
default settings, ratchet selects 25 percent of characters and upweights
them by a factor of 2. Unless ratchet is performed under default
settings (that does not require the specification of the fraction of data
to be reweighted and the severity value), both values must be specified
in the proper order and separated by a comma. This argument is only
used as an argument for perturb.

resample:INTEGER Resamples the characters in random order with replace-
ment. The INTEGER specifies the number of characters to be resampled.
No default settings are available for resample. This command is only
used as an argument of perturb.

swap Specifies the method of branch swapping for a local tree search based on
perturbed data. If the argument swap is omitted, the search is performed
under default settings of the command swap (Section 3.3.26).

transform Specifies a type of character transformation to be performed
before executing a perturb procedure. See the command transform
(Section 3.3.27) for the description of the methods of character type
transformations and character selection.

Defaults

perturb(ratchet:(0.25,2),iterations:1,swap(trees:1)) When no ar-
guments specified, POY5 performs the ratchet procedure under default settings.

Examples

• perturb(resample:50,iterations:10)
Performs 10 successive repetitions of random resampling of 50 characters
with replacement. Branch swapping is performed using alternating SPR
and TBR, and and keeping one minimum-cost tree (the default of
swap).

• perturb(iterations:20,ratchet:(0.18,3))
Performs 20 successive repetitions of a variant of the ratchet (see above)
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by randomly selecting 18 percent of the characters (sequence fragments)
and upweighting them by a factor of 3. Branch swapping is performed
using alternating SPR and TBR, and keeping one optimal tree (the
default of swap).

• perturb(iterations:1,transform(tcm:(4,3)))
Transforms the cost regime of all applicable characters to the new cost
regime specified by transform (cost of substitution 4 and cost of indel
3). Subsequently a single round of branch swapping is performed using
alternating SPR and TBR, and and keeping one optimal tree (the
default of swap).

• perturb(ratchet:(0.2,5),iterations:25,swap(tbr,trees:5))
Performs 25 successive repetitions of a variant of the ratchet (see above)
by randomly selecting 20 percent of the characters (sequence fragments)
and upweighting them by a factor of 5. Branch swapping is performed
using TBR and keeping up to 5 optimal trees in each iteration.

• perturb(transform(static_approx),ratchet:(0.2,5),iterations:
25,swap(tbr,trees:5))
Transforms all applicable (i.e. dynamic homology sequence charac-
ters) using transform into static characters. Therefore, the subsequent
ratchet is performed at the level of individual nucleotides (as in the
original implementation), not sequence fragments. Thus, ratchet is per-
formed by selecting 20 percent of the characters (individual nucleotides)
and upweighting them by a factor of 5. Branch swapping is performed
using TBR and keeping up to 5 optimal trees in each iteration as in
the example above.

See also

• swap (Section 3.3.26)

• transform (Section 3.3.27)

3.3.12 pwd

Syntax

pwd()
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Description

Prints the current working directory in the POY Output window of the
ncurses interface and the standard error (stderr) of the flat interface. The
command pwd does not have arguments. The default working directory is the
shell’s directory when POY5 started.

Examples

• pwd()
This command generates the following message: “The current working
directory is /Users/username/datafiles/”. The actual reported
directory will vary depending on the directory of the shell when POY5
started, or if it has been changed using the command cd().

See also

• cd (Section 3.3.4)

3.3.13 quit

Syntax

quit()

Description

Exits POY5 session. This command does not have any arguments quit is
equivalent to the command exit.

NOTE

To interrupt a process without quitting a POY5 session, use control-c.
It aborts a currently running operation but keeps all the previously
accumulated data in memory. It does not abort the current session,
thereby permitting the entry of new commands and continuing the
session.

Examples

• quit()
Quits the program.
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See also

• exit (Section 3.3.6)

3.3.14 read

Syntax

read([argument list])

Description

Imports data files and tree files. Supported formats include ASN1, Clustal,
FASTA, GBSeq, Genbank, Hennig86, Newick, NewSeq, Nexus, PHYLIP,
POY3, TinySeq, and XML. Filenames must be enclosed in quotes and, if
multiple filenames are specified, they must be separated by commas. All
filenames read into POY5 must include the appropriate suffix (e.g. .aln, .fas,
.fasta, .ss, .tre). The exclusion of these suffixes will result in an error such as
"Sys_error ("No such file or directory")". The filename must match
exactly.

NOTE

POY5 provides an option that allows the commenting out of portions of
a taxon name in the imported data file. This is achieved by inserting
a dollar sign (“$”) before the region of text that the user wishes to
comment out. As an example, placing a “$” before the GenBank
information in the taxon name Ablepharus_budaki$_AY561421_16S
will comment out this information and the taxon name will be read
as Ablepharus_budaki by the program.

read automatically detects the type of the input file. This command can
also use wildcard expressions (such as *) to refer to multiple files in a single
step. For example, read("*.fas*") imports all files of the FASTA format in
the current directory (in this case this will include files that end in both .fas
and .fasta. Moreover, importing all files that begin with the filename BAP
is achieved by typing read("BAP.*"). Specifying a filename(s) is obligatory:
an empty argument string, read(), results in no data being read by POY5.
The list of imported files and their content can be reported on screen or to a
file using report(data).

If a file is loaded twice, POY5 will issue an error message, but this will not
interfere with subsequent file loading and execution of commands.
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NOTE

When running a script that includes reading in trees from a previous
analysis, these trees must be read in after the build stage. If the
trees are read in before the build they will be replaced by the trees
generated during the build.

POY5 automatically reports in the POY Output window of the ncurses
interface or to the standard error in the flat interface the names of the
imported files, their file type, and a brief description of their contents. A
more comprehensive report on the contents of the imported files can be
requested (either on screen or to a file) using the argument data of the
command report (Section 3.3.19).

Arguments

Data file types To import data files, individual data file names must be
included in the list of read arguments, enclosed in quotes, and separated by
commas. If no data file types are specified, the types of the imported files are
recognized automatically. To specify the data type, an additional argument
explicitly denoting the data type, is included; it is followed by a colon (“:”)
and the list of data file names (enclosed in parentheses), separated by commas
and enclosed in quotes. This format prevents any ambiguity in importing
multiple data file types simultaneously (i.e. included in an argument list of a
single read) command.

NOTE

Although POY5 recognizes multiple data file formats, it does not
interpret all of their contents. Instead, it will recognize and import
only character data and ignore other content (such as blocks of
commands, etc.). For certain data file formats, POY5 will interpret
additional information as detailed for each file type below. It is
important, however, to verify that the data was interpreted properly
(using the command report).
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NOTE

Unlike many phylogenetic programs, POY5 does not clear the memory
upon reading a second file. Instead, any subsequently read files will
be added to the total data being analyzed. If a new taxon appears
in a file, then it is be assigned missing data for all previously loaded
characters. If a taxon does not appear in a file, missing data are
assigned for the characters of these taxa.

To eliminate the imported data and then to input a new data the
wipe() command must be issued first.

NOTE

If one of the terminal names in an imported data file contains a
space, “ ”, POY5 issues a warning. It is therefore advisable to format
taxon names in the data files, such that any space is r eplaced by an
underscore, e.g. Rhacodactylus_ciliatus. A warning is also issued
if a taxon name appears to match a nucleotide sequence. If one of the
terminal names in an imported molecular file contains a percentage
("%") or an at ("@") symbol, the file will not be loaded because it
may cause failure when reporting results.

Basic data types This set of arguments covers the importing of all data
files (except chromosome, genome, custom_alphabet and breakinv), as well
as tree files in parenthetical notation.

aminoacids:(STRING list) Specifies that the data listed in the string ar-
gument are amino acid sequences in FASTA format.

NOTE

Currently, IUPAC ambiguity codes for amino acids are not
supported other than for X and inputing files that contain amino
acid data with ambiguities results in an error message.

nucleotides:(STRING list) Specifies that the data in the list of files hold
nucleotide sequences in FASTA format. The sequences can be divided
into smaller fragments using a pound sign ("#"), and each fragment is
treated as an individual character.
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NOTE

POY5 recognizes the characters x and n as representing any
nucleotide base (a, c, g, or t). The ? symbol inserted in sequence
data signifies missing data, a gap, or any nucleotide base may
occur in that matrix position. For prealigned data sequence
gaps are specified by dashes.

NOTE

Continuous characters can be treated as such by assigning
the lower and upper bounds of the range as polymorphic
additive character states [21]. Although they will be opti-
mized simultaneously with all other characters, continuous
characters must be scored in a separate Hennig86 format
matrix with the heading "nstates cont"—an example of
this file format (ccm.ss) is available at the POY5 website
and is included into the POY5 installation package. http:
//www.amnh.org/our-research/computational-sciences/
research/projects/systematic-biology/poy. Consider a
continuous character winglength, the states of which are
ranges of measurements in hundredth of a millimeter, for
example 2.53-3.68 mm for a given terminal. A corresponding
character state in the additive character matrix (in Hennig86
format) is [253,368]. Because additive characters are integers,
such characters need to be re-scaled using the weightfactor
argument of transform. To scale the values, a transfor-
mation is applied to the character winglength as follows:
transform(names:("winglength"),(weightfactor:0.01)).

STRING Reads the file specified in the path included in the string argument.
A path can be absolute or relative to the current working directory (as
printed by pwd()). The file type is recognized automatically. Molecular
files are assumed to contain nucleotide sequences. Valid files to read
using this command are: tree files using parenthetical notation (Newick,
POY5 trees), Hennig86 files, Nona files, Sankoff character files as used
in POY 3, FASTA files (and virtually any file generated by Genbank),
and Nexus files. Only taxon names, trees, characters, and cost regimes
will be imported from each one of this files, no other commands are
currently recognized.

http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy
http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy
http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy
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Chromosome and genome type characters This set of arguments gov-
erns characters that are either multi-locus nucleotides sequences (chromosome)
or multi-locus, multi-chromosomal nucleotide sequences (genome). Chromo-
some sequences can be annotated or unannotated.

annotated:(STRING list) Specifies that the data listed in the string argu-
ment are chromosomal sequences with pipes (“ ”) separating individual
loci. This data type allows for locus-level rearrangements specified
by the command transform (Section 3.3.27). Locus homologies are
determined dynamically, but based on annotated regions [57]. (For a
sample script using this data type see tutorials 5.9 and 5.10.

chromosome:(STRING list) Specifies that the data in the files listed in
the string argument are chromosomal sequences without predefined
locus boundaries, i.e. unannotated chromosomes. Specifying that
imported sequences are chromosome type data enables the application
of parameter options that optimize chromosome-level events such as
rearrangements, inversions, and large-scale insertions and deletions
(including duplications). These parameter options (e.g. inversion cost)
are specified using the command transform (Section 3.3.27). Unlike
when using annotated data type, both locus-level and nucleotide-level
homologies are determined dynamically [10, 56] (see tutorial 5.8). If
chromosome sequences are imported as nucleotide type data, they
can be converted to chromosome type data using the seq_to_chrom
argument of transform (Section 3.3.27).

genome:(STRING list) Specifies that the data listed in the string argument
are multi-chromosomal nucleotide sequences with an at sign (“@”) sepa-
rating individual chromosomes. This data type allows for chromosome-
level rearrangements which are specified by the command transform
(Section 3.3.27). Chromosome homologies are determined using the
Mauve aligner [10] within the command transform (Section 3.3.27).
[Note: for genome character types, it is only possible to separate the
individual chromosomes and not the loci within these chromosomes. A
sample script using this data type can be found in tutorial 5.11.]

Custom alphabet type characters This set of arguments are for charac-
ters are those that employ a user-specified alphabet. These include characters
of the custom alphabet, as well as break inversion type.
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breakinv:(STRING list,tcm:(STRING),[LIDENT list]) An enhancement
of the data file type custom_alphabet (see below), allowing rearrange-
ment events. Syntactically, breakinv data type is identical to the
custom_alphabet data type. Three optional arguments are possible
(LIDENT list): level; init3d; and tiebreaker. These three arguments
can be used in conjunction with both breakinv and custom_alphabet
character types (see the argument custom_alphabet (Section 3.3.14)
below for a description of these arguments). Specifying that imported
sequences are breakinv type data enables the application to calculate
either locus breakpoint or locus inversion costs to these data. These
parameter options are specified using the command transform (Sec-
tion 3.3.27).

NOTE

Break Inversion characters differ from custom alphabet char-
acters, in that orientation of the alphabet characters can be
specified with Break Inversion characters. A tilde (“∼”) symbol
preceding an alphabet character indicates the negative orienta-
tion.

custom_alphabet(:STRING list,tcm:(STRING),[LIDENT list]) Reads
the data in the user-defined alphabet format. The first string argument
is the name of a data file(s) that contains custom-alphabet sequences
in FASTA format. The characters can be (but are not required to be)
separated by spaces. An example of a corresponding input file follows:

>Taxon1
alphabetagammadelta
>Taxon2
alphabetabetagammadelta
>Taxon3
alphabetabetadelta

The tcm refers to the custom-alphabet matrix that contains two parts:
an alphabet itself, where the alphabet elements are separated by spaces,
and a transformation cost matrix. The elements in an alphabet can be
letters, digits, or both, as long as one element is not a prefix of another
(“prefix-free”). For example, the following pairs of custom-alphabet
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elements are not valid because the first is a prefix of the second (which
would prevent the proper parsing of an input file): AB and ABBA or
122 and 122X. The transformation cost matrix contains the rows and
columns in which the positions from left to right and top to bottom
correspond to the sequence of the elements as they are listed in the
alphabet. An extra rightmost column and lowermost row correspond
to a gap. It is important that the cost matrix be symmetrical. An
example of a valid custom alphabet input file is provided below:

alpha beta gamma delta
0 2 1 2 5
2 0 2 1 5
1 2 0 2 5
2 1 2 0 5
5 5 5 5 0

In this example, the cost of transformation of alpha into beta is 2, and
cost of a deletion or insertion of any of the four elements costs 5.

Three optional arguments of custom_alphabet are possible ([LIDENT
list]): init3d; level; and tiebreaker.

init3d:BOOL This argument requires an obligatory boolean value,
namely true or false. init3d initiates a 3D matrix, but the
user should be aware that this option can consume a great deal of
memory.

level:(INTEGER,LIDENT) This argument determines the heuristic level
of the median sequence calculation. The user must define both the
level itself, as specified by the INTEGER, and the keep method, as
specified by the LIDENT (first, last, or at_random. If the LIDENT
is first, ties are broken (if the number of equally costly states is
greater than the level number) by choosing the first median state
examined; if last, the last state, and if at_random then uniformly
at random. The default level is 2 and keep method is first.
The maximum level of any dataset is equal to the alphabet size
+ 1.

tiebreaker:LIDENT This argument determines how ties among me-
dian states are chosen: first, last, and at_random. If first is
chosen, then the ties are broken (if the number of equally costly
states is greater than the level number) by choosing the first me-
dian state examined; if last, the last state, and if at_random
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then uniformly at random. The default choice method is first.

NOTE

As a rule, transformation cost matrices are employed at the transform
stage of the analysis. With prealigned and custom_alphabet char-
acters however, the cost matrix (tcm) needs to be read in along with
the data files.

Prealigned data This set of arguments specifies how certain characters,
namely sequences, amino acids and custom alphabet characters, are read as
prealigned. Prealigned data files must be of the same length. Because these
data are prealigned, affine gap costs can not be applied.

prealigned:(LIDENT:(STRING list)[,tcm:STRING ]) Specifies that the
data indicated in the STRING, of the type identified by the LIDENT
(i.e. aminoacid(s), custom_alphabet or nucleotides) are prealigned.
A transformation cost matrix, as defined in the tcm STRING argument
can be specified. If these are not specified, the default cost of tcm:(1,1)
will be assigned. (See the argument tcm (Section 3.3.27) of the command
transform.)

NOTE

By default, upon importing prealigned sequence data, all the
gaps are removed and the sequences are treated as dynamic
homology characters. To preserve the alignment the data must
be imported using the prealigned argument of the command
read.

prealigned:(LIDENT:(STRING list)[,tcm:(INTEGER,INTEGER)]) Specifies
that the input sequences are prealigned and should be assigned substitu-
tion and indel costs as defined by the tcm integers (INTEGER,INTEGER)).
(See the argument tcm (Section 3.3.27) of the command transform.)

Defaults

read() If no data files are specified, POY5 does nothing. If however, data
files are listed but character type is not indicated, POY5 automatically detects
data file types and interprets sequence files as nucleotides-type data.
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Examples

• read("/Users/andres/data/test.txt")
Reads the file test.txt located in the path /Users/andres/data/.

• read("28s.fas","initial_trees.txt")
Reads the file 28s.fas and loads the trees in parenthetical notation of
the file initial_trees.txt.

• read("SSU*","*.txt")
Reads all the files with names starting with SSU, and all the files
with the extension .txt. The types of the data files are determined
automatically.

• read(nucleotides:("chel.FASTA","chel2.FASTA"))
Reads the files chel.FASTA and chel2.FASTA, containing nucleotide
sequences.

• read(aminoacids:("a.FASTA","b.FASTA","c.FASTA"))
Reads the amino acid sequence files a.FASTA, b.FASTA, and c.FASTA.

• read("hennig1.ss","chel2.FASTA",aminoacids:("a.FASTA"))
Reads the Hennig86 file hennig1.ss, the FASTA file chel2.FASTA
containing nucleotide sequences, and the amino acid sequence file
a.FASTA. script

• read(annotated:("ch1.txt","ch2.txt"),chromosome:("ch3.txt"))
Reads three files containing chromosome-type sequence data. The se-
quences in two files, ch1.txt and ch2.txt, contain pipes (“ ”) sepa-
rating individual loci, whereas the sequences in the third (ch3.txt),
are without predefined boundaries. [Note: see tutorial 5.10, which
illustrates the transformation of these two data types in the same
analysis.]

• read(genome:("mt_genomes","nu_genomes"))
Reads two files containing genomic (multi-chromosomal) sequence data.

• read(breakinv:("BI_run1",tcm:"alphabet",level:1,tiebreaker:
first)
Reads the file, BI_run1, which contains data in custom alphabet format.
This data is defined in the tcm file, alphabet. The heuristic level of
median sequence calculation is set to 1. If ties among median states
are encountered, the first will be chosen.
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• read(custom_alphabet:("CA_run1",tcm:"alphabet",level:2,
tiebreaker:last))
Reads the file, CA_run1, which contains data in custom alphabet format.
This data is defined in the tcm file, alphabet. The heuristic level of
median sequence calculation is set to 2. If ties among median states
are encountered, the last will be chosen.

• read(prealigned:("18s.aln",tcm:(1,2)))
Reads the prealigned data file 18s.aln which was generated from
the nucleotide file 18s.FASTA using the the transformation costs 1 for
substitutions and 2 for indels.

• read(prealigned:(nucleotides:("*.nex"),tcm:"matrix1"))
Reads character data from all the Nexus files as prealigned data using
the the transformation cost matrix from the file matrix1.

See also

• report (Section 3.3.19)

3.3.15 recover

Syntax

recover()

Description

Recovers the best trees found during swapping, even if the swap were cancelled.
This command functions only if the argument recover (Section 3.3.26) were
included in a previously executed (in the current POY5 session) command
swap. Otherwise, it has no effect.

The trees imported by recover are appended to those currently stored
in memory.

Note that using recovered trees is not intended for temporary storage of
trees. It is useful only as an intermediary operation in a given part of a POY5
session. When other commands that require clearing memory are executed
(such as build, calculate_support, or another swap), the trees stored by
recover can no longer be retrieved.
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Examples

• recover()
If the command swap (executed earlier in the current POY5 session)
contained the argument recover, for example, swap(tbr,recover),
this command will restore the best trees recovered during swapping.

See also

• swap (Section 3.3.26)

3.3.16 rediagnose

Syntax

rediagnose()

Description

Performs a re-optimization of the trees currently in memory. This function is
useful for sanity checks of the consistency of the data. Its main usage is for
the POY5 developers. This command does not have arguments.

Arguments

clear Specific for likelihood characters, this rediagnoses the tree, clearing
the optimized model parameters and branch lengths. Additional opti-
mizations are performed after diagnosis.

preserve Performed during a likelihood search, this rediagnoses the tree,
keeping the current model parameters and branch lengths. Additional
optimizations are performed after diagnosis.

Examples

• rediagnose()
See the description of the command.

3.3.17 redraw

Syntax

redraw()
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Description

Redraws the screen of the terminal. This command is only used in the
ncurses interface, other interfaces ignore it. redraw clears the contents of the
Interactive Console window but retains the contents of the other windows. It
does not affect the state of the search and the data currently in memory.

Examples

• redraw()
See the description of the command.

3.3.18 rename

Syntax

rename([argument list])

Description

Replaces the name(s) of specified item(s) (characters or terminals). This
command allows for substituting taxon names and helps merging multiple
datasets without modifying the original data files. More specifically, it can
be used, for example, (1) for housekeeping purposes, when it is desirable to
maintain long verbose taxon names (such as catalog or GenBank accession
numbers) associated with the original data files but avoid reporting these
names on the trees (although see the note on the usage of a “$” in the taxon
name below); (2) to provide a single name for a terminal in cases where the
corresponding data are stored in different files under different terminal names;
and (3) to change an outdated or invalid terminal name.

The command consists of a terminal or character identifier followed by a
comma and then by either a string containing a synonymy file or a pair (or
pairs) of strings containing the names of items being renamed.

In order to change these names, the command rename must be executed
before importing the data files (see read (Section 3.3.14)) that contain the
taxa that are to be renamed.
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NOTE

Once the command rename is applied, subsequent commands must
refer to the terminals using the new, substitute names. This is
critical, for example, when importing a terminals file using the com-
mand select (Section 3.3.23) or specifying a root using the com-
mand set (Section 3.3.24).

NOTE

POY5 provides an option that allows the commenting out of portions of
a taxon name in the imported data file. This is achieved by inserting
a dollar sign (“$”) before the region of text that the user wishes to
comment out. As an example, placing a “$” before the GenBank
information in the taxon name Ablepharus_budaki$_AY561421_16S
will comment out this information and the taxon name will be read
as Ablepharus_budaki by the program.

Arguments

Identifiers The identifiers specify whether terminals or characters are being
renamed. An identifier must precede the subsequent arguments.

characters Specifies that the subsequently items to be renamed are charac-
ters.

terminals Specifies that the subsequently items to be renamed are termi-
nals.

Specifying items to be renamed These arguments allow the user to
specify the items to be renamed either in a group (by importing a synonymy
file) or individually (by using a pair of string arguments). The former is useful
when there are multiple items to be renamed and/or when it is desirable to
substitute a single name for multiple ones.

STRING Specifies the name of the file (a synonymy file) that contains the
list of terminals or characters to be renamed. The synonymy file has
the following structure: each line contains a list of synonyms (two or
more) separated by spaces. The name of the item listed first will be
substituted for all the subsequently listed names. Consider, for example,
the synonymy file below:
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Figure 3.3: A synonymy file containing lists of terminal taxa to be remained.

When this file is imported using rename, the taxon Cnemidophorus_-
deppei will be remained as Aspidoscelis_deppei and both Chamaeleo_-
weidersheimi and Chamaeleo_wiedersheimi will be renamed as Trio-
ceros_wiedersheimi etc:

(STRING, STRING) Specifies the names of individual items to be renamed.
The first item (character or taxon) is renamed as the second item.
Examine the renaming script below:

Figure 3.4: A example of a “renaming" script that is run prior to importing
the data files.

The above script will perform the exact same renaming function as that
of the previous example (Figure 3.3). Generating scripts such as this
are recommended when more than a single taxon needs to be renamed.
This script is employed using the command run.

NOTE

Note that when rename is applied by specifying pairs of syn-
onyms in the command’s argument (STRING, STRING), the sub-
stitute name is listed second. This is in contradistinction to a
synonymy file, where the substitute name appears first and is
followed by one or more synonyms.
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Examples

• rename(terminals,"synfile")
This command renames terminal names contained in the synonymy file
synfile in all subsequently imported data files.

• rename(terminals,("Mytilus_sp","Mytilus_edulis"))
This command renames the terminal taxon Mytilus_sp as Mytilus_-
edulis in all subsequently imported data files.

• rename(terminals,("Chamaeleo_weidersheimi","Trioceros_wieder
sheimi"),("Chamaeleo_wiedersheimi","Trioceros_wiedersheimi"))
This command renames the terminal taxa Chamaeleo_wiedersheimi
and Chamaeleo_weidersheimi (a misspelling of the previous name) as
Trioceros_wiedersheimi in all subsequently imported data files.

3.3.19 report

Syntax

report([argument list])

Description

Outputs the results of current analysis or loaded data in the POY Output
window of the ncurses interface, the standard output of the flat interface, or
to a file. To redirect the output to a file, the file name in quotes and followed
by a comma must be included in the argument list of report. All arguments
for report are optional. This command allows the user to output information
concerning the characters and terminals, diagnosis, export static homology
data, implied alignments, trees, as well as other miscellaneous arguments.

Arguments

Reporting to files

new:STRING Specifies the name of the file to which all types of report outputs,
designated by additional arguments, are printed. If no additional
arguments are specified, the data, trees, and diagnosis are reported to
that file by default. In this case, a new file is created or the previously
existing file of the same name is overwritten.
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STRING Specifies the name of the file to which all types of report outputs,
designated by additional arguments, are printed. If no additional
arguments are specified, the data, trees, and diagnosis are reported to
that file by default. By default files are appended to the report, rather
than overwritten.

A string (text in quotes) argument is interpreted as a filename. There-
fore, "/Users/andres/results1.tre" represents the file results1.tre
in the directory /Users/andres. If no path is given, the path is relative
to the current working directory as printed by pwd().

Characters and terminals This set of arguments reports the current
status of terminals and characters from the imported data files.

cross_references[:identifiers[:STRING]] Reports a table with termi-
nals represented in rows, and the data files in columns. A plus sign (“+”)
indicates that data for a given terminal is present in the corresponding
file; a minus sign (“–”) indicates that it is not. It is highly recommended
that the user report a cross_references file having imported the data
into POY5. Not only is this argument is a very useful tool for visual
representation of missing data, reporting all the data to a cross ref-
erences file can also highlight inconsistencies in the spelling of taxon
names in different data files.

Under default settings, cross-references are reported for all imported
data files. To report cross-references for some of the fragments within
a given file, a single character, or a subset of characters, optional argu-
ments (identifiers) must be specified. A combination of a character
identifier (see command select (Section 3.3.23)) and the file names
(specified in the the string value) is used to select specific data files to
be cross-referenced. For example, to only report information for file1
type cross_references:names:("file1").

The argument cross_references:all generates a table that shows
presence and absence of fragments contained within each file. If each
data file contains a single fragment, executing cross_references:all
is equivalent to executing cross_references.

By default, the cross-reference table is printed on screen or to an
output file, if specified. The reported cross references file is output
as a plaintext document, which can then be imported into a spread-
sheet application such as Microsoft Excel or Apple Numbers for easier
viewing.
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data Outputs a summary of the input data. More specifically, POY5 will
report the number of terminals to be analyzed, a list of included
terminals with numerical identification, a list of synonyms (if specified),
a list of excluded terminals, the number of included characters in
each character-type category (i.e. additive, non-additive, Sankoff, and
molecular) with the corresponding cost regimes, a list of excluded
characters, and a list of input files. If the report is directed to a file
with extension “nex” or “nexus” then the output is suitable for a nexus
file (including the NEXUS header). Hennig format is produced if the
report is directed to a file with extension “ss” or “hen” or “hennig”.

lkmodel Reports the likelihood model, costs, and tree length for the charac-
ters in memory in a style similar to that of PHYLIP.

searchstats Outputs a summary of the results of the last search command,
including the number of builds, fuses, ratchets, and the costs of the
trees found.

seq_stats:identifiers Outputs a summary of the sequences specified in
the argument value, for all taxa. The summary includes the maximum,
minimum, and average length and distance for all terminals. In this
case, identifiers include file names, characters, codes etc:

terminals Reports a list and number of terminals included and excluded
per input file. Use the command select (Section 3.3.23) for including
and excluding terminals.

treestats Reports the number of trees in memory for each cost.

treecosts Reports the cost of each tree separated by colons.

Diagnosis This argument will output the diagnosis.

diagnosis Outputs the diagnosis of each tree on screen or redirects it to a
file, if specified. If the extension .xml is appended to the name of the
output file, the diagnosis is reported in XML format, rather than in
simple text format.

Exporting static homology data The following commands export the
static homology characters currently in memory.
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nexus Produces a file in the Nexus format that contains all the characters
currently in memory. In order to export an implied alignment as a
Nexus file, the characters must first be transformed into static characters
using the transform command (see the Hennig86 example in tutorial
5.2):

transform(all,(static_approx))
report("report.nexus",nexus,trees:(nexus))

NOTE

To generate a file that contains implied alignments only for
a subset of fragments, an identifier must be included in the
argument list of transform. For example,

transform(names:("fragment_1","fragment_2"),
(static_approx))
report("myfile.ss",phastwinclad)

will produce Hennig86 files only for fragment_1 and fragment_-
2. The resulting file can be imported into other programs, such
as WinClada. This is equivalent to the phastwincladfile
command in POY3.

phastwinclad Produces a file in Hennig86 format that contains the additive
and nonadditive characters currently in memory. In order to export
an implied alignment as a Hennig86 file, the characters must first be
transformed into static characters using the transform command (see
example in tutorial 5.2):

transform(all,(static_approx))
report("report.ss",phastwinclad)

Implied alignments This set of arguments outputs implied alignments [64].

fasta:identifiers The same as implied_alignments (Section 3.3.19) but
no additional headers are added, producing a valid FASTA file. Intended
for easy automation, by producing a file that other programs can read
immediately.

ia[:identifiers] Synonym of implied_alignments.
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implied_alignments[:identifiers] Outputs the implied alignments of
the specified set of characters in FASTA format. The optional value of
the argument specifies the characters included in the output, using the
same identifiers described for the character specification in the entry for
the command select (Section 3.3.23). If no characters are specified,
then the implied alignment of all the sequence characters is generated.
The output is reported on screen unless an output file (in parentheses)
is specified, preceding the command name and separated from it by a
comma. This argument is synonymous with the argument ia.

Trees This set of arguments outputs tree representations in parenthetical,
ascii (simple text), or PDF formats. The arguments specify the types of tree
outputs. They include actual trees resulting from current searches, or trees
imported from files, their consensus trees, or trees displaying support values.

To select the root terminal in the tree representation, the command set
(Section 3.3.24) is used.

Most analyses produce more than a single tree and it is often desirable
to report only some of them. To report particular trees (for instance all
optimal trees, randomly-selected trees, or all unique trees, etc.), first the
command select (Section 3.3.23) must be applied to specify (select) the
desired trees from all those stored in memory.

all_roots In a tree with n vertices (and therefore n− 1 edges), calculates
the cost of the n− 1 rooted trees as implied by a root located in the
subdivision vertex at each edge in the unrooted tree in memory.

asciitrees[:collapse[:LIDENT ]] Draws ascii character representations
of trees stored in memory. The argument collapse will collapse
branches on the basis of the LIDENT specified (see collapse (Sec-
tion 3.3.19)).

clades:STRING Output a set of Hennig86 files. Each file, named file.hen,
where “file” is whatever string you pass to this function contains in-
formation on each clade for one of the trees currently stored. This is
similar to the utility jack2hen of POY3.

consensus[:INTEGER ] Reports the consensus of trees in memory in paren-
thetical notation. If no integer value is specified, a strict consensus is
calculated [43]; if an integer value is specified, a majority rule consensus
is computed, collapsing nodes with occurrence frequencies less than the
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specified integer [32]. If a value less than 51 is specified, POY5 reports
an error.

graphconsensus[:INTEGER ] This argument is the same as consensus ex-
cept that the trees are reported in graphical format, either in the ascii
format on screen or in the PDF format if redirected to a file.

graphdiagnosis Output the diagnosis in PDF format. The PDF is com-
pressed, and contains the trees and links to see the diagnosis of each
vertex in the tree.

graphsupports[:argument] This command outputs a tree with support
values that have been previously calculated using the calculate_-
support (Section 3.3.2) either on screen in ascii format, or, if specified,
to a file in PDF format. The argument values are the same as for
supports (i.e. bremer, jackknife, and bootstrap) (see below).

graphtrees[:collapse[:LIDENT ]] This argument is similar to trees ex-
cept that the trees are reported in graphical format, either in the ascii
format on screen or in the PDF format if redirected to a file. The
argument collapse will collapse branches on the basis of the LIDENT
specified (see collapse (Section 3.3.19)).

supports[:argument] Outputs a newick format representation of a tree
with the support values has previously been calculated using the com-
mand calculate_support (Section 3.3.2), either to the screen or to
a file (if specified). If no argument is given, all calculated support
values are printed. The arguments bremer, jackknife, and bootstrap
specify which type of support tree to report.

To print the Bremer supports of the trees in memory, using as
reference trees that are stored in a file, bremer accepts an optional
string argument (as in report(supports:bremer:("file1.txt",
"file2.txt")). The argument’s value specifies the files containing
lists of trees and costs (as those generated by visited (Section 3.3.26)),
that should be used with their annotated cost to assign the Bremer
support values.

To print the Bremer supports of a tree that does not exists in
memory (or a consensus tree) stored in a file, bremer will accept the
value of_file:(STRING, INTEGER, files), where the first argument
value (STRING) is the file containing the tree for which Bremer supports
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should be computed, the second argument (INTEGER) is the cost of the
tree, and the files is that described in the previous paragraph.

If no input file is given, or if bootstrap or jackknife are requested,
then the necessary information must have been calculated using the ar-
gument calculate_support (Section 3.3.2). The arguments jackknife
and bootstrap accept an optional argument with two possible values:
individual, consensus, or a STRING.

The argument individual reports the support value for each tree
held in memory: if there are a hundred trees stored in memory, for each
one, the support values for each tree are reported. consensus generates
a “consensus” tree, with the clades that have support higher than 50
percent. STRING labels the branches in the input trees contained in
the input file located in the path of the STRING (e.g. to assign support
values to the branches of a consensus tree). The default behavior, when
no individual or consensus value is provided, is individual.

trees:(argument list) Outputs the trees in memory in parenthetical nota-
tion. The argument trees receives an optional list of values specifying
the format of the tree that has to be generated. Unless hennig is
specified in the list of values, trees uses newick format in the tree
output. The valid optional arguments are:

branches[:LIDENT ] Reports a tree with likelihood or parsimony
branch lengths included. The optional LIDENT values single,
min or max are available: if single (the default), the branch
length is based on the single assignment of HTU states; if min,
the length is based on the minimum possible length; and if max,
the length is based on the maximum possible length.

collapse[:LIDENT ] The degree of collapse is determined by the lident
specified. If single or true, a collapse will occur if the length of
the single assignment on a branch is zero; if min the branches are
collapsed if the minimum length is zero–this can potentially over-
collapse nodes; if max branches are collapsed if the maximum length
is zero, i.e. identical, unambiguous character state reconstructions
on a branch–this causes minimal collapsing; if false, no collapsing
will occur. For parenthetical trees, the default is false, while for
trees that are ‘drawn’, i.e. graphtrees or ascii trees, the default is
single or true.
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hennig Prepends the tread command to the list of trees and separates
them with a star; this format is suitable for Hennig86, NONA,
and TNT files.

margin:INTEGER Sets the margin width of the generated trees.

newick Outputs the trees in the Newick format, with the terminals
separated with commas, and trees separated with semicolons.

nexus Outputs the trees in the Nexus format, inside a TREE block.

NOTE

The hennig and newick arguments are mutually exclusive.

nomargin Outputs the trees in a single line. This is useful for some
programs (such as TreeView) that cannot read trees broken in
several lines.

total Includes the total cost of a tree in square brackets after each
tree.

If the report is directed to a file with extension “nex” or “nexus”
then the output is suitable for a nexus file (trees inside a TREES
block). Hennig format is produced if the report is directed to a file
with extension “ss” or “hen” or “hennig”. In these two cases, all other
formatting options are ignored.

Other arguments

ci Calculates the ensemble consistency index (CI [13, 31]) for additive,
and nonadditive characters. Dynamic homology characters are ignored
in calculating the CI, therefore, the dynamic homology characters
must be converted to static homology characters using the argument
static_approx of the command transform (Section 3.3.27).

memory Reports on screen, the statistics of the garbage collector. For a
precise description of each memory parameter, see the Objective Caml
documentation.

ri Calculates the ensemble retention index (RI; [13]) for additive, and
nonadditive characters. Dynamic homology characters are ignored in
calculating the RI, therefore, the dynamic homology characters must be
converted to static homology characters using the argument static_-
approx of the command transform (Section 3.3.27).
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NOTE

To gauge the amount of time it takes POY5 to perform a com-
mand, setting a timer between commands is useful:

read("Biv.fas")
report(timer:"Load Time")
build(1)
report(timer:"Build Time")

the output will look something like:

Information: Reading file Biv.fas of type input
sequences
Information: The file Biv.fas contains sequences of
5 taxa, each sequence holding 1 fragment.
Status: Loading Trees Finished
Load Time: 0.0128080844879
Status: Wagner: 2 of 5 – Wagner tree with cost 54.
Status: Wagner: 3 of 5 – Wagner tree with cost 77.
Status: Wagner: 4 of 5 – Wagner tree with cost 82.
Status: Wagner Finished
Status: Building Wagner Tree Finished
Status: Running Pipeline: 1 of 1 – Estimated
finish in 0 s
Status: Running Pipeline Finished
Build Time: 0.14551615715.

In this example, the timer outputs information relating to the
time it took POY5 to load the data file and also the time taken
to build one tree.

script_analysis:STRING Reports the order in which commands listed of
the imported script (specified by the string argument) are going to be
executed. Unlike executing individual commands interactively, when
commands are submitted in a script, POY5 determines the logical in-
terdependency of operations and processes the commands in the order
that yields the same results as if they were executed sequentially. This
substantially optimizes parallelization and reduces memory consump-
tion.

The colored output in the POY Output window of the ncurses
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interface facilitates reading the output of script_analysis: red lines
mark hard constraints that allow neither parallelization nor memory
optimizations, blue lines mark constraints that allow the program to
pipeline commands in parallel, and green lines mark fully parallelizable
commands. When POY5 is compiled with parallel off, all the operations
are sequential, therefore, each potentially parallel operation is done as
sequential repetitions of the subscripts described in the output of the
command, reducing memory consumption.

timer:STRING Reports the value and the user time (in seconds) elapsed
between two consecutive timer reports. The string value provides a
label (typically a textual description) that precedes the time report in
the output produced. The first timer report displays the time elapsed
since the beginning of the POY5 session. This command is useful for
monitoring the execution time of specific tasks.

xslt:(STRING,STRING) Applies a user-defined xslt stylesheet to the XML
output. The first string is the filename of the output, the second string
is the name of the stylesheet requested to generate it.

NOTE

Extensible Stylesheet Language Transformations (XSLT) are
used for the transformation of XML output into other formats.
Because the XML output contains all the information regarding
data and trees, using XSLT stylesheets greatly expand the capa-
bilities of POY5 to use and display results. Examples of potential
applications includes graphical display of trees with proportional
branch lengths, integration of tree topologies with geographical
coordinate data for spatial mapping, and generating input files
for other programs.

Defaults

report(data,diagnosis,trees) By default, POY5 will print on screen the
following items: the tree(s) in parenthetical notation with corresponding tree
cost(s), diagnosis of each tree, and a graphical representation on the tree(s)
in ascii format. This output can be re-directed to a file by specifying a file
name enclosed in quotation marks, for example: report("filename").
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Examples

• report("script_analysis",script_analysis:"/Users/runs/
script1.poy")
This command produces the file script_analysis that lists the com-
mands from the input script file script1.poy in the order that optimizes
parallelization and memory consumption. In this example the com-
plete path (/users/datafiles/script1.poy) is provided, which is not
necessary if the directory containing the file script1.poy has already
been assigned using the command cd (Section 3.3.4) in the same POY5
session.

• report("my_results")
This commands outputs the data, diagnosis and trees (the default) to
the file my_results. Because no path is specified, the file is located in
the current working directory.

• report(data)
This command displays on screen a list of included and excluded
terminals, their names and codes, gene fragments, synonyms, file names,
and other relevant data.

• report("Bivalve_data.txt",data)
This command performs the same operation as mentioned in the previ-
ous example, but rather than reporting the data to the screen of the
output window, the data is saved in the file "Bivalve_data.txt" in
the current working directory.

• report(treestats)
This example displays on screen the costs of all trees in memory and
the number of trees for each cost.

• report("filename",treestats)
This commands outputs the costs of all trees in memory and the number
of trees for each cost to a file filename.

• report("filename_cr.txt",cross_references)
This command outputs the file filename_cr.txt, which indicates the
presence and absence of all the data contained in all the input files.

• report(cross_references:names:("file1","file3"))
This command produces a table showing presence ("+") and absence
("–") of data corresponding to all terminals contained in files file1
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and file3. Since an output file is not specified, the table is displayed
on screen.

• report("taxa",terminals)
This command generates a file taxa that contains the lists and numbers
of excluded and included terminals for each of the previously imported
data files.

• report(trees)
This command displays (on screen) the trees in memory in parenthetical
notation with terminals separated by commas. By default, collapsing
occurred if the length of the single assignment on a branch was zero.

• report(trees:(total))
This command produces the same output as the example above but
also includes the total tree cost in square brackets following each tree.

• report("Run2",trees:(total,branches:(collapse:false)))
This command produces a file Run2 that contains all trees in parenthet-
ical notation, with the total tree cost in square brackets following each
tree. Branch lengths will also be reported. In generating these trees,
zero length branches were not collapsed.

• report("filename",trees:(collapse:false,newick))
This command produces a file filename that contains all trees in Newick
format with zero-length branches not collapsed.

• report("filename",graphtrees)
This command saves all trees in memory in PDF format to the file
filename.pdf.

• report(asciitrees,"file1",trees:(newick,nomargin),"file2",
graphtrees)
This command displays a tree in ascii format on screen and outputs to
file1 trees with zero-length branches collapsed in Newick format in a
single line (using no margin, the format compatible with TreeView). It
also writes to file2.pdf the graphical representation of these trees in
PDF format.

• report("hennig.ss",phastwinclad,trees:(hennig,total))
This command outputs all the static homology characters, including
their cost regime, in the file hennig.ss; then append to the same file
the trees currently in memory using the Hennig format, including the
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total cost of each tree in square brackets. The generated hennig.ss is
compatible with NONA, TNT, and Hennig86.

• report("results",data,diagnosis,consensus:75,consensus,
"consensus",graphconsensus)
This command reports the requested types of outputs (i.e. reports on
the data, diagnosis, and 75 percent majority-rule consensus trees and
strict consensus in parenthetical notation) to the file results. It also
outputs a strict consensus tree in PDF format to the file consensus.pdf.

• report(graphsupports,"bremertree",graphsupports:bremer)
This command reports on screen all previously calculated support values
placed at the nodes of ascii trees and outputs to file the bremertree.pdf
only the tree(s) with Bremer support values.

• report(implied_alignments)
This command reports the implied alignments for all dynamic homology
characters on screen. This is equivalent to report(ia).

• report("align_file",ia:names:("SSU","LSU"))
This command generates the file align_file that contains the implied
alignments only for characters contained in data files SSU and LSU.

• report("swapping",timer:"swap_end")
This command generates the file swapping that contains the string
swap_end followed by the number of seconds (in decimals) elapsed since
the execution of the previous timer argument.

• report("new_tree_diagnosis.xml",diagnosis)
This command reports the diagnosis to the new_tree_diagnosis.xml
file in XML format.

See also

• calculate_support (Section 3.3.2)

3.3.20 run

Syntax

run(STRING)



3.3. COMMAND REFERENCE 117

Description

Runs POY5 script file(s). The filenames must be included in quotes and, if
multiple files are included, they must be separated by commas. The script-
containing files are executed in the order in which they are listed in the string
argument. Executing scripts using run is useful in cases when operations take
a long time or many scripts need to be executed automatically, e.g. when
conducting a sensitivity analysis [58]. An in depth description of creating and
running scripts is provided in the Quickstart. There are no default settings
of run.

NOTE

Note that if any of the scripts contain the commands exit() or
quit(), POY5 will quit after executing that file. Therefore, if multiple
files are submitted, only the last one must contain exit() or quit().

Examples

• run("script1","script2")
This command executes POY5 command scripts contained in the files
script1 and script2 in the same order as they are listed in the list of
arguments of run. Recall: If the last line of script1 ends in quit or
exit, POY5 will finish before script2 can be run.

See also

• exit (Section 3.3.6)

• quit (Section 3.3.13)

3.3.21 save

Syntax

save(STRING [,STRING ])

Description

Saves the current POY5 state of the program to a file (POY5 file). The first,
obligatory string argument specified the name of the POY5 file. The second,
optional string argument specifies a string included in the POY5 file, that can
be retrieved using the command inspect (Section 3.3.9).
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POY5 files are not intended for permanent storage; they are recommended
for temporary storing of a POY5 session by a user, checkpointing the current
state of a search to avoid lost work in case the computer or the program
itself fails, or to report bugs. POY5 will also automatically generate the file
in many cases when a terminating error occurs (an important exception is
out-of-memory errors). The format of these files might differ among different
versions of POY5; consequently, these files might not be interchangeable
between all the versions of the program.

Examples

• save("alldata.poy")
This command stores all the memory contents of the program in the
file alldata.poy located in the current working directory, as printed
by pwd().

• save("alldata.poy","Total_evidence_data")
This command performs the same operation as described in the example
above, but, in addition, it includes the string Total_evidence_data
with the file alldata.poy, which can later be retrieved using the
command inspect (Section 3.3.9).

• save("/Users/andres/alldata.poy","Total_evidence_data")
This command performs the same operation as the command described
above with the important difference that the file alldata.poy gener-
ated in the directory /Users/andres/ instead of the current working
directory.

See also

• inspect (Section 3.3.9)

• load (Section 3.3.10)

3.3.22 search

Syntax

search([argument list])
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Description

search implements a default search strategy that includes tree building,
swapping using TBR, perturbation using ratchet, and tree fusing. The
strategy involves specifying targets for a driven search, such as maximum and
minimum execution times, maximum allowed memory consumption for tree
storage, minimum number of times the shortest tree is found, and an expected
cost for the shortest tree. When executing search using parallel processing,
trees are exchanged upon the completion of the command (after fusing).
Because the lowest cost unique trees generated are selected and stored at
the end of a search (defined by the user with max_time), aggressive use of
this command in a parallel environment consists of including few sequential
search commands that will allow the processes to exchange trees and add
the pool of selected best trees to subsequent iterations of the command (see
the example for parallel processing).

Trees that exists in memory prior to the search command are included
in the set of trees available for the fuse but are not swapped.

NOTE

The total execution time of a Timed Search will exceed the search time
specified by the user, as once the search has been completed, time is
required to write the resulting trees to a file and/or to exchange trees
between computer nodes, if the analysis was performed in parallel.

Arguments

constraint:STRING A complete description of this argument can be seen
in constraint (Section 3.3.1) associated with the command build.

hits:INTEGER Specifies the minimum number of times that the minimum
cost must be reached before terminating the search. The hits argument
is not used in parallel processing.

max_time:FLOAT:FLOAT:FLOAT Specifies the maximum total execution time
for the search. The time is specified as days:hours:minutes. For exam-
ple, executing the search for 1.5 days can be expressed as 1:12:00 or
1.5:00:00.

memory:LIDENT:FLOAT Specifies the maximum amount of memory allocated
for the stored trees during the search per processor. POY5 attempts to
consume memory within the specified limit, but it may surpass it in
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certain operations (most notably during the ratchet). The LIDENT value
expresses the units of memory (gb for Gigabytes and mb for Megabytes),
whereas the float value specifies the actual value. Keeping memory
consumption within the limit is approximate and is used as a rough
guide to POY5, preventing the program from overflowing the memory.
Furthermore, it is important to note that when running POY5 in parallel
the maximum amount of memory specified by the user is allocated to
each process. Under certain circumstances, however, POY5 may use
more memory to avoid program failures.

NOTE

In order to maximize computational efficiency when using
search in parallel processing environments the hits argument
is ignored. However, a diverse set of trees which include the
current best trees found among all the processes is desirable to
improve the potential of tree fusing.

POY will only exchange trees between processes at the end
of each search command. Therefore, to guarantee that separate
processes seed each other with the best trees they have found
every number of hours, it is advisable to use few successive
search commands when executing the program in parallel. Each
search will still be run in parallel, but after each one, trees will
be exchanged between processors, to initiate each successive
round of search.

min_time:FLOAT:FLOAT:FLOAT Specifies the minimum total execution time
for the search. The time is specified as days:hours:minutes. This
command is useful when the number of hits is specified but the actual
cost of the tree is unknown. In this case, POY5 performs the search for
at least the time specified by this argument.

target_cost:FLOAT Specifies the upper limit for the cost of the shortest
tree.

visited[:STRING ] For a complete description see visited (Section 3.3.26).
Note that this argument has a significant execution time cost, as
outputting the trees becomes a bottleneck for the application.
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Defaults

search(max_time:0:1:0,min_time:0:1:0,memory:gb:2) Under default pa-
rameters, the program performs a search for at most one hour using at most
2 GB of memory. [Note: If the user does not specify the value of max_time,
the search will be terminated after one hour.]

Examples

• search(hits:100,target_cost:385,max_time:1:12:13)
This command will attempt as many builds, swaps, ratchets, and tree
fusings as possible within the specified time of 1 day, 12 hours, and 13
minutes, finding at least 100 hits (whichever occurs first, the time limit
or the number of hits), knowing that the expected cost of the best hits
is at most 385 steps.

• For Parallel Implementation of search
search(max_time:0:6:0)
select()
search(max_time:0:6:0)
select()
search(max_time:0:4:0)
select()
This series of commands will attempt as many builds, swaps, ratchets,
and tree fusings as possible within the specified total time of 16 hours.
Trees are exchanged among processors at the end of each search and
the best unique trees are then selected and included in the following
search command.

• search(max_time:00:48:00,constraint:"best_tree.tre")
This command will attempt as many builds, swaps, ratchets, and tree
fusings within the specified time period of 48 hours. In this example,
however, these operations are constrained by the tree specified in the
file best_tree.tre.

• search(max_time:00:48:00,visited:"visited.txt")
This command will attempt as many builds, swaps, ratchets, and tree
fusings as possible within the specified time of 2 days. During this time,
every visited tree and its cost during the local search will be stored in
the file visited.txt.
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See also

• build (Section 3.3.1)

• swap (Section 3.3.26)

• transform (Section 3.3.27)

3.3.23 select

Syntax

select([argument])

Description

Specifies a subset of terminals, characters, or trees from those currently loaded
in memory, to use in subsequent analysis.

Arguments

Characters and terminals selection Specifies terminals and characters
to use in subsequent analysis. The arguments in this group specify whether
terminals or characters are being selected. Identifiers are used to specify
which characters or terminals are being selected (see the Character and
terminal identifiers argument group below for the description of methods for
selecting specific terminals or characters).

characters Specifies that the subsequently listed identifiers refer to charac-
ters to be selected.

STRING Selects terminals listed in the file specified by the string argument.

terminals Specifies that the subsequently listed identifiers refer to terminals
to be selected. By default, POY5 assumes that the specification refers
to terminals. For example, to analyze only those terminals listed in the
file opiliones using the character data currently loaded in memory,
use the command select(files:("opiliones")). This command is
equivalent to select(terminals,files:("opiliones")).

When the command is executed, the list of selected terminals is
printed on screen. terminals is only valid as an argument of commands
select and rename (Section 3.3.18).
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NOTE

Note that once specific terminals and/or characters are selected,
the excluded data cannot be restored. To be able to reconstitute
the original data set or to experiment with various character
and terminal selections within a given POY5 session, employ the
commands store (Section 3.3.25) and use (Section 3.3.28).

Character and terminal identifiers Identifiers specify which characters
or terminals are analyzed. In addition to the command select, identifiers
are used as arguments for other commands that require selection of specific
terminals or characters, such as commands report (Section 3.3.19) and
transform (Section 3.3.27).

all Specifies all characters or terminals. Unless a terminals or characters
file is selected, all the data is read by the program.

codes:(INTEGER list) Specifies the codes of characters or terminals. The
codes are unique numbers that are generated by POY5 when data files
are first imported. The codes can be reported using the argument data
(Section 3.3.19) of the command report. The codes are generated anew
when a given data file is reloaded; therefore, they can be used only
within a current POY5 session.

dynamic Specifies the dynamic homology characters.

files:(STRING list) Specifies the filename list containing lists of terminals
or characters.

missing:INTEGER Selects terminals or characters to be included in the
analysis based on the proportion of missing data. The integer value
([0,100]) sets the maximum percentage of missing data in the analysis.
Terminals or characters that have fewer missing data than that of the
defined value are included in the analysis (compare with not missing
below)

names:(STRING list) Specifies the names of the characters or terminals.

not codes:(STRING list) Specifies the characters or terminals other than
those the codes of which are listed in the string list.



124 CHAPTER 3. POY5 COMMANDS

NOTE

For dynamic homology characters, the missing data refer to
sequence fragments, whereas for static characters it refers to
individual matrix positions. Therefore, when excluding termi-
nals with missing data, the resulting set of selected terminals
depends on the character type and might, or might not, be
identical. For example, if a data file (containing sequences cor-
responding to a single fragment) were to include a very short
sequence, this sequence is not treated as missing data regardless
of its length. This is because in the context of dynamic homo-
logy a fragment, rather than an individual nucleotide position,
constitutes a character. On the other hand, if the same data
are treated as static characters, the taxon represented by a very
short sequence might be excluded if the length of the sequence
exceeds the threshold defined by the value of missing.

not missing:INTEGER Selects terminals or characters to be included from
the analysis based on the proportion of missing data. The integer value
([0,100]) sets the minimum percentage of missing data. Terminals or
characters that have more missing data than defined by the value are
included in the analysis. In effect, this selects a complement of data to
the argument missing (compare with missing above).

not names:(STRING list) Specifies the characters or terminals other than
those the names of which are listed in the string list.

static Specifies the static homology characters.

Select trees The following arguments are used to select trees from the
pool of trees currently in memory.

best:INTEGER Selects the number of best trees specified by the integer
value. Best trees are not equivalent to optimal trees because best trees
can include suboptimal trees in case the value of best exceeds the
number of optimal (minimal-cost) trees. If the number of optimal trees
exceeds the value of best, only a subset of optimal trees (equal to the
value of best is selected in an unspecified order).

optimal Selects all trees of minimum cost.
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random:INTEGER Randomly selects the number of trees specified by the
integer value irrespective of cost.

NOTE

There is no special command in POY5 to clear trees from mem-
ory. However, selecting zero best trees using the command
select(best:0) effectively removes all trees currently stored
in memory.

unique Selects only topologically unique trees (after collapsing zero-length
branches) irrespective of their cost.

within:FLOAT Selects all optimal and suboptimal trees the costs of which
do not exceed the current optimal cost by the float value. For example,
if the current optimal cost is 507 and the float value of within is 3.0,
all trees with costs 507–510 are selected.

Defaults

select(unique,optimal) By default POY5 selects all unique trees of optimal
(best) cost. The remainder of the trees are deleted from memory.

Examples

• select(terminals,names:("t1","t2","t3","t4","t5"),
characters,names:("chel.aln:0"))
This command selects only terminals t1, t2, t3, t4, and t5 and use
data only from the fragment 0 contained in the file chel.aln.

• select(terminals,files:("STL_terminals.txt"))
This command selects only the terminals specified in the file STL_-
terminals.txt". In the data files that are subsequently imported,
taxa that do not appear in this terminals file will be excluded from the
analysis.

• select(terminals,missing:30)
This command excludes from subsequent analyses all the terminals that
have fewer than 30 percent of characters missing. The list of included
and excluded terminals is automatically reported on screen. scr
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• select(optimal)
Selects all optimal (best cost) trees and discards suboptimal trees from
memory. The pool of optimal trees might contain duplicate trees (that
can be removed using unique).

• select(unique,within:2.0)
This command selects all topologically unique optimal and suboptimal
trees the cost of which does not exceed that of the best current cost
by more than 2. For example, if the best current cost is 49, all unique
trees that fall within the cost range 49–51 are selected.

See also

• characters (Section 3.3.23)

• transform (Section 3.3.27)

3.3.24 set

Syntax

set([argument list])

Description

Changes the settings of POY5. This command performs diverse auxiliary
functions, from setting the seed of the random number generator, to selecting
a terminal for rooting output trees, to defining character sets for different
partitions.

There is no default setting for set and the order of its arguments is
arbitrary.

Arguments

Application settings Some generic application settings. These have no
effect on the analyses themselves.

history:INTEGER Sets the size of the POY5 output history displayed in the
POY Output window to the number of lines specified by the integer
value. The size of the history must be greater than zero. This command
has effect only in the ncurses interface. The default size of the output
history is 1000 lines.
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log:STRING Directs a copy of a partial output to the file specified by the
string argument. The output includes the information in the POY
Output, Interactive Console, and State of Stored Search windows of
ncurses interface. Timers and current state of the search are not
included in the log. If the log file already exists, POY5 will append the
text to it; if the log file does not exist, then POY5 creates a new file. If
the user would like to delete the contents of a pre-existing file, then
the argument log:new:"logfile" creates a new initially empty file
named logfile. [Note: setting a log will increase execution time to
some extent, as the application has to output this log file.]

nolog Stops outputting the log to any previously selected file. See the
description of the argument log above. Unless specified, no log is set
by the program.

root:LIDENT Specifies the terminal to root output trees. The terminal can
either be indicated as a taxon name (a STRING, which must appear in
quotes, such as "Genus_species") or the code, that is automatically
assigned to the taxon by POY5 at the beginning of each POY5 session
(for example, set(root:45). The codes can be obtained using the
command report(data)). The terminal codes, however, are consistent
only within a current session.

timer:INTEGER Specifies the lapse of time in seconds that has passed be-
tween reporting the total execution time of a swap and build command.
If the timer is set to 0, then no time messages are generated.

Cost calculation These arguments set the tree cost estimation procedures
and are applied to all character types. The arguments are mutually exclusive:
only the last specified argument of set is used.

exhaustive_do Applies a standard Direct Optimization algorithm for the
tree cost estimation [59, 63]. The difference between this argument and
normal_do is that the calculation of the tree costs during a search is
much more intense, always looking for the best possible optimization
for every single topology (instead of a lazy and greedy strategy used by
normal_do).

iterative:LIDENT:[:INTEGER ] Applies the Iterative Pass Optimization
[65] for the tree cost calculations. There are two forms of iterative pass:
if the argument value is exact (the default), then a complete three
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dimensional optimization is computed. Otherwise, if the argument value
is approximate, then the iterations approximate the three dimensional
alignment using pairwise alignments.

If the argument value is exact, this method improves the tree cost
estimation but at the expense of execution time (by a factor of the
sequence length). When approximate, the execution time footprint is
much smaller, and far less memory is consumed. A typical heuristic
strategy is to apply iterative at the very end of an analysis to polish
the final set of trees and perform a final search.

Both arguments accept an optional integer, stating the maximum
number of iterations that can be performed. If no integer is given,
then the procedure iterates until no further tree cost improvement is
incurred.

normal_do Applies a standard Direct Optimization algorithm [55] for the
tree cost estimation. This is the default and fastest technique.

normal_do_plus Applies a more exhaustive Direct Optimization algorithm [55]
for the tree cost estimation. During branch swapping, a more exhaustive
calculation of the tree cost is performed.

NOTE

Due to the complexity of heuristics of the Iterative Pass Optimi-
zation [65], there is no guarantee that the tree cost recovered
from the search will be exactly the same as produced by the
diagnosis of the same tree. However, the cost of the tree found
during the search can be verified by outputting the medians from
the diagnosis (see the description of the argument diagnosis
(Section 3.3.19)) of the command report and determining edge
costs by hand. The cost of the tree found during the search
might differ from that obtained by the rediagnosing of the same
tree (see rediagnose (Section 3.3.16)), but will recover the
same tree cost in subsequent rediagnoses.

Likelihood Optimization These arguments relate to codon partitions and
also to the level of granularity (significant digits) and thoroughness (number
of iterations) of the optimization routines used for defining the branches and
model for the likelihood characters.
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codon_partition:(STRING,identifiers) Specifies that the data be par-
titioned as codon data, named for the STRING argument, wherein 3
partitions will be defined. Each partition will consists of every third nu-
cleotide position. For example, set(codon_partition:("pos",names:
("file"))) will create three sets of partitions named pos1, pos2 and
pos3. This command is equivalent to the NEXUS partitioning com-
mands:

Begin SETS;
pos1 = 1 - N /3;
pos2 = 2 - N /3;
pos3 = 3 - N /3;
END;

where N is the aligned length of the static data. The data must
begin at the first codon position and must be a multiple of three.

opt:none No optimization procedures are performed; the current model
parameters are kept, and branch lengths are set to a JC69 distance
approximation.

opt:coarse[:INTEGER ] The tolerance of the routines is set to the algo-
rithms default, 1e-3 (half the log of a full, exhaustive search). By
default, the branches and model are each optimized once, setting the
INTEGER allows the user to control how many times a branch/model
pass occurs (by default the number is set to 3).

opt:exhaustive[:INTEGER ] The tolerance level is set to 1e-6. The algo-
rithms for optimizing branches and the models will alternate until no
more improvement occurs, or until as many times as specified by the
INTEGER.

opt:exhaustive_dyn[:INTEGER ] This optimization level is for dynamic
likelihood only, but will act like the exhaustive option under other
circumstances. Under exhaustive, a temporary implied alignment on
the data for optimizing the rate parameters is performed, but are
optimized directly. This option may significantly add to the time
required to complete the analysis.
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NOTE

Rediagnosing a tree after search or swap may result in a differ-
ent likelihood score if the number of optimization passes is set
lower than convergence. For example, if we do a search where
we only optimize the branches, then optimize the final trees
model under coarse through rediagnose(clear), then POY5
will clear the parameters before optimizing and may result in a
tree with higher cost.

Randomized routines

seed:INTEGER Sets the seed for the random number generator using the
integer value. If unspecified, POY5 uses the system time as seed.

NOTE

To reproduce a given search trajectory, the same seed value
must be set.

NOTE

The sequence of randomizations is dependent on the version
of OCaml used to compile the binaries. The algorithm to
create the random seed number changed in OCaml version
3.12.0, thereby generating different sequences of pseudo-random
numbers. To guarantee reproducibility of search trajectory, the
user must ensure that the same version of OCaml is used during
compilation.

Defaults

set(history:5000,normal_do) Under default settings the size of the history
buffer is limited to 5,000 lines, the Direct Optimization is used for tree cost
calculation, and the current time is used to specify the seed.

Examples

• set(history:10000,seed:45,log:"mylog.txt")
This command increases the size of the history in the ncurses interface
to 10,000 lines, sets the seed of the random number generator to 45, and
initiates a log file mylog.txt, located in the current working directory.
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• set(root:"Mytilus_edulis")
This commands selects the terminal Mytilus_edulis as the root for
the output trees.

• set(iterative:exact)
Turns on the iterative exact algorithm in all the nucleotide sequence
characters. The program will iterate on each vertex of the tree until no
further tree cost improvements can be made.

• set(iterative:approximate:2)
Turns on the iterative approximate algorithm in all the nucleotide
sequence characters. The program will iterate either two times, or until
no further tree cost improvements can be made, whichever happens
first.

• set(iterative:exact:2)
Same as the previous, but using the exact algorithm.

• set(codon_partition:("coleop",names:("coleoptera_nd2.fasta")))
Sets codon partitioning of the data file coleoptera_nd2.fasta. Three
sets are partitions named coleop1, coleop2, and coleop3 will be cre-
ated.

• set(opt:exhaustive:3)
Set floating point optimization to a tolerance of 1e-6, and specify that
a maximum of three optimization iterations occur.

• set(opt:coarse:10)
Set floating point optimization to a tolerance of 1e-3, and specify that
a maximum of 10 optimization iterations occur.

See also

• report (Section 3.3.19)

3.3.25 store

Syntax

store(STRING )
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Description

Stores the current state of POY5 session in memory. The stored information
includes character data, trees, selections, everything. Specifying the name of
the stored state of the search (using the string argument) does not, however,
generate a file under this name that can be examined; the name is used only
to recover the stored state using the command use.

In combination with use, the command store is extremely useful when
exploring alternative cost regimes and terminal sets within a single POY5
session.

Arguments

STRING Specifies the name of the stored search state of the current POY5
session.

Examples

• store("initial_tcm")
transform(tcm:(1,1))
use("initial_tcm")
The first command, store, stores the current characters and trees under
the name initial_tcm. The second command, transform, changes
the cost regime of molecular characters, effectively changing the data
being analyzed. However, the third command, use, recovers the initial
state stored under the name initial_tcm.

See also

• use (Section 3.3.28)

• transform (Section 3.3.26)

3.3.26 swap

Syntax

swap([argument list])

Description

swap is the basic local search function in POY5. This command implements a
family of algorithms collectively known in systematics as branch swapping
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and in combinatorial optimization as hill climbing. They proceed by clipping
parts of a given tree and attaching them in different positions. It can be used
to perform a local search from a set of trees loaded in memory.

Swapping is performed on all trees in memory. During a search, swap
can collect information about the visited trees and perform various kinds of
checkpoints to reduce information loss in case POY5 crashes.

swap is also used as an argument for other commands to specify a local
search strategy in other contexts, for example, in calculating support values
using the command calculate_support (Section 3.3.2).

All arguments of swap are optional and their order is arbitrary. The
argument of different groups can be combined to fine tune the search heuristics,
but the arguments within each group are mutually exclusive.

[Note: If more than one arguments of one argument group, such as Join
method, is listed, only the last one is executed.]

Arguments

Branch break order During the local search, a branch is broken and local
branch swapping is performed (see the Neighborhood group of arguments).
The precise choice of which branches are broken first can affect both the
speed and the local optimum found by the program. The following arguments
select among the different strategies available in POY5.

once Breaks each branch only once during a local search; that is, if a broken
branch does not yield a better tree, it is never broken again, no matter
how many changes occur along the search trajectory.

randomized Chooses branches uniformly at random for breakages.

distance Gives higher priority to those branches with the greatest length.

Character transformation Concerns the transformation of characters
prior to using the command swap.

transform Specifies a type of character transformation to be performed
prior to swapping. See the command transform (Section 3.3.27) for
the description of the methods of character type transformations and
character selection.
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Join method After breaking a tree (using SPR or TBR), the following
arguments control the selection of the positions to join the broken clades.

constraint[:depth:INTEGER | file:STRING ] Constrains the join loca-
tions during the search using both a tree and an optional maximum
distance from the break branch. Only sets defined either in the input
file, or in the strict consensus of the files in memory are considered
during swapping. An integer value of depth specifies the maximum
distance from the break branch to attempt joins. The string value
for file specifies an input file containing a single tree that defines
topological constraints. Under default settings, constraint will use a
consensus tree from the files in memory.

all[:INTEGER ] Turns off all preference strategies to make a join, simply
trying all possible join positions for each pair of clades generated after a
break, in a randomized order. The integer value specifies the maximum
distance from the break branch to attempt joins.

sectorial[:INTEGER ] Join in edges at distance equal or less than the value
of the argument from the broken edge, where the distance is the number
of edges in the path connecting them. If no argument is given, then no
distance limit is set.

Likelihood Optimization Specifies when the likelihood model and how
the branches of the tree are optimized during the swap routine. These options
are also available in the commands build and fuse. In all cases, a complete
round of optimization will occur after the completion of a build.

optimize(model[:LIDENT ],branch[:LIDENT ]) Specifies when POY5 opti-
mizes the likelihood model and how POY5 optimizes the branches. These
options are also available in the fuse and swap commands. In all cases
a complete round of optimization will occur after the completion of
swapping.

model:never Do not optimize the model during the swap (the de-
fault).

model:always Optimize the model after every swap.

model:threshold:FLOAT Optimize the model if the cost of the join
under the current model is within FLOAT times the current best
cost.
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branch:never Do not optimize the branches during the swap process.
Estimates are made based on the proportion of sites that would
undergo a transformation.

branch:all_branches Optimize all branch lengths on each join.

branch:join_region Optimize a maximum of five branches; the new
edge, and the two edges on either side (the default).

branch:join_delta Optimize the branches along the path from the
break to the new join location.

Neighborhood A neighborhood is a subset of topologies reachable from a
given area of the tree by a given search method. The basic standard proce-
dures for local search in phylogenetic analysis are SPR and TBR [50]. The
nearest-neighbor interchanges (NNI) [7] swapping strategy is implemented
by combining the arguments spr and sectorial (see Join method group of
arguments) within the swap, i.e. swap(spr,sectorial:1).

alternate Performs spr and tbr swapping iteratively until a local optimum
is found. This is a specific strategy of performing tbr, as the trees
visited by spr are a subset of those visited by tbr.

spr[:once] This argument performs spr swapping, starting from the current
trees in memory and subsequently repeating the SPR procedure until
a local optimum is found. If the optional value once is specified, spr
stops once the first tree with better cost is found.

tbr[:once] This argument performs tbr swapping, starting from the current
trees in memory and subsequently repeating the TBR procedure until
a local optimum is found. If the optional value once is specified, tbr
will stop once the first tree with better cost is found.

Reroot order During TBR, the following options control the order of the
rerooting.

bfs[:INTEGER ] Reroots using breath first search [9] from the broken edge,
within the arguments value distance from the root of the clade. If no
value is given, there is no limit distance for the rerooting. By default,
bfs is used with no limit distance for the rerooting.
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Trajectory The following arguments define the direction of the search in
the defined neighborhood.

around Changes the trajectory of a search by completely exploring the
neighborhood of the current tree in memory and choosing the best swap
position before continuing. The default in POY5 is to choose the first
one available that shows a better cost than the current best cost.

annealing:(FLOAT,FLOAT) Uses simulated annealing [30]. If the argument’s
value is (a, b), POY5 accepts a tree with cost c when the best known tree
has cost d with probability exp (−(c− d)/t), where t = a × exp−i/b
and i is the number of tree evaluated in the local search.

drifting:(FLOAT,FLOAT) Uses POY5 drifting function [20]. If the argument’s
value is (a, b), then POY5 always accepts a tree with better cost than
the current best cost, with probability a a tree with equal cost, and
with probability 1/(b+ d) a tree with cost d greater than the current
best cost.

Trajectory samples During the search, POY5 visits a large number of trees.
For some applications it might be desirable to collect information about the
trees examined during a search: for example, to provide backups of the state
of a search (in an unlikely crash), or to examine the characteristics of the
alignments. The difference from the swap arguments is that the user can
choose any combination of trajectory samples, and that can be used during
the search. None of the trajectory samples is used by default.

recover Stores the current best tree in memory that can be recovered in
case of failure. If it is necessary to recover such trees after an aborted
command, use recover (Section 3.3.15). If the program terminates
normally, the stored trees are exactly those produced at the end of
the swap. Using recover, however, requires twice as much memory
compared to swapping without it.

timeout:INTEGER Specifies the number of seconds after which tree branch
swapping is stopped. The current best tree is the result of the swap
after the timeout.

timedprint:(INTEGER,STRING) timedprint:(n,"trees.txt") prints the
current best tree in memory to the file trees.txt, at least every n
seconds. However, POY5 typically underestimates the amount of time
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and, therefore, the samples can be slightly sparcer. timedprint can
only be used in combination with the argument recover.

trajectory[:STRING ] trajectory:"better.txt" will store every new tree
found with a better score during the local search in the file better.txt.
The string is the filename where the trajectory is to be stored, which
is optional (indicated by brackets); if not added, the trees are printed
in the standard output (flat interface) or the output window (ncurses
interface).

visited[:STRING ] visited:"visited.txt" will store every visited tree
and its cost during the local search in the file visited.txt. The
(optional) string is the filename where the trajectory is to be stored. If
not included, the trees are printed in the standard output (flat interface)
or the output window (ncurses interface).

Tree selection As the tree search proceeds, a tree may or may not be
selected to continue the search or to return as a result. The following
arguments determine under what conditions can a tree be acceptable during
the search.

threshold:FLOAT Sets the percentage cost for suboptimal trees that are
more exhaustively evaluated during the swap, meaning that trees within
the threshold are subject to an extra round of swapping. For example,
if the current optimal tree has cost 450, and threshold:10 is specified,
trees with cost at most 495 are swapped. threshold is equivalent to
slop of POY3.

trees:INTEGER Maximum number of best trees that are retained in a search
round, per tree in memory.

Defaults

swap(trees:1,alternate,threshold:0,bfs) By default, current trees are
submitted to a round of alternate rounds of SPR and TBR using breadth
first search and one best tree per starting tree is kept.

Examples

• swap()
This command performs swapping under default settings.
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• swap(trees:5)
Submits current trees to a round of SPR followed by TBR. It keeps up
to 5 minimum cost trees for each starting tree.

• swap(transform(all,(static_approx)))
Submits current trees to a round of SPR followed by TBR, using static
approximations for all sequence characters.

• swap(trees:4,transform(all,(static_approx)))
Submits current trees to a round of SPR followed by TBR, using static
approximations for all characters, keeping up to 4 minimum cost trees
for each starting tree.

• swap(constraint:(depth:4))
Calculates a consensus tree of the files in memory and uses it as
constraint file, then joins at a distance of at most 4 from the breaking
branch. This is equivalent to swap(constraint:(4)).

• swap(constraint:(file:"bleh"))
Reads the tree in file bleh and use it as constraint for the search. This
is equivalent to swap(constraint:("bleh")). This presumes that the
file bleh is located in the current working directory.

• swap(drifting:(0.5,2.0))
Defines the direction of search via drifting, such that there is a 50%
probability of replacing the current tree with a new tree of equal
cost. For suboptimal trees with a cost d greater than the current
best tree, the probability of accepting this tree is 1/(2.0 + d). For
example the probability of keeping a suboptimal tree of 3 steps longer
= 1/(2.0 + 3) = 0.2.

• swap(sectorial:4)
Submits current trees to a round of SPR followed by TBR. Join will
take place at a distance equal or less than the value of the argument
from the broken edge, where the distance is the number of edges in the
path connecting them. If no argument is given, then no distance limit
is set.

• swap(spr,all,optimize:(model:never,branch:join_region))
Submits the current trees to a round of SPR swapping. Following each
round of spr, the model is never optimized, but a maximum of five
branches (the new edge, and the two edges on either side of the join
site) are optimized.
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• swap(recover,timedprint:(5,"timedprint.txt"))
Saves the current best tree to the file timedprint.txt every 5 seconds.

See also

• transform (Section 3.3.27)

3.3.27 transform

Syntax

transform([argument list])

Description

Transforms the properties of the imported characters from one type into
another. This includes changing costs for indels and substitution, modifying
character weights, converting dynamic into static homology characters, trans-
forming nucleotide into chromosomal characters, and specifying characters as
either static or dynamic likelihood characters, among other operations.

The essential arguments of the command transform include identifiers
and methods. The methods specify what type of transformation is applied to
the set of characters, as specified by identifiers, as defined in the description
of the command select (Section 3.3.23).

The methods, or string of methods (each separated by a comma), should
be enclosed in parentheses. Identifiers precede the methods and are separated
from them with a comma. It is important to remember that only identifiers
of characters (such as names, codes, among others) can be used. Parentheses
separate these essential arguments from all other optional arguments that
might be included in the list. If only identifiers and methods are specified,
the argument list of transform is included in parentheses. For example,
the command transform(all,(gap_opening:1)) contains only an identifier
(all) and a method (gap_opening). [Note: this is different from previous
versions of poy where double parentheses were required.] Minimally, only
methods can be specified: in this case, the transformation is applied to all
characters to which the transformation method can be applied. For instance,
transform(gap_opening:1), where gap_opening defines the transformation
method.

There are no default values for transform, thus if no arguments are
specified (transform()), the command does nothing.
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Arguments

Identifiers Identifiers specify which characters are transformed. Only iden-
tifiers of characters (not terminals) can be used. If identifiers are omitted,
the transformation to is applied to all applicable characters. For exam-
ple, transform(all,(tcm:(1,1))) is equivalent to transform(tcm:(1,1)).
See the command select (Section 3.3.23) for detailed description of identi-
fiers.

Character selection methods This set of arguments specifies different
transformations that can be applied to selected characters. If multiple
transformation methods are applied sequentially in the same list of arguments,
the effect of the methods listed earlier might be altered or canceled by methods
listed after that. Thus, caution must be used in designing complex strategies
with multiple character transformations. See the note on command order
(Section 3.2).

alphabetic_terminals Alphabetizes the terminals in the data file that is
input into POY5. This is used in conjunction with build or search. See
the description of the argument randomize_terminals.

auto_static_approx Evaluates each selected fragment and, if the number of
indels appear to be low and stable between topologies, then the character
is transformed to the equivalent character using static homologies with
the implied alignment [64]. This method greatly accelerates searching
and is applicable only to nucleotide sequences under dynamic homology
analysis.

auto_sequence_partition Evaluates each fragment in the data file and if
a long region appears to have no indels, then the fragment is broken
inside that region. Any number of partitions can occur along a frag-
ment. Fragmenting long sequences greatly accelerates searching. This
method is applicable only to dynamic homology characters that are not
prealigned, and requires a tree in memory.

direct_optimization Transforms the characters specified so that the initial
assignment of sequences to the internal vertices of a tree use direct
optimization [59]. This method is recommended for small alphabets
(fewer than 7 elements). It is only applicable to dynamic homology
characters.

do Synonymous with direct_optimization.
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fixed_states[:(STRING,LIDENT)] Transforms the characters specified in
fixed state characters [60] where the initial assignment of sequences
to the internal vertices of the tree is one of the observed sequences.
If the observed sequences contain ambiguities, only those that resolve
closest to another sequence are added to the set of valid states. It
is only applicable to dynamic homology characters. The optional
arguments may be specified for use with the chromosome character
type. The STRING specifies the root name of Mauve [10] readable
files ( “STRING _i_j.alignment” where i and j are median states)
to generate graphical sequence maps between median states. The
default LIDENT is set to full_polymorphism, which will consider all
sequence ambiguities. As one might expect, this option is also the
most time consuming. Alternatively, if the LIDENT is set to simpl_-
polymorphism or ignore_polymorphism, new potential median states
will be generated that consider fewer sequence polymorphisms in their
calculations, thus reducing execution time.

gap_opening:INTEGER Sets the cost of opening a block of gaps to the
specified value. Note that this cost is in addition to the standard
cost of the insertion, as specified by a given transformation cost matrix.
The default in POY5 is not to have extension gap cost (gap_opening:0).
If the gap opening cost is a, and indel(x) is the cost of inserting (or
deleting) a base x according to the tcm assigned to the character,
the total cost of inserting (or deleting) the sequence s[0...n] is a +
indel(s[0])+indel(s[1])+ ...+indel(s[n−1])+indel(s[n]). This method
is applicable only to dynamic homology characters with the nucleotide
alphabet. These affine gap costs can not be used in conjunction with
prealigned data files.

level:(INTEGER,LIDENT) The integer argument specifies the heuristic level
in median sequence calculation. This determines the number of possible
states stored at each median sequence position. For nucleotide data, all
possibilities are stored. This median states can be a single character (e.g.
A, C, G, T) or a combination of INTEGER characters (e.g. A/C versus
G). The default for amino acid sequences and for custom_alphabet
characters it is 2. Storage and set up time increase combinatorially with
level number. If the LIDENT is first, ties are broken (if the number of
equally costly states is greater than the level number) by choosing the
first median state examined; if last, the last state, and if at_random
then uniformly at random. The default choice method is first. The
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maximum level of any dataset is equal to the alphabet size + 1. [Note:
Levels greater than the default levels can consume large amounts of
memory.]

multi_static_approx Calculates the implied alignment for each tree in
memory and convert them to static homology characters using the
alignment’s cost regime. The new character set will be the union of all
those characters generated for all the trees [70]. This option is intended
only for heuristic search purposes and is applicable only to dynamic
homology characters.

partitioned:LIDENT Similar to auto_sequence_partition, the difference
being that no tree is required prior to partitioning, and large sequence
length variations at the ends of sequences are treated as missing data.
If the LIDENT clip is chosen, then a large difference in length at the
end of the sequence is assumed to be caused by missing data. For clip
to take effect, at least two fragments must be found. If LIDENT noclip
is selected, then sequence ends are treated like any other fragment.

prealigned Treats the sequences as prealigned and uses the cost regime
according to the specified transformation cost matrix. All other cost
parameters are ignored (including affine gap costs). This command
requires that all the specified sequences have the same length (which
can be achieved by the insertion of N’s or X’s at the 5 prime (5’) and/or
3 prime (3’) ends of the sequence if data are missing).

randomize_terminals Randomizes the terminals in the data file that is
input into POY5. This is used in conjunction with build or search. See
the description of the argument alphabetic_terminals.

search_based:(STRING,STRING) Transforms the optimization of fixed_-
states characters to search_based optimization [66] by adding the
sequences found in the file specified by the second argument to the
character specified by the first argument.

sequence_partition:INTEGER Partitions the sequences in the argument’s
value number of fragments of roughly the same length. This method is
applicable only to dynamic homology characters.

static_approx[:LIDENT ] Transforms the sequences to the static homo-
logy characters corresponding to their implied alignments and their
transformation cost matrix [64]. The resulting characters and their
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number will vary depending on the characteristic of transformation
cost matrix assigned to each sequence. For example, if the cost of both
substitutions and indels is 1, then one non-additive character is created
per each homologous position in the implied alignment. If the cost
of substitutions is 1 and the cost of indels is 2, then one character
is created for each homologous position, and one extra character for
each homologous position with gaps. In more complex cases, a Sankoff
character is created.

The LIDENT remove excludes all uninformative characters informa-
tion (except autapomorphies), whereas the LIDENT keep retains these
characters. The default is remove. This method is applicable only
to dynamic homology characters. If a non-metric transformation cost
matrix is in use, this transformation will assume that the non-metricity
is due to the individual insertion and deletion cost.

NOTE

The transformation of dynamic into static homology charac-
ters cannot be reversed. Therefore, caution must be taken
when the transformation is applied. For example, if sequence
characters have been transformed into static characters at top
level using the command transform(all,(static_approx)),
all commands executed subsequently will be applied to the
transformed data. However, if the transformation has been
applied within another command (as an argument of swap,
for instance, swap(transform(all,(static_approx)))), the
characters will transformed only for that specific operation.

NOTE

It is important to remember that the local optimum for the
dynamic homology characters can differ from that for the static
homology characters based on the same sequence data. There-
fore, performing additional searches on the transformed data
(for example, in calculating support values based on individual
nucleotides rather than on sequence fragments) can produce a
discrepancy in tree costs.

tcm:(INTEGER,INTEGER) Defines the transformation cost matrix. The first
integer value specifies substitution cost, the second integer value defines
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indel cost. By default, the cost of substitutions and indels are both 1.
[Note: previous versions of poy, had the cost of an indel set to 2 (i.e.
tcm:(1,2)).]

NOTE

When constructing a transformation cost matrix it is important
to do so in a text editor such as Notepad (for Windows), TextE-
dit (for Mac), or Nano (for Linux). Generating a tcm in a word
processing application such as Microsoft Word may lead to the
insertion of hidden characters, which will result in an error.

tcm:(STRING,INTEGER) Defines the transformation cost matrix by import-
ing a file (specified by the string value) that contains a user defined
nucleotide transformation cost matrix. This method is applicable only
to dynamic homology characters. The transformation cost matrix
file contains five rows and columns with values listed in the following
order (left to right and top to bottom): adenine, cytosine, guanine,
thymine/uracil, and indel. A similar pattern is followed for amino acids
where the matrix columns and rows reflect all the amino acid names in
alphabetical order (read left to right and top to bottom) with the last
row and column containing a gap cost. The costs must be symmetrical
(that is, the cost of the A to T substitution is equal to the cost of T to
A substitution). For example:

0 2 1 2 4
2 0 2 1 4
1 2 0 2 4
2 1 2 0 4
4 4 4 4 0

The integer argument specifies the heuristic level in median sequence
calculation. This determines the number of possible states stored at
each median sequence position. For nucleotide data, all possibilities are
stored. The default for amino acid sequences and for custom_alphabet
characters is 2. Storage and set up time increase combinatorially with
level number.

ti:STRING/(INTEGER list) Synonym of trailing_insertion.



3.3. COMMAND REFERENCE 145

trailing_insertion:STRING/(INTEGER list) The tail and prepend costs
specify the cost of having an insertion of each element in the alphabet
at the beginning or end of a sequence. The string is the name of a file
containing the cost of a trailing insertion corresponding to each of the
elements in the alphabet separated by spaces. The last element in the
list is the cost of the indel of a gap (should be 0). Instead of a file, the
list can be the input of the argument, in the same order, separated by
commas. Synonym of the argument ti. This method is applicable only
to dynamic homology characters.

td:STRING/(INTEGER list) Synonym of trailing_deletion.

trailing_deletion:STRING/(INTEGER list) The tail and prepend costs
specify the cost of having a deletion of each element in the alphabet
at the beginning or end of a sequence. The string is the name of a file
containing the cost of a trailing deletion corresponding to each of the
elements in the alphabet separated by spaces. The last element in the
list is the cost of the indel of a gap (should be 0). Instead of a file, the
list can be the input of the argument, in the same order, separated by
commas. Synonym of the argument td. This method is applicable only
to dynamic homology characters.

weight:INTEGER/ FLOAT Changes the cost of specified characters to a con-
stant or absolute value (weight), which is specified by either a float or
an integer value. This method is applicable to any character type and
can be applied to individual characters in a data set.

weightfactor:INTEGER/ FLOAT Changes the cost of specified characters
by a multiplicative factor (weight factor), and is specified by either a
float or an integer value. This method is applicable to any character or
character set. This argument differs from weight in that this cost is
applied to a class of characters.

Chromosome and genome transformation methods For these charac-
ter types, POY5 optimizes nucleotide-, locus-, and chromosome-level variation
simultaneously . The arguments in this group transform nucleotide char-
acters into chromosomal characters and allow for translocations, inversions,
and indel events both at the locus-level for chromosomal data and at the
chromosome-level for genomic data.

The functions to calculate breakpoint and inversion distances between two
sequences of gene orders are taken from the rearrangement software packages:
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GRAPPA, Genome Rearrangements Analysis under Parsimony and other
Phylogenetic Algorithms [2], and MGR, Multiple Genome Rearrangements
[5], as well as from the Concord TSP Solver available at http://www.tsp.
gatech.edu/concorde/.

annotate:(LIDENT,FLOAT,FLOAT,FLOAT,FLOAT) Used in conjunction with
chromosome, specifies the annotation method for unannotated chro-
mosome sequences. The LIDENT is mauve, which utilizes the Mauve
algorithm [10]. As with other chromosome and genome alignment meth-
ods, the Mauve algorithm uses “anchoring” in order to speed up the
alignment process. However, it differs from other such programs in
that the anchor selection method relaxes the assumption of collinear-
ity of the genomes and instead, identifies and aligns regions of local
collinearity called locally collinear blocks (LCB). These LCBs represent
a homologous region of a sequence shared by two or more genomes and
are without internal rearrangements. The float parameters, which are
order dependent, include the quality of the LCB (default value 35),
LCB coverage (default 0.30), minimum length of LCB as a percentage of
sequence length (default 0.01), maximum length of LCB as a percentage
of sequence length (default 0.10). Percent calculations are based on the
shorter of two sequences compared.

annotated:([argument list]) Used in conjunction with read, specifies
that the data are chromosomal sequences with pipes (“ ”) separating
individual loci. The locus homologies and rearrangements are then
determined dynamically by the arguments specified in the argument list
(locus_breakpoint and locus_inversion for rearrangements; locus_-
indel costs; circular and arguments associated with the determination
of medians).

chromosome:([argument list]) Specifies parameters for the creation of
chromosome- and genome-level HTUs (medians). The arguments of
chromosome define homologous blocks within unannotated chromosome
sequences by specifying parameters within the Mauve aligner [10] using
annotate and these Mauve parameters include block quality, block
coverage, minimum and maximum block length. Users also specify
the costs assigned to locus-level transformation events: (i.e. locus_-
inversion or locus_breakpoint, and locus_indel), take into account
whether the chromosome is linear or circular (circular), and implement
a number of heuristic procedures to accelerate computations (median,
swap_med, and med_approx). Under default settings, the pairwise

http://www.tsp.gatech.edu/concorde/
http://www.tsp.gatech.edu/concorde/
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distance between two chromosome segments or two chromosomes is
determined using breakpoint rather than inversion calculations and the
rest of the arguments are executed under their default settings.

chrom_hom:FLOAT Specifies the lower limit of distance between two chromo-
somes beyond which point the chromosomes are not considered to be
homologous. The default value of chrom_hom is 0.75.

chrom_indel:(INTEGER,FLOAT) Specifies the cost for insertion and deletion
of a chromosome in analysis of multiple chromosomes. The integer value
sets gap opening cost (o), whereas the float value sets gap extension
cost (e). The indel cost for a fragment of length l is specified by the
following formula: o+ (l× e). The default values are o = 10, e = 1.0.

circular:BOOL Specifies whether the chromosome is circular (boolean value
true) or linear (boolean value false). The default value of circular
is false (linear chromosome).

NOTE

Note that the argument locus_breakpoint cannot be used
simultaneously with the arguments locus_inversion and
chrom_inversion as they designate alternative methods of cal-
culating distance between two chromosomes. If both arguments
are specified, the latter will be executed. The order of other
locus level arguments is arbitrary.

genome:([argument list]) Specifies parameters for creating genome-level
HTUs (medians). The arguments of genome define homologous blocks
within annotated genome sequences by specifying parameters within the
Mauve aligner [10] including block quality, block coverage, minimum
and maximum block length. Users also specify the costs assigned to
locus-level transformation events: (i.e. locus_inversion or locus_-
breakpoint; locus_indel; and chromosome_indel), and implement a
number of heuristic procedures to accelerate computations (median,
swap_med, and med_approx). Under default settings, the pairwise
distance between two genome segments or two genomes is determined
using breakpoint rather than inversion calculations and the remainder
of the arguments are executed under their default settings.
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locus_breakpoint:INTEGER Calculates the breakpoint distance [4] between
two pairs of chromosomes given the cost for rearrangement specified by
an integer value. The breakpoint distance calculation considers a chro-
mosome or genome G = (x1, . . . , xn) of n gene, wherein each appears
exactly once and its orientation is either positive or negative. Gene
orders are altered by gene rearrangement operations: gene inversion,
gene translocation, gene inversion and translocation (see Figure 3.5).
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Figure 3.5: Examples of gene rearrangements: inversions and translocations.

The breakpoint distance takes into account rearrangements but not
inversions. Given G and G′, a pair of genes (gi, gj) is a breakpoint
if (gi, gj) occur consecutively in G but neither (gi, gj) nor (−gj ,−gi)
occur consecutively in G′ [42]. The breakpoint distance between G
and G′ is the number of breakpoints between them. Figure 3.6 shows
two breakpoints between G and G′. The breakpoint can be calculated
easily in linear time. This argument cannot be used in conjunction with
locus_inversion. The default value of locus_breakpoint is 10.

	�� 	�� 	�� 	�� 	�� 	�
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Figure 3.6: Rearrangement calculations between chromosomal or genomic
data of six genes g1, . . . , g6, where the rearrangement events are detected as
either two breakpoints (g2, g3), (g5, g6) or a single inversion (g3, g4, g5).

locus_indel:(INTEGER,FLOAT) Specifies the cost for insertion or dele-
tion of a chromosome segment. The integer value sets the gap
opening cost (o), whereas the float value sets the gap extension



3.3. COMMAND REFERENCE 149

cost (e). The indel cost for a fragment of length l is specified
by the following formula: o + (l × e). The default values are
o = 10, e = 1.0.

locus_inversion:INTEGER Calculates the inversion distance [23] be-
tween two chromosome segments given the cost for inversion spec-
ified by the integer value. The inversion distance takes in con-
sideration rearrangements and inversions. Given G and G′, the
inversion distance between them is the number of inversions to
convert chromosome or genome G into G′ [23]. Figure 3.6 shows
one inversion between G and G′. The inversion distance can be
calculated in linear time. The breakpoint distance is normally
larger than inversion distance. This argument cannot be used in
conjunction with locus_breakpoint.

max_kept_wag:INTEGER Defines the maximum number of Wagner-
based possible ancestral sequence alignments kept to create the
next set of alignments during the pairwise alignment with re-
arrangement process. The default value of max_kept_wag is 1,
however, at every step in the pairwise alignment with rearrange-
ment process, the original order (1...n) is always considered as a
potential solution.

median:INTEGER Specifies the number of alternative locus and chro-
mosome rearrangements of the best cost selected (randomly) for
each HTU (hypothetical taxonomic unit) or median. Limiting
the number of rearrangements stored in memory (smaller value
of median) is a heuristic strategy to accelerate calculations at
the expense of thoroughness of the search. By default, only 1
rearrangement is retained (the first one found). If more than
one rearrangement is specified, the selected number of rearrange-
ments is selected in random order from the pool of all generated
rearrangements.

med_approx:BOOL Approximates chromosome medians using a fixed-
states approach. This is most useful to accelerating tree building
and searching operations for large chromosomal data sets. The
boolean value true applies the fixed-states optimization. The
default value is false.

median_solver:LIDENT Specifies the median solver. User can choose
from default(caprara),vinh,siepel,bbtsp,coaletsp,chainedlk and sim-
plelk. The default median solver is Caprara [8], but the user can
alternatively choose BBTSP, ChainedLK, COALESTSP, MGR
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[5], Siepel [45], SimpleLK and Vinh (the TSP solvers BBTSP,
CoalesTSP, ChainedLK and SimpleLK are taken from the Con-
corde package and this package is required for these median solvers.
Download Concorde package from
http://www.tsp.gatech.edu//concorde/downloads/downloads.
htm.

seq_to_chrom:([argument list]) Transforms nucleotide type data
into chromosome type data to allow rearrangements, inversions,
and locus-level indel operations. The chromosome-specific options
(e.g. locus_breakpoint, locus_inversion, and locus_indel)
can be specified by the argument.

swap_med:INTEGER Specifies the maximum number of swapping iter-
ations to search for best pairwise alignment of two chromosomes
taking into account locus-level rearrangement events. Limiting
the number of swapping iterations accelerates the search at the
expense of thoroughness. The default value is 1.

translocation:INTEGER Specifies the cost associated with the Translo-
cation of a region of one chromosome to another chromosome. By
default, the cost is set to 10.

Custom alphabet and break inversion transformation methods This
set of arguments govern the transformation of characters that employ a user-
specified alphabet. This includes characters of the custom alphabet, as well
as break inversion type.

breakinv:(argument list) An enhancement of the data file type custom_-
alphabet allowing rearrangement events. Syntactically, breakinv data
type is identical to custom_alphabet data type. Users specify the costs
assigned to locus-level transformation events: (i.e. locus_inversion
or locus_breakpoint) and implement the heuristic procedure to ac-
celerate computations (median). The orientation (denoted by the
inclusion of “∼" symbols in the data file) is by default set to true and
cannot be changed to false.

breakinv_to_custom Transforms breakinv character type into custom_-
alphabet characters. This transformation prevents the use of rear-
rangement operations.

Likelihood transformation methods This set of arguments enables an-
alysis using several variants of the maximum likelihood criterion, including

http://www.tsp.gatech.edu//concorde/downloads/downloads.htm. 
http://www.tsp.gatech.edu//concorde/downloads/downloads.htm. 
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Most Parsimonious Likelihood (MPL) and Maximum Average Likelihood
(MAL).

likelihood([:argument list]) Transforms the specified characters to ei-
ther static or dynamic likelihood characters. All arguments are optional
except for model or model selection, which must be specified. The
defaults are presented in the sub-sections below.

elikelihood([:argument list]) Transforms the specified characters to
either static or dynamic likelihood characters while estimating the
parameters based on a parsimony tree [71]. The initial rates (for example
of GTR) are set to the proportion of those transformations found across
branches of the tree. As with the standard likelihood command, all
arguments are optional except for model or model selection, which have
to be specified; the defaults are presented in the sub-sections below.

parsimony Transforms likelihood characters to parsimony characters. This
command will revert the characters back to their original parsimony
state, prior to transformation to likelihood (e.g. any transformation
costs previously associated with these characters will be restored.

NOTE

Dynamic likelihood for unaligned sequence data can be im-
plemented as MAL [71] (provided the characters have been
transformed to fixed_states first) and MPL [3]. Both MAL
and MPL can be applied to static characters.

NOTE

Dynamic likelihood characters necessarily include gaps or indels
as a fifth state in the character alphabet and must be specified
(see the description Gap treatment (Section 3.3.27) below.).

Character frequencies Estimate the equilibrium frequencies of the char-
acters in the stationary Markov process. In order to yield the likelihood score,
the conditional probability of the data is multiplied by these frequencies. In
general, maximum likelihood applications in phylogenetics use the observed
(empirical) frequencies of the characters in the data as an approximation
to the likelihood-optimized frequencies. This approximation is sensible for
sequences evolving nearly neutrally, but this approximation breaks down for
sequences under moderate or strong selection.
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priors:equal Constrains each of the equilibrium frequencies to be 1
r , where

r is the character alphabet size.

priors:estimate Uses observed frequencies of the characters to approximate
the ML-optimized equilibrium frequencies. Under dynamic likelihood,
the indel equilibrium frequency is estimated from the minimum number
of indels required to align all the sequences:

πgap =
∑n

i=1 |Sî| − |Si|
n|Sî|

where Sî is the longest sequence and n is the number of sequences.

given:(FLOAT list) Uses equilibrium frequencies given as a comma-separated
list specified by the user.

Cost Specifies the variant of relative likelihood (sensu [47]) used by POY5
to calculate the costs at each node and score the topology.

mal Specifies the standard criterion of MAL [16], in which the likelihood is
derived from the sum over all internal vertex labelings. Because the
vertex assignments are marginalized, this version of relative likelihood is
not compatible with the optimization of unaligned sequences (dynamic
likelihood), unless of course the characters have been transformed to
fixed_states first. This is the default likelihood criterion in POY5.

mpl Specifies the criterion of MPL [3], in which the likelihood is derived
from the set of most probable state assignments at each node. Under
this criterion, vertex state assignments are not marginalized, and so
this variant of relative likelihood is compatible with dynamic likelihood.
However, several studies have noted that parameters under this criterion
may not be identifiable [73] and that the method may not be statistically
consistent [34].

Determination of alphabet size This option applies to qualitative char-
acters only, and is used to define the alphabet size for transform. While
unobserved states do not affect the cost of the tree under parsimony, this is
not necessarily the case with likelihood. This argument enables the user to
specify the size of the alphabet.

alphabet:min Sets the alphabet size to be the minimum value that encom-
passes all character observations for each state.
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alphabet:max Do not modify the alphabet; use the one currently set under
the character type. This can be up to 32.

alphabet:INTEGER Specifies the size of the alphabet as defined by the
INTEGER value. This value must be ≥ the number of observed states. If
the specified value is greater than the number of observed states, this
INTEGER will be used in calculation of the likelihood of the tree.

Gap treatment Defines how atomic gaps (indels) are treated in likelihood
analysis. When employed, the POY5 approach to indels on static likelihood
characters is as a 5th state [33, 67]. POY is unique among likelihood im-
plementations both by enabling indel parameterization for any reversible,
stationary model applied to static characters and, more crucially, for imple-
menting dynamic likelihood for true sequence optimizations and topology
inference. Indel-aware models are scarce, but see Rivas and Eddy [40], and
Redelings and Suchard [39, 38] for alternative parameterizations.

gap:character Specifies that atomic indels are a character state without
adding an additional rate class, except under GTR, where POY5 keeps
the unrestricted nature of the model intact, and each indel-nucleotide
rate has its own class (e.g. A ↔ –, C ↔ –).

gap:coupled Specifies that atomic indels are a character state, with rates of
nucleotide-to-indel substitution constrained to be equal to one another.
For example, the Q-matrix

Q =


−3α− β α α α β

α −3α− β α α β
α α −3α− β α β
α α α −3α− β β
β β β β −4β


specifies a Jukes-Cantor matrix augmented to estimate nucleotide-to-
indel substitutions as a coupled parameter separate from nucleotide-
to-nucleotide substitutions. In accordance with other likelihood imple-
mentations, the entries of the Q-matrix are normalized to scale their
mean rate to 1.

gap:missing Specifies that indels be treated under standard assumptions,
thus making analyses in POY for a given model and alignment com-
parable to other implementations such as RAxML [46] and GARLI
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[74]. It applies to static or prealigned data only. This is the default of
POY5, therefore for dynamic likelihood analyses, either gap:character
or gap:couple must be chosen, or else an error will be reported.

Model choice Defines the reversible stochastic Markov model of evolution.
POY5, as in other standard likelihood implementations, employs globally
homogeneous models [26], which estimate rates using a single matrix over
the entire topology. POY5 requires a model of character substitution to be
specified during the transformation to likelihood characters.

Model parameters can be specified by following the model name with a
colon, left parenthesis, and a list of numbers for the particular model, followed
by a closing parenthesis, (i.e. k2p:(2.0)).

NOTE

All matrices are normalized so the mean rate is one. This allows
branch lengths to represent the expected number of transformations
averaged over the sequence length. This is standard in most (if not
all) likelihood programs.

jc69/neyman The model of Jukes and Cantor [27] under nucleotide data, or
Neyman [35] in general. A single rate class. All equilibrium frequencies
are constrained to be equal. This model can be applied to any size
alphabet.

f81 The model of Felsenstein 1981 [16]. A single rate class, proportional
to the equilibrium frequencies. This model can be applied to any size
alphabet.

k2p/k80 The model of Kimura [29]. Transitions and transversions are con-
strained to have separate rate classes. All equilibrium frequencies are
constrained to be equal.

f84 The model of Felsenstein 1984 [15]. Rates are constrained as in k2p, but
are also proportional to the equilibrium frequencies.

hky85 The model of Hasegawa et al. [24]. Transitions and transversions are
constrained to have separate rate classes. Rates are also proportional
to equilibrium frequencies.
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tn93 The model of Tamura and Nei [51]. Three rate classes: transver-
sions (purine/pyrimidine), and independent classes for purine-purine
and pyrimidine-pyrimidine transitions. Rates are also proportional to
equilibrium frequencies.

gtr The model of Tavaré [52]. The most general reversible, stationary model
of nucleotide substitution, and the one most frequently selected by
information criteria. All rates are unconstrained. This model works for
any size alphabet, but note that there are N(N−1)

2 rates, where N is
the alphabet size.

ncm The model of Tuffley and Steel [53], is an extension of the Neyman
model, but in this case each character is free to evolve at its own rate
on every edge of the tree. This model can only be used with static
data, including prealigned sequences. Because these characters evolve
at their own rate, gamma options are ignored.

file:STRING An external file containing a matrix of estimated rate values.
The diagonal values are ignored and may take any value. As mentioned
above, the rates of the matrix are normalized. The model is not
optimized further. For example:

0.0 2.0 1.0 2.0 4.0
2.0 0.0 0.0 1.0 4.0
1.0 2.0 0.0 2.0 4.0
2.0 1.0 2.0 0.0 4.0
4.0 4.0 4.0 4.0 0.0

Will be normalized so that the mean rate is 1, and so that the rows
sum to 0.0 to become (with equal equilibrium frequencies),

−0.865 0.192 0.096 0.192 0.384
0.192 −0.865 0.192 0.096 0.384
0.096 0.192 −0.865 0.192 0.384
0.192 0.096 0.192 −0.865 0.384
0.384 0.384 0.384 0.384 −1.538

custom:STRING An external file wherein the rate class constraints of the
Q-matrix are specified. As previously mentioned, diagonal elements are
ignored, but necessary and any character can be used as a placeholder
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(below we use a dash, ‘–’). Any ASCII character can be used to define
an associated rate, but the matrix must be symmetric. For example,
the following matrix will create a model where three parameters are
ultimately optimized (given that the base parameter is not optimized):

− a c d e
a − c d e
c c − d e
d d d − e
e e e e −

Model selection As an alternative to selecting a model directly (as above),
information theoretic approaches to model selection are provided. These
include the Akaike Information Criterion (AIC) [1], the corrected AIC (AICc)
[48], and the Bayesian Information Criterion (BIC) [44].

These methods, which require a tree in memory, will optimize the model to
the tree of all available models, and select the best (based on the information
criterion selected) to be kept in memory. A report is also printed to show the
scores and analysis of model selection (see Table 3.1). Delta, the difference
between the row and the best score are given, along with a weight (ωi) given
by,

wi =
e
−∆i

2∑R
r=1 e

−∆r
2

where R equals the number of models and i equals the ith model.

aic[:STRING ] Uses the AIC (Akaike Information Criteron) to determine
the best model in the set. The STRING is optional, and if specified,
POY5 will output the table of information to this file.

The formula to calculate the AIC is given by,

AIC = −2 log(L(θ̂|data)) + 2K

Where K is the number of parameters for the model, θ̂ and n are the
number of characters.

NOTE

If n
k < 40.0 then a warning message will be reported suggesting

the use of AICc (below).
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Table 3.1: Example of POY5 output showing scores and analysis of model
selection using aicc. Model type, negative log likelihood values (-`), penalty
parameter which include the number of branches (K), number of characters
(n), AICc values, AICc differences (∆), Akaike weights (ω) and cumulative
Akaike weights (Cum (ω)) are reported. In this example, JC69 garners the
best Information Theoretic score.

Model -` K n AICc ∆ ω Cum(ω)
JC69 538.819 31 49 1256.345 0.000 0.863 0.863
JC69+G 532.219 32 49 1260.438 4.093 0.111 0.975
K81 533.777 32 49 1263.554 7.209 0.023 0.998
K81+G 526.763 33 49 1269.127 12.782 0.001 1.000
F81 539.512 34 49 1317.024 60.678 5.754e-14 1.000
HKY 532.270 35 49 1328.387 72.041 1.961e-16 1.000
F84 533.315 35 49 1330.477 74.131 6.899e-17 1.000
F81+G 533.682 35 49 1331.210 74.865 4.780e-17 1.000
HKY+G 526.033 36 49 1346.067 89.721 2.840e-20 1.000
F84+G 526.518 36 49 1347.037 90.691 1.749e-20 1.000
TN93 531.899 36 49 1357.799 101.453 8.052e-23 1.000
TN93+G 525.841 37 49 1381.318 124.973 6.290e-28 1.000
GTR 530.724 39 49 1486.116 229.770 1.102e-50 1.000
GTR+G 523.365 40 49 1536.731 280.386 1.125e-61 1.000

aicc[:STRING ] This is the second-order bias correction used for small
samples sizes (as mentioned in the statement above, when n

k < 40.0).
The correction is,

AICc = AIC +
2K(K + 1)
n−K − 1

The STRING is optional, and if specified, POY5 will output the table of
information to this file.

bic[:STRING ] Bayesian information criterion, although included in the
Information Theoretic approaches, it is in fact not related to information
theory. BIC is given by,

BIC = −2 ln(L(θ̂|data)) +K log(n)

The STRING is optional, and if specified, POY5 will output the table of
information to this file.
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Rate distributions Specifies the distribution of rates among sites. Rate
variation distributions allow multipliers to be applied to separate groups of
characters. This additional parameterization frequently improves estimated
likelihood scores. Commonly employed distributions for the parameterization
of among-site variation include the discrete gamma distribution (Γ) [72] and
this distribution with an additional invariant rate class, the theta distribution
(Θ) [22].

rates:gamma:(N,α) Applies a discrete gamma distribution of N classes,
γ(α, β), of rate variation across characters. The mean rate for the
distribution is set to 1.0 (i.e. α = β), thus one parameter is estimated.
The default for N is 4. If α is not given the parameter is optimized.

rates:theta:(N,α,%) Applies a discrete gamma distribution with an ad-
ditional invariable rate class (thus N + 1 rate classes in total). The
default for N is 4. α and % are optimized if not given.

rates:none Applies a single rate category to all sites.

NOTE

Under MAL, the rates are averaged across the discrete dis-
tribution, while under MPL we select the best rate class for
the assignment of each character. Because dynamic likelihood
characters’ alignment matrix would select one rate class for align-
ment, and because this procedure is equivalent to a constant
multiplication of the branch length, dynamic MPL characters
do not support rate distribution. Rate distributions are ignored
if applied during a transform and a warning to that affect is
reported.

NOTE

It should be noted that although many researchers apply both
a gamma and theta in likelihood analyses, the parameter values
inferred are correlated [49]. It has therefore been recommended
that a proportion of invariant sites be “pseudo”-estimated by
increasing the number of discrete categories for the gamma
distribution to account for very low rate character groups. The
mean of each class is used to define the rate for the discrete
category.
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Defaults

transform() If no arguments are given, this command does nothing.

Examples

• transform(all,(tcm:(1,1)))
Applies the transformation cost matrix (1,1) to all characters, meaning
that substitutions and gaps receive the same weight.

• transform(all,(tcm:"molmatrix"))
Applies the character transformation matrix "molmatrix" to all charac-
ters.

• transform(tcm:(1,1),gap_opening:1)
Applies the transformation cost matrix and the gap opening cost to
all characters. In this example the cost for substitutions is 1, the gap
opening cost is 2 (1 set by gap_opening + 1 set by tcm), and the gap
extension cost is 1 (set by tcm).

• transform(tcm:(2,2),ti:(1,1,1,1,0),td:(1,1,1,1,0))
Assigns to all characters the symmetric transformation cost matrix with
cost 2 for every indel and substitution, but for those insertions and
deletions at the ends of the sequences, the cost assigned will only be 1.

• transform(tcm:("some_tcm_file",level:(1,first)))
This command applies the cost matrix as specified in tcm file "some_-
tcm_file". The heuristic median calculations are set to level 1 and tie
breaks are broken by choosing the first median state examined.

• transform(static,(weightfactor:2))
This command reweights all the static homology characters by a multi-
plicative factor of 2, while keeping the weighting scheme that has been
specified before.

• transform(static,(weight:4.2))
Applies the same weight (a float value 4.2) to all static homology
characters.

• transform(dynamic,(weight:4))
Applies the same weight (an integer value 4) to all dynamic homology
characters.
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• transform(names:("test.ss:*"),(weight:3))
Weights all the morphological characters (*) in the file test.ss by an
integer value of 3.

• transform(names:("gen1","gen4"),(fixed_states))
Transform only specified sequence characters (gen1 and gen4) into fixed
states characters.

• transform((all,(tcm:(1,1))),(names:("gen1","gen2"),
(static_approx)),(names:("gen3"),(tcm:"molmatrix")))
Applies the substitution and indel costs 1 to all characters, then applies
static approximation using that tcm to characters in files gen1 and
gen2. For the file gen3, it invokes a different transformation cost matrix,
contained in the file molmatrix. Beware that the file name should be
exactly as it was reported with report(data), which differs from the
source file name (report(data) reports files as fileX:N).

• transform((all,(tcm:(1,1))),(names:("gen1:3","gen2:10",
"gen3:1","gen4:5"),(static_approx)),(names:("gen5","gen6"),
(tcm:"Molmatrix1")))
Applies tcm (1,1) to all characters, then applies static approximation
to the sequence data contained in files gen1, gen2, gen3, and gen4
according to this transformation cost matrix, and applies the custom
transformation cost matrix contained in the file Molmatrix1 to the
sequence data contained in files gen5 and gen6.

• transform(names:("mycustom.fas"),(tcm:("mycustom.mat",2)))
This examples transforms the cost matrix used to optimize custom_al-
phabet character “mycustom.fas” to “mycustom.mat” and uses heuristic
level 2.

• transform(fixed_states)
Transforms all sequence characters into fixed states characters.

• transform(likelihood:(jc69,rates:gamma:(2),mpl,priors:
equal))
Transforms the characters to likelihood characters, using a jc69 +
gamma:(2) model, with equal equilibrium frequencies under MPL. In
this model, gaps are treated as “missing” (the default value).

• transform(likelihood:(tn93,rates:theta:(4),gap:coupled,mpl,
priors:estimate))
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This command transforms the characters to likelihood characters, us-
ing a tn93 + theta:(4) model, with estimated equilibrium frequencies
under MPL. In this model, indels are treated as coupled.

• transform(fixed_states:("shrimp",ignore_polymorphism))
This example shows the optional arguments for a Mauve-based fixed_-
states analysis. Here, Mauve genome alignment files will be generated
with the names “shrimp_i_j.alignment” where i and j are median
states. Sequence ambiguities will not be resolved to generate additional
medians beyond those determined by the data.

• transform(search_based:(("mycustom_char1.fas","mycustom_
extra1.fas"),("mycustom_char2.fas","mycustom_extra2.fas")))
This command adds the sequences found in “mycustom_extra1.fas”
and “mycustom_extra2.fas” to fixed_states characters “mycustom_-
char1.fas” and “mycustom_char2.fas” respectively.

• transform(chromosome:(annotate:(mauve,35.0,0.35,0.01,0.10)))
This command specifies the use of Mauve annotation with 35.0 for qual-
ity of LCB, 35% coverage of all sequences by LCB’s, 1% min length of
LCB (100 for length 10,000 sequence), and 10% max length (1000 for
length 10,000 sequence).

• transform(seq_to_chrom:(locus_indel:(50,1.0),min_seed
_length:15))
All applicable (i.e. sequence) data are transformed into chromosome
data and the locus-level gap opening cost is set at 50 with a gap
extension cost at 1.0.

3.3.28 use

Syntax

use(STRING)

Description

Restores from memory the state of a POY5 session (that includes character
data, selections, trees, all other data and specifications) that had previously
been saved during the session using the command store (Section 3.3.25). The
recalled session replaces the current session. The string argument specifies
the name of the stored state.
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In combination with store (Section 3.3.25), the command use is useful
for exploring alternative cost regimes and terminal sets within a single POY5
session.

Examples

• store("initial_tcm")
transform(tcm:(1,1))
use("initial_tcm")
The first command, store, stores the current characters and trees under
the name initial_tcm. The second command, transform, changes
the cost regime of molecular characters, effectively changing the data
being analyzed. However, the third command, use, recovers the initial
state stored under the name initial_tcm.

See also

• store (Section 3.3.25)

• transform (Section 3.3.26)

3.3.29 version

Syntax

version()

Description

Reports the POY5 version number in the output window of the ncurses
interface, or to the standard error in the flat interface.

Examples

• version ()

3.3.30 wipe

Syntax

wipe()
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Description

Deletes the data stored in memory (all character data, trees, etc.).

Examples

• wipe ()
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Chapter 4

POY5 Heuristics: A Practical
Guide

4.1 Introduction

As the level of phylogenetic analysis increases—from individual loci, to chro-
mosomes, to genomes containing multiple chromosomes—so too does the
computational complexity. In POY5, a significant increase in computational
time results from combining cladogram searching with co-optimization of
nucleotide pairwise alignments, rearrangements of loci within a chromosome,
and rearrangements of chromosome fragments within the genome. As a
result, a phylogenetic analysis involves a set of nested computationally “hard”
(NP-complete) problems that makes finding exact solutions extremely un-
likely. In addition, increasing sequence length heterogeneity (at the levels of
nucleotides, loci, and chromosomes) and the ever-growing sizes of datasets,
further contribute to computational complexity.

To cope with the problem of computational intractability, and hence, the
speed of the analyses, POY5 can employ a battery of approximate, or heuristic
methods that function at different levels of the analysis. As with all heuristic
procedures, a tradeoff is involved: a substantial decrease in execution time
comes at a price of obtaining solutions with reduced optimality (however,
the extent of the tradeoff is difficult to evaluate in the analyses of real
datasets). Therefore, it becomes important to understand the combined effect
of different heuristic methods, so that the chosen search strategy balances
the computational time with a “reasonable” quality of the result.

Here, we provide general guidelines for using different heuristic methods,
exploring their combined effect, and suggesting the choice of parameters that

165
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can be explored to provide the best result for specific cases. Real datasets
differ greatly in size and complexity, so that no single optimal strategy can
be suggested. These guidelines, however, should enable the investigator to
design an efficient strategy that can be tailored to the peculiarities of a given
dataset.

In addition to heuristic methods, this chapter attempts to assist with
the selection of transformation cost regimes. Alternative cost regimes can
significantly affect the outcome of the analysis, this becomes particularly
apparent in dealing with large, genome-level datasets, where multiple cost
regimes are used simultaneously to specify transformations at different levels
of analysis. Many problems stem from the difficulty in selecting the most
reasonable combination of parameters for the optimization of DNA sequence
data at the levels of nucleotides, loci, and chromosomes.

4.2 Preparing data files for analysis

If molecular sequence files contain incomplete sequences, it is highly recom-
mended that the file be partitioned prior to analysis in POY5. Partitioning or
fragmenting the data can help to ameliorate the effects of poor sequences,
missing data, or the lack of overlap of sequences—as is very often the case
when incorporating sequences that were downloaded from an online database
such as GenBank (as different studies may have utilized different priming
regions) (Figure 4.1).

At the level of nucleotides, individual fragments in a locus can be separated
by pound symbols (“#”) or contained in individual files (that is, treated as
partitions). When “#’s” are used, their number must be the same across
homologous sequences. Alternatively, the argument of auto_sequence_-
partition of the command transform (Section 3.3.26) can partition the
data. This command evaluates each fragment in the data file and if a
long region appears to have no indels, then the fragment is broken inside
that region. auto_sequence_partition works best when primer flanking
regions are available. When primer flanking regions are not available it is
recommended that the “#”s be inserted manually (Figure 4.2 and Figure 4.3).

4.3 Data treatment

Direct optimization (see Character optimization section below) involves com-
paring potential nucleotide homologies between two sequences. Consequently,
the time it takes is proportional to the product of the lengths of the sequences
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From a purely operational point of view, fragments can also be speci-

fied to ameliorate the effects of poor sequences, missing data, or lack 

of the overlap of sequences downloaded from a data base. Figure 9.2

illustrates this process. Imagine that an investigator sequenced 1000 bp 

for a given locus for five taxa, and three more partial sequences were 

downloaded from GenBank. The overlapping of the eight sequences 

may not be complete, and therefore dividing the sequences into frag-

ments could assist with the handling of missing data. 

Composite Optima
With large data sets, it is possible for an analysis to become stuck in a 

local optimum that is globally suboptimal—what Maddison (1991) calls 

an island of cladograms. This is a classic example of a complex solution 

“landscape” with peaks and valleys of local optima (2, 4, 5, and 6 in 

Figure 9.3 on page 111) and a global optimum (7 in Figure 9.3). The 

most common solution to this problem is the use of a cladogram search 

strategy that initializes on multiple, randomly selected starting points (a 

Sequence 1

Primers

A B C D EFragments

Sequence 2

Sequence 3

GenBank 1

GenBank 2

GenBank 3

Sequence 4

Sequence 5

Figure 9.2: Separation of eight sequences by flanking primers into segments to 
ameliorate the effects of missing sequence data.

Figure 4.1: Separation of eight sequences into fragments, using flanking
primers as a guide. This partitioning will help to ameliorate the effects of
missing data in the sequences GenBank1, GenBank2, and GenBank3.

Figure 4.2: A nucleotide sequence alignment visualized in BioEdit.
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Figure 4.3: A nucleotide sequence alignment visualized in BioEdit, that
has been ‘chopped’, via insertion of “#” symbols. “Cnemaspis_limi” and
“Phyllopezus_pollicaris” have been modified with the insertion of N’s. Note
the lack of overlap between “Delma_tincta” and “Phelsuma_lineata”.

Table 4.1: Heuristics Guide: Data Treatment.

Level of analysis Heuristic Implementation

Nucleotides and
amino acids

Fragment sequences Manually separate fragments with
# symbols or transformed using
auto_sequence_partition

Locus Fragment chromosome Manually insert pipes (“|”) separat-
ing loci

Chromosomes N/A N/A

compared (O(n2)) [68]. This procedure can be time consuming for long
sequences and for those DNA fragments that greatly differ in length. In cases
where unambiguous (such as long, completely conserved regions) sequence
fragments can be identified, partitioning the long sequences into smaller frag-
ments delimited by these regions can significantly reduce computational time.
Such economy is reached because nucleotide homologies are not examined
over the separate partitions. This strategy assumes that the fragments are
mutually exclusive and are homologous across terminals.

As mentioned previously, nucleotide sequences can be partitioned by in-
serting pound symbols (“#”). Fragmenting long sequences greatly accelerates
searching. At the chromosome level, individual loci can be separated by pipes
(“|”) (see Table 4.1).
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4.4 Character optimization

Minimizing overall cladogram cost for unaligned sequences is an NP-Hard op-
timization that is dependent on the lowest cost assignment of HTU sequences.
POY implements Direct Optimization (DO) [59]; Fixed-States Optimiza-
tion (FSO) [60]; Iterative Pass Optimization (IPO) [65]; and Search-Based
Optimization (SBO) [66] heuristics to determine the set of HTU sequences
comprising the internal nodes of each cladogram constructed.

DO decomposes the problem into a series of two-node comparisons, cal-
culating locally optimal solutions, which generates the total cladogram cost.
An advantage of direct optimization is that it allows for the exploration of
a large diversity of putative homologies and selects the scheme that yields
the best solution. This is useful in analyzing sequences of different length,
where site-to-site homologies are uncertain. Because the procedure is based
on a greedy algorithm, it requires multiple iterations (independent initial
cladogram builds) and extensive tree searches to reach a potentially global
minimum.

In contrast, fixed-states optimization does not calculate HTU sequences
but rather optimizes those observed in terminal taxa. These internal node
sequences then are diagnosed using dynamic programming based on a matrix
of edit costs between sequences. In the fixed-states implementation, clado-
gram optimization is independent of sequence lengths after initial state cost
calculation, and as the number of sequences increase so to does the pool
from which the HTU sequences are drawn, thereby improving cladogram cost
estimation (this can be further improved using additional potential median
sequences via SBO). Due to these properties fixed-states optimization is
recommended as an initial approximation strategy for large data sets with
large variation in sequence length.

Further approximations and economies can be achieved by varying param-
eters of commands, such as selecting a limited subset of trees for subsequent
analysis limiting the number of replicates, and examining intermediary results
from an interrupted analysis.

4.5 Tree searching

Heuristic approaches to cladogram searching include random addition of
taxa, branch swapping (TBR and SPR), simulated annealing (the ratchet
and tree-drifting), and genetical algorithms (tree fusing). These techniques,
frequently used in combination, allow a more efficient exploration of tree space
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and provide the means of finding more globally optimal solutions. These
methods are widely used in phylogenetics [18, 69], although POY5 implements
additional modifications of these procedures.

Typical search strategy in POY5 involves consecutive application of tree
search algorithms that begin with generating multiple, randomly selected
starting points [Random Addition Sequences (RAS) or Wagner trees]. The
importance of multiple starting trees cannot be overemphasized and a suc-
cessful search will maximize the number of RAS. However, making a tree
search more exhaustive by increasing the number of starting trees comes
at a price of increased computation time. Therefore, it is advised here to
estimate the amount of time it takes to complete a single replicate and takes
this information in consideration when designing a more exhaustive strategy.
The number of replicates used by POY5 practitioners for datasets of moderate
size (70-100 terminals) ranges from 100 to 250 (or approximately n times the
number of terminals. Here are some examples of search strategies:

RAS+SPR/TBR+Ratchet The strategy is for a thorough search for a
data set of 100 or fewer taxa. A diversity of starting points is generated
by multiple RAS, each refined by a local search (TBR or a combination
of SPR and TBR, the latter is an efficient default strategy in POY5).
Ratcheting is used to examine tree space that potentially has not been
explored by the local searches.

RAS+SPR/TBR+Ratchet+Tree Fusing Adding a tree fusing step al-
lows for combining the best subtrees of cladograms that can potentially
yield a tree of shorter length. Empirical studies show that adding tree
fusing after replicate rounds enhances the results only when dealing
with data sets with more than 50 taxa.

RAS+SPR/TBR+Ratchet+Tree Drifting+Tree Fusing Tree Drifting
can be used in place of or in addition to the Ratchet.

Input Trees+SPR/TBR+Ratchet+Tree Drifting+Tree Fusing For
more exhaustive searches, the best trees obtained from the initial
searches using the strategies outlines above, can be used as input trees
for subsequent analyses. In doing so, the RAS step can be omitted
because searching starts with locally optimal trees.

The aggressiveness of searches can be adjusted by varying parameters of
the branch swapping, ratchet, tree fusing, and tree drifting commands.
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Further economies can be reached by using a combination of different
character optimization methods. For example, initial searches can be con-
ducted under the faster static approximation (that converts sequence data
into static homology characters; see Character optimization section), whereas
the final refinement can be performed using DO or IPO.

4.6 Transformation cost regimes

In analyses at the level of nucleotides, here are some general approaches to
selecting transformation cost regimes most commonly used by POY5 practi-
tioners:

Equal costs This approach assigns the same cost to all substitutions and
indels, and does not take into account gap extension cost. For rationale
for using this cost regime see Frost et al. [19].

Parameter sensitivity analysis This method, suggested by Wheeler [58],
explores the effect of varying transformation costs by comparing results
of analyses conducted under different cost regimes. Partition incon-
gruence can subsequently be computed for each cladogram and the
parameter set that minimizes incongruence is selected as best.

More specifically, sequence optimization parameters depend on the relative
costs of nucleotide- and locus-level transformations. Nucleotide-level transfor-
mations are specified by the tcm argument, the locus-level rearrangements are
specified by locus_breakpoint or locus_inversion costs. If locus_level
rearrangement costs are extremely high, few rearrangements will be employed.
On the other hand, if their cost is very low (equal or slightly above that of
the nucleotide-level rearrangements), rearrangements can be frequent.

When DNA sequence data is combined with morphological data, the cost
for morphological character transformations often is set to be the same as for
nucleotide substitutions or indels.

4.7 Likelihood Analyses

The analysis of sequence data under likelihood, whether prealigned (static)
or not, can be significantly more time consuming than similar analyses under
parsimony. A basic strategy to improve execution times under likelihood
is to perform initially less complex analyses and build up through a series
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of increasingly more complex procedures until the desired level of search
complexity is achieved.

Parsimony initial pass This approach begins with an initial build and
search (of arbitrary complexity) under parsimony before transforming
to a likelihood model and diagnosing the topology. This procedure saves
time by avoiding RAS builds and swapping under likelihood. A potential
caveat of this heuristic is that a parsimony-optimal topology may be
far in tree space from the likelihood-optimal topology, and significant
swapping after transformation to likelihood may be necessary.

Rough parameter estimation The granularity of model parameter esti-
mation can be increased. For example, under a traditional likelihood-
based swap, all branches (regardless of the distance from the join site)
are re-optimized, and the model parameters are re-optimized after every
swap. Time can be saved by optimizing the model only if the cost
of a join is within a threshold number of the current best cost, or
by optimizing branches within a specified distance of the join region.
RAxML takes advantage of this heuristic method by using its GTRCAT
model for topology search, and a more refined GTRGAMMA for final
parameter estimation on the best topology.

Floating point granularity The coarseness of floating point calculations
can be increased to limit the time spent on optimizing parameter values
during swapping or even during transformation to likelihood characters.
Coarse granularity operates by limiting both the precision calculated
and the number of optimization iterations conducted when estimating
parameter values. A caveat of this heuristic is that coarse granularity
may adversely affect analyses for which multiple topologies and branch
length schemes are close to equally optimal. Additionally, likelihood
scores under coarse granularity are not comparable to those of other
likelihood programs, and a full optimization should be conducted on
the final topology.

Optimization schedule The stringency of the model parameter optimi-
zation schedule can be decreased. For example, under a traditional
likelihood-based swap, all branch lengths (regardless of the distance
from the join site) and model parameters are re-optimized after every
swap. Time can be saved by limiting this schedule and optimizing the
model only if the cost of a join is within a threshold number of the
current best cost, or by optimizing branches within a specified distance
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of the join region. A caveat of this heuristic is that the optimal schedule
is difficult to predict, and is likely to be strongly data-dependent.

Limited rearrangement neighborhoods The size of the rearrangement
neighborhood (variants in complexity between NNI and TBR) can be
restricted in early search stages of topology search under likelihood. This
approach restricts the number of calculations during rearrangements,
whereas increasing granularity restricts the time spent on a given
calculation. Once solutions have been identified that are suspected
to be near optimal, more exhaustive model estimation and search
strategies can be performed. A caveat of this heuristic is similar to
that of a parsimony initial pass–limiting rearrangement neighborhoods
may identify a local optimum under likelihood that may be difficult to
escape.

Other possibilities for heuristics exist, including alternation between opti-
mality criteria on static characters (transformations back and forth between
static likelihood and parsimony), between variants of one optimality criterion
(between MPL and MAL), or between character assumptions (between four-
and five-state variants of a given model).
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Chapter 5

POY5 Tutorials

These tutorials are intended to provide guidance for more sophisticated ap-
plications of POY5 that involve multiple steps and a combination of different
commands. Each tutorial contains a POY5 script that is followed by detailed
commentaries explaining the rationale behind each step of the analysis. Al-
though these analyses can be conducted interactively using the Interactive
Console or running separate sequential analyses using the Graphical User
Interface, the most practical way to do this is to use a POY5 script (see POY5
Quick Start for more information (Section 2.3).

NOTE

It is important to remember that the numerical values for most
command arguments will differ substantially depending on type, com-
plexity, and size of the data. Therefore, the values used here should
not be taken to be optimal parameters.

The tutorials use sample datasets that are provided with POY5 installation
but can also be downloaded from the POY5 site at:

http://www.amnh.org/our-research/computational-sciences/
research/projects/systematic-biology/poy

The minimally required items to run the tutorial analyses are the POY5
application and the sample data files. Running these analyses requires some
familiarity with the POY5 interface and command structure that can be found
in the preceding chapters.

175

http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy
http://www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy


176 CHAPTER 5. POY5 TUTORIALS

5.1 Combining Search Strategies

The following script implements a strategy for a thorough search. This is
accomplished by generating a large number of independent initial trees by
random addition sequence and combining different search strategies that aim
at exploring local tree space and escaping the effect of composite optima by
comprehensively traversing the tree space. In addition, this script shows how
to output the status of the search to a log file and calculate the duration of
the search.

(*search using all data*)

read("9.fas","31.ss")
read(prealigned:(aminoacids:("41_aln.aa"),tcm:"s1t2.mat"))
set(log:"all_data_search.log",root:"t1")
report(timer:"search_start")
build(250)
swap(threshold:5.0)
select(unique)
perturb(transform(static_approx),iterations:15,ratchet:(0.2,3))
select()
fuse(iterations:200,swap())
select()
report("all_trees.tre",trees:(total),"all_trees_cs.pdf",
graphconsensus,"all_trees_diag.txt",diagnosis)
report(timer:"search_end")
set(nolog)
exit()

• (*search using all data*) This first line of the script is a comment.
While comments are optional and do not affect the analyses, they are
useful for housekeeping purposes.

• read("9.fas","31.ss") This command imports the nucleotide se-
quence files 9.fas (in FASTA format), and a morphological data file
31.ss (in Hennig86 format).

• read(prealigned:(aminoacids:("41_aln.aa"),tcm:"s1t2.mat"))
This command imports the prealigned amino acids file 41_aln.aa and
sets the transformation cost matrix to be used in calculating the cost
of the tree for these data. The tcm file s1t2.mat specifies that the cost
of substitutions are 1 and that of indels 2.
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• set(log:"all_data_search.log",root:"t1") The set command spec-
ifies conditions prior to tree searching. Specifying the log produces a file,
all_data_search.log, that provides an additional means to monitor
the process of the search. The outgroup (t1) is designated as the root,
so that all the reported trees have the desired polarity. By default, the
analysis is performed using direct optimization.

• report(timer:"search_start") In combination with report(timer:
"search end"), this commands reports the amount of time that the
execution of commands enclosed by timer takes. In this case, it reports
how long it takes for the entire search to finish. Using timer is useful
for planning a complex search strategy for large datasets that can take
a long time to complete: it is instructive, for example, to know how
long a search would last with a single replicate (one starting tree) before
starting a search with multiple replicates.

• build(250) This command begins tree-building step of the search that
generates 250 random-addition sequence Wagner trees. A large number
of independent starting points helps to ensure that a reasonable portion
of tree space will be examined.

• swap(threshold:5.0) swap specifies that each of the 250 trees is sub-
jected to alternating SPR and TBR branch swapping routines (the
default of POY5). In addition to the most optimal trees, all the subop-
timal trees found within 5% of the best cost are swapped. This step
helps to ensure that the local searches settled on local optima.

• select(unique) Upon completion of branch swapping, this command
retains topologically unique trees. Contra select(), which selects
topologically unique and optimal trees, select(unique) selects all
unique trees, regardless of cost, thus ensuring that a larger tree space
is explored.

• perturb(transform(static_approx),iterations:15,ratchet:
(0.2,3)) Having transformed to static data (static_approx), 20% of
the characters are selected at random and are then upweighted by a
factor of 3. This process is repeated 15 times.

• fuse(iterations:200,swap()) In this step, up to 200 exchanges of
subtrees identical in terminal composition but different in topology,
are performed between pairs of best trees recovered in the previous
step. This is another strategy for further exploration of tree space.
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Each resulting tree is further refined by local branch swapping under
the default parameters of swap. [Note: performing swap after every
iteration of fuse can be computationally expensive for larger datasets.
An alternative strategy would include a separate round of swap following
fuse.]

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• report("all_trees.tre",trees:(total),"all_trees_cs.pdf",
graphconsensus,"all_trees_diag.txt",diagnosis) This command
produces a series of outputs of the results of the search. It includes
a file containing best trees in parenthetical notation (all_trees.tre)
and their costs (trees:(total)), a graphical representation (in PDF
format) of the strict consensus (all_trees_cs.pdf), and the diagnoses
for all best trees (all_trees_diag.txt).

• report(timer:"search_end") This command stops timing the dura-
tion of search, initiated by the command report(timer:"search_-
start").

• set(nolog) This command stops reporting to the log file, all_data_-
search.log.

• exit() This command ends the POY5 session.

5.2 Timed Search Analysis

The following script implements a strategy for a search using the timed search
option. The timed search option applies a default strategy that performs as
many rounds of tree building, followed by TBR branch swapping, parsimony
ratchet and tree fusing. When performing a timed search, it is crucial to set
the maximum time such that the program has a reasonable amount of time
to perform a search. Thus, it is important to have some approximation as to
the length of time it would take to perform a single round of searching (e.g.
build (1), followed by TBR, ratchet and fusing in the case of a parsimony
analysis of DNA sequence data). With this information, the user can then
estimate the amount of time necessary to perform a thorough search. The
amount of time set for the search is clearly data dependent.
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While this tutorial calls for two successive 12 hour timed searches, if more
than one processor is available to the user, each of these 12 hour rounds can
be further divided into shorter runs, depending on the number of processors
available, e.g. if 2 processors are available, then a 6 hour timed search across
this number of processors will afford quicker results.

(*search using a Timed Search*)

read("9.fas","31.ss")
read(prealigned:(aminoacids:("41_aln.aa"),tcm:"s1t2.mat"))
set(root:"t1")
search (max_time:00:12:00)
select(unique)
report("Run1a.tre",trees)
search(max_time:00:12:00)
select(unique)
report("Run1b.tre",trees)
fuse(iterations:250)
select()
swap(trees:100)
select()
report("Run1c_H86.tre",trees:(hennig,total),"Run1c_cs.tre",
consensus,"Run1c.pdf",graphconsensus)
quit()

• (*search using a Timed Search*) This first line of the script is a
comment. While comments are optional and do not affect the analyses,
they are useful for housekeeping purposes.

• read("9.fas","31.ss") This command imports the nucleotide se-
quence files 9.fas (in FASTA format), and a morphological data file
31.ss (in Hennig86 format).

• read(prealigned:(aminoacids:("41_aln.aa),tcm:"s1t2.mat"))
This command imports the prealigned amino acids file 41_aln.aa and
sets the transformation cost matrix to be used in calculating the cost
of the tree for these data. The tcm file s1t2.mat specifies that the cost
of substitutions are 1 and that of indels 2.

• set(root:"t1") The set command specifies conditions prior to tree
searching. The outgroup (t1) is designated as the root, so that all the
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reported trees have the desired polarity. By default, the analysis is
performed using direct optimization.

• search(max_time:00:12:00) The search command will perform a
timed search, performing as many successive rounds of build, swap,
ratchet and fusing during the 12 hour period. For this dataset, it has
been determined that 24 hours (from two successive rounds of a 12
hour timed search) is sufficient time to perform a thorough search.

• select(unique) Upon completion of the timed search, this command
retains topologically unique trees. Contra select(), which selects
topologically unique and optimal trees, select(unique) selects all
unique trees, regardless of cost, thus ensuring that a larger tree space
is explored.

• report("Run1a.tre",trees) Having selected all unique trees, these
trees are reported to a file. Outputting trees at different stages of
longer runs is advisable. These reports can act as checkpoints in case
of hardware problem, computer crashes, power outages etc.

• search(max_time:00:12:00) A second timed search is performed.

• select(unique) All topologically unique trees (including suboptimal
trees) are selected.

• report("Run1b.tre",trees) Having selected all unique trees, these
trees are reported to a file.

• fuse(iterations:250) In this step, up to 250 exchanges of subtrees
identical in terminal composition but different in topology, are per-
formed between pairs of best trees recovered in the previous step. This
is another strategy for further exploration of tree space.

• select() Upon completion of fusing, this command retains only opti-
mal and topologically unique trees; all other trees are discarded from
memory.

• swap(trees:100) Submits current trees to a round of SPR followed by
TBR. It keeps up to 100 minimum cost trees for each starting tree.

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.
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• report(Run1c_H86.tre",trees:(hennig,total),"Run1c_cs.tre",
consensus,"Run1c.pdf",graphconsensus) This command reports a
series of outputs of the results of the search. It includes a file containing
the most optimal trees in parenthetical notation (Run1c_H86.tre) with
the associated costs (trees:(hennig,total). These trees have been
prepended with tread and are separated by asterisks. In addition,
a strict consensus in parenthetical notation (Run1c_cs.tre) and a
graphical representation of this strict consensus (Run1c.pdf) are also
output.

• quit() This command ends the POY5 session.

5.3 Iterative Pass Analysis

The following script implements a strategy for a thorough search under itera-
tive pass optimization. Iterative pass optimization is a very time consuming
procedure that makes it impractical to conduct under this kind of optimization
(save for very small datasets that can be analyzed within reasonable time).
The iterative pass, however, can be used for the most advanced stages of the
analysis for the final refinement, when a potential global optimum has been
reached through searches under other kinds of optimization (such as direct
optimization). Therefore, this tutorial begins with importing an existing tree
(rather than performing tree building from scratch) and subjecting it to local
branch swapping under iterative pass.

(*search using all data under ip*)

read("9.fas","31.ss")
read(prealigned:(aminoacids:("41_aln.aa"),tcm:"s1t2.mat"))
read("Run1c_H86.tre")
set(iterative:approximate:2)
swap(around)
select()
report("all_trees.tre",trees:(total),"all_trees_cs.pdf",
graphconsensus,"all_trees_diag.txt",diagnosis)
exit()

• (*search using all data under ip*) This first line of the script is a
comment. While comments are optional and do not affect the analyses,
they are useful for housekeeping purposes.
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• read("9.fas","31.ss") This command imports the nucleotide se-
quence files 9.fas (in FASTA format), and a morphological data file
31.ss (in Hennig86 format).

• read(prealigned:(aminoacids:("41_aln.aa),tcm:"s1t2.mat"))
This command imports the prealigned amino acids file 41_aln.aa and
sets the transformation cost matrix to be used in calculating the cost
of the tree for these data. The tcm file s1t2.mat specifies that the cost
of substitutions are 1 and that of indels 2.

• read("Run1c_H86.tre") This command imports a tree file, Run1c_-
H86.tre, that contains a tree from a previous analyses.

• set(iterative:approximate:2) This command sets the optimization
procedure to iterative pass such that approximated three dimensional
alignments generated using pairwise alignments will be considered. The
program will iterate either two times, or until no further tree cost
improvements can be made.

• swap(around) This commands specifies that the imported tree is sub-
jected to alternating rounds of SPR and TBR branch swapping (the
default of POY5) following the trajectory of search that completely
evaluates the neighborhood of the tree (by using around).

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• report("all_trees.tre",trees:(total),"all_trees_cs.pdf",
graphconsensus,"all_trees_diag.txt",diagnosis) This command
produces a series of outputs of the results of the search. It includes a
file containing best trees in parenthetical notation (all_trees_ip.tre)
and their costs (trees:(total), a graphical representation (in PDF
format) of the strict consensus (all_trees_cs.pdf), and the diagnoses
for all best trees (all_trees_diag.txt).

• exit() This command ends the POY5 session.

5.4 Calculating supports: Bremer

This tutorial illustrates the calculation of Bremer support values for trees
constructed from dynamic homology characters. It is strongly recommended
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that this more exhaustive approach is used for calculating Bremer supports
rather than simply using the calculate_supports(bremer) defaults. As this
tutorial utilizes the visited option, this tutorial can not be run in parallel.

(*Bremer support part 1: generating trees*)

read("9.fas","31.ss")
read(prealigned:(aminoacids:("41_aln.aa"),tcm:"s1t2.mat"))
set(root:"t1")
read("Run1c_H86.tre")
swap(all,visited:"tmp.trees",timeout:3600)
select()
report("bremertrees.tre",trees)
wipe()

(*Bremer support part 2: Bremer calculations*)

read("9.fas","31.ss")
read(prealigned:(aminoacids:("41_aln.aa"),tcm:"s1t2.mat"))
set(root:"t1")
read("bremertrees.tre")
report("Bremer_trees.pdf",graphsupports:bremer:"tmp.trees")
exit()

• (*Bremer support part1: generating trees*) This first line of
the script is a comment. While comments are optional and do not affect
the analyses, they are useful for housekeeping purposes.

• read("9.fas","31.ss") This command imports the nucleotide se-
quence files 9.fas (in FASTA format), and a morphological data file
31.ss (in Hennig86 format).

• read(prealigned:(aminoacids:("41_aln.aa),tcm:"s1t2.mat"))
This command imports the prealigned amino acids file 41_aln.aa and
sets the transformation cost matrix to be used in calculating the cost
of the tree for these data. The tcm file s1t2.mat specifies that the cost
of substitutions are 1 and that of indels 2.

• set(root:"t1") The set command specifies conditions prior to tree
searching. The outgroup (t1) is designated as the root, so that all the
reported trees have the desired polarity.
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• read("Run1c_H86.tre") This command will read in the tree file Run1c_-
H86.tre that was generated in Tutorial 2.

• swap(all,visited:"tmp.trees",timeout:3600) The swap command
specifies that each of the trees be subjected to an alternating SPR
and TBR branch swapping routine (the default of POY5). The all
argument turns off all swap heuristics. The visited:"tmp.trees"
argument stores every visited tree in the file specified. Although the
visited tree file is compressed to accommodate the large number of
trees it will accumulate, the argument timeout can be used to limit
the number of seconds allowed for swapping also limiting the size
of the file (although this has potential to inflate the Bremer values
reported). Alternatively, the swap command can be performed as a
separate analysis and terminated at the users discretion to maximize the
number of trees generated. [Note: as this visited file is a compressed
file, it will appear to contain ‘garbage’ when opened. To access a
‘human readable’ file, it must be uncompressed.]

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• report("bremertrees.tre",trees) This command will save the op-
timal and unique tree(s) to a file bremertrees.tre.

• wipe() This command eliminates all the data stored in memory.

• (*Bremer support part 2: Bremer calculations*) A comment in-
dicating the intent of the commands which follow.

• read("9.fas","31.ss")

• read(prealigned:(aminoacids:("41_aln.aa"),tcm:"s1t2.mat"))

• set(root:"t1") The set command specifies conditions prior to tree
searching. The outgroup (t1) is designated as the root, so that all the
reported trees have the desired polarity.

• read("bremertrees.tre") This command imports the tree file
bremertrees.tre for which the support values will be generated. It
is important to only read the selected "bremertrees.tre" file rather
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than the expansive "tmp.trees" file which will be used in bremer
calculations.

• report("Bremer_trees.pdf",graphsupports:bremer:"tmp.trees")
The report command in combination with graphsupports and a file
name, generates a pdf file (Bremer_trees.pdf) with bremer values for
the selected trees held in tmp.trees.

• exit() This command ends the POY5 session.

5.5 Calculating supports: Jackknife

This tutorial illustrates the calculation of Jackknife support values for trees
constructed from static homology characters— these characters are pre-
aligned. Although it is possible to calculate Jackknife support values for trees
constructed using dynamic homology characters, it is highly recommended
against doing so as resampling of dynamic characters occurs at the fragment
(rather than nucleotide) level (e.g. calculating jackknife supports for a dataset
that contains a single fragment would be meaningless).

(*Jackknife support for static homology trees*)

read(prealigned:("28s.aln",tcm:(1,2)))
set(root:"Americhernes")
build()
swap()
select()
calculate_support(jackknife:(remove:0.50,resample:1000),
build(5),swap(tbr,trees:3))
report("jackknives.pdf",graphsupports)
exit()

• (*Jackknife support for static homology trees*) This first line
of the script is a comment. While comments are optional and do not
affect the analyses, they are useful for housekeeping purposes.

• read(prealigned:("28s.aln",tcm:(1,2))) This command imports
the prealigned nucleotide sequence file 28s.aln, and treats the char-
acters as static with the prescribed transformation costs, such that
substitutions are assigned a cost of 1 and indels a cost of 2.
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• set(root:"Americhernes") The set command specifies conditions
prior to tree searching. The outgroup (Americhernes) is designated as
the root, so that all the reported trees have the desired polarity.

• build() This command begins the tree-building step of the search that
generates by default 10 random-addition Wagner trees. It is essential
that trees are either specified from a file or that trees are built and
loaded in memory before attempting to calculate support values.

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY5).

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• calculate_support(jackknife,(remove:0.50,resample:1000),
build(5),swap(tbr,trees:3)) The calculate_support command
generates support values as specified by the jackknife argument for
each tree held in memory. During each pseudoreplicate half of the
characters will be deleted as specified in the argument remove:0.50. A
search consisted of 5 Wagner tree builds (by random addition sequence)
and swapping these trees under tbr, keeping three minimum-cost trees
after each round, follows. This procedure is repeated 1000 times.

• report("jackknives.pdf",graphsupports) The report command in
combination with a file name and the graphsupports generates a
pdf file with jackknife values designated by the name specified (i.e.
jackknives.pdf).

• exit() This command ends the POY5 session.

5.6 Calculating supports: Bootstrap

This tutorial illustrates the calculation of Bootstrap support values for trees
constructed from static homology characters. As these characters are not pre-
aligned, the dynamic homology characters are converted to static characters
using the argument static_approx prior to calculation of support.

(*Bootstrap support for static homology trees*)
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read("28s.fas")
transform(tcm:(1,2))
set(root:"Americhernes")
build()
swap()
select()
transform(all,(static_approx))
swap()
calculate_support(bootstrap:100,build(5),swap(tbr,trees:5))
report("bootstraps.pdf",graphsupports)
exit()

• (*Bootstrap support for static homology trees*) This first line
of the script is a comment. While comments are optional and do not
affect the analyses, they are useful for housekeeping purposes.

• read("28s.fas") This command imports the nucleotide sequence file
28s.fas.

• transform(tcm:(1,2)) The file 28s.fas is transformed such that the
cost of substitutions are 1 and that of indels 2. The transformation
cost matrix is used in calculating the cost of the tree for these data.

• set(root:"Americhernes") The set command specifies conditions
prior to tree searching. The outgroup (Americhernes) is designated as
the root, so that all the reported trees have the desired polarity.

• build() This command begins the tree-building step of the search that
generates by default 10 random-addition Wagner trees. It is essential
that trees are either specified from a file or that trees are built and
loaded in memory before attempting to calculate support values.

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY5).

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• transform(all,(static_approx)) This command transforms all the
dynamic characters into static characters.
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• swap() The local optimum for dynamic homology characters can differ
from that for the static homology characters based on the same sequence
data. Therefore, an extra round of swapping on the transformed data is
performed in order to reach the local maximum for the static homology
characters prior to calculating support values.

• calculate_support(bootstrap:100,build(5),swap(tbr,trees:5))
The calculate_support command generates support values as speci-
fied by the bootstrap argument for each tree held in memory. During
each pseudoreplicate the characters are randomly sampled and replaced,
followed by 5 Wagner tree builds (by random addition sequence) and
swapping these trees under tbr, keeping five minimum-cost trees after
each round. The procedure is repeated 100 times.

• report("bootstraps.pdf",graphsupports) The report command in
combination with a file name and the graphsupports generates a
pdf file with bootstrap values designated by the name specified (i.e.
bootstraps.pdf).

• exit() This command ends the POY5 session.

5.7 Sensitivity Analysis

This tutorial demonstrates how data (tree costs) for parameter sensitivity
analysis are generated. Sensitivity analysis [58] is a method of exploring the
effect of relative costs of substitutions (transitions and transversions) and
indels (insertions and deletions), either with or without taking gap extension
cost into account. The approach consists of multiple iterations of the same
search strategy under different parameters (i.e. combinations of substitution
and indel costs). Obviously, such analysis might become time consuming
and certain methods are shown here how to achieve the results in reasonable
time. This tutorial also shows the utility of the command store and how
transformation cost matrixes are imported and used.

POY5 does not comprehensively display the results of the sensitivity an-
alysis or implements the methods to select a parameter set that produces
the optimal cladogram, but the output of a POY5 analysis (such as the one
presented here) generates all the necessary data for these additional steps.

For the sake of simplicity, this script contains commands for generating
the data under just two parameter sets. Using a larger number of parameter
sets can easily be achieved by replicating the repeated parts of the script and
substituting the names of input cost matrixes.
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(*Sensitivity Analysis*)

read("9.fas")
set(root:"t1")
store("original_data")
transform(tcm:"s1t1.mat")
build(100)
swap(timeout:3600)
select()
report("9_11.tre",trees:(total),"9_11cs.tre",consensus,
"9_11cs.pdf",graphconsensus)
load("original_data")
transform(tcm:"s1t2.mat")
build(100)
swap(timeout:3600)
select()
report("9_12.tre",trees:(total),"9_12cs.tre",consensus,
"9_12cs.pdf",graphconsensus)
exit()

• (*Sensitivity Analysis*) This first line of the script is a comment.
While comments are optional and do not affect the analyses, they are
useful for housekeeping purposes.

• read("9.fas") This command imports the nucleotide sequence file
9.fas (in FASTA format).

• set(root:"t1") The outgroup (t1) is designated as the root, so that
all the reported trees have the desired polarity.

• store("original_data") This commands stores the current state of
analysis in memory in a temporary file, original_data.

• transform(tcm:"s1t1.mat") This command applies a transformation
cost matrix from the file s1t1.mat to the data file stored in the file
original_data for subsequent tree searching. In this cost matrix both
substitutions and indels are assigned a cost of 1.

• build(100) This commands begins the tree-building step of the search
that generates 100 random-addition Wagner trees. A large number of
independent starting points will help to ensure that a useful portion of
tree space will be examined.
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• swap(timeout:3600) swap specifies that each of the 100 trees generated
in the previous step is subjected to alternating SPR and TBR branch
swapping routine (the default of POY5). The argument timeout specifies
that 3600 seconds are allocated for swapping and the search is going
to be stopped after reaching this limit. Because sensitivity analysis
consists of multiple independent searches, it can take significant time to
complete each one of them. In this example, timeout is used to prevent
the searches from running too long. Using timeout is optional and can
obviously produce suboptimal results due to insufficient time allocated
to searching. A reasonable timeout value can be experimentally obtained
by the analysis under one cost regime and monitoring time it takes to
complete the search (using the argument timer of the command set).
The advantage of using timeout is saving time in cases where a local
optimum is quickly reached.

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• report("9_11.tre",trees:(total),"9_11con.tre",consensus,
"9_11con.pdf",graphconsensus) This command produces a file con-
taining the best tree(s) in parenthetical notation and their costs (9_-
11.tre), a file containing the strict consensus in parenthetical notation
(9_11con.tre), and a graphical representation (in PDF format) of the
strict consensus (9_11con.pdf).

• load("original_data") This command restores the original (non-
transformed) data from the temporary file original_data, which was
previously generated by store.

• transform(tcm:"s1t2.mat") This command applies a different trans-
formation cost matrix in the file s1t2.mat to the data stored in the
file original_data for another round of tree searching under this new
cost regime.

• build(100) This commands begins the tree-building step of the search
that generates 100 random-addition trees. A large number of indepen-
dent starting point ensures that a large portion of tree space will be
examined.

• swap(timeout:3600) swap specifies that each of the 100 trees generated
in the previous step is subjected to alternating SPR and TBR branch
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swapping routine (the default of POY5) to be interrupted after 3600
seconds (see the description in the previous iteration of the command
above).

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• report("9_12.tre",trees:(total),"9_12con.tre",consensus,
"9_12con.pdf",graphconsensus) This command produces a set of
the same kinds of outputs as generated during the first search (see
above) but under a new cost regime.

• exit() This command ends the POY5 session.

5.8 Chromosome Analysis: Unannotated Sequences

This tutorial illustrates the analysis of chromosome-level transformations
using unannotated sequences, i.e., contiguous strings of sequences without
prior identification of independent regions.

(*Chromosome analysis of unannotated sequences*)

read(chromosome:("11mito.fas"))
transform(tcm:(1,2),gap_opening:3)
transform(chromosome:(annotate:(mauve,25.0,0.30,0.01,0.08)))
transform(fixed_states:("mauveout",ignore_polymorphism))
transform(chromosome:(locus_inversion:100,locus_indel:(10,0.9)))
build(100)
swap(threshold:5.0)
select()
set(root:"Taxon11")
report("unann_chrom_diag.txt",diagnosis)
report("unann_chrom_cs.pdf",graphconsensus)
exit()

• (*Chromosome analysis of unannotated sequences*) This first line
of the script is a comment. While comments are optional and do not
affect the analyses, they are useful for housekeeping purposes.



192 CHAPTER 5. POY5 TUTORIALS

• read(chromosome:("11mito.fas")) This command imports the file
11mito.fas, which consists of chromosomal sequences. The argument
chromosome specifies that the characters are unannotated chromosomes.

• transform(tcm:(1,2),gap_opening:3) The file 11mito.fas is trans-
formed such that the cost of substitutions are 1, indels 2, and there is
a gap opening cost of 3.

• transform(chromosome:(annotate:(mauve,25.0,0.30,0.01,0.08)))
The argument annotate:(mauve) specifies that the program will use
the Mauve aligner [10] to determine locally collinear homologous blocks
(LCB) within the unannotated chromosomal sequences (chromosome).
The float parameters that follow mauve are order dependent, and set
the parameters for determining the LCB homologies: quality, coverage,
minimum and maximum LCB length relative to overall sequence length.
In this case, the LCB quality parameter, which represents the cost
of the LCB divided by its length, is set to the relatively low value of
25 to facilitate the detection of blocks within the sequences. Higher
LCB quality values will result in more stringent LCB determination
and most likely, fewer local collinear blocks recovered. The second
parameter within the argument annotate:(mauve) sets the minimum
LCB sequence coverage at 30% meaning that if the total length of an
input sequence is, for example, 100, a minimum coverage of 0.30 would
require the total length of all LCBs be at least 30. The default value
of 0.01 or 1% sets the minimum length of a given LCB relative to the
length of the entire sequence (e.g. 100 for a 10,000 nucleotide sequence).
The maximum length allowed for an LCB, in this example 8%, sets
the maximum length of a given LCB relative to the length of the total
sequence.

• transform(fixed_states:("mauveout",ignore_polymorphism))
The transform command in combination with fixed_states is used
to produce alignment files (mauveout), which when read into Mauve
[10], can track the movement of LCBs between sequences. Here, Mauve
alignment files will be generated with the names “mauve_i_j.alignment”
where i and j are median states. Sequence ambiguities will not be
resolved to generate additional medians beyond those determined by
the data (ignore_polymorphism). These files can be used in conjunc-
tion with the diagnosis output to determine inferred rearrangement
events. In the analysis of unannotated chromosomes, the data must
be transformed to fixed_states when using the Mauve aligner.
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• transform(chromosome:(locus_inversion:100,locus_indel:
(10,0.9))) The transform command in combination with the argu-
ment chromosome signifies the conditions to be applied when calculating
chromosome-level HTUs (medians). The argument locus_inversion
applies an inversion distance between chromosome loci with the inte-
ger value (100) determining the rearrangement cost. The argument
locus_indel specifies the indel costs for the chromosomal segments,
such that the integer 10 sets the gap opening cost and the float 0.9 sets
the gap extension cost. When selecting appropriate cost parameters
for transformation events it is important to remember that the lowest
cost option for an event will be applied. For example, in the sample
mitochondrial data set used in this tutorial it is biologically feasible
that locus level transformations may have occurred in short (<100)
nucleotide strings (e.g. tRNA genes). To allow for locus transformations
to be detected in these data an appropriate locus indel cost must be less
than the relative cost of explaining these transformations by nucleotide
indels and substitutions.

• build(100) This command begins the tree-building step of the search
that generates 100 random-addition Wagner trees. It is highly recom-
mended that a greater number of Wagner builds be implemented when
analyzing data for purposes other than this demonstration.

• swap(threshold:5.0) The swap command specifies that each of the
trees is subjected to an alternating SPR and TBR branch swapping
routine (the default of POY5). In addition to the optimal trees, all
suboptimal trees found within 5% of the best cost, are thoroughly
evaluated.

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• set(root:"Taxon11") The outgroup (Taxon11) is designated by the
root, so that all the reported trees have the desired polarity.

• report("unann_chrom_diag.txt",diagnosis) The report command,
in combination with a file name and the argument diagnosis, outputs
the optimal median states and edge values to the specified file (unann_-
chrom_diag.txt).
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• report("unann_chrom_cs.pdf",graphconsensus) The report com-
mand, in combination with a file name and the argument graphconsensus,
generates a strict consensus file (in PDF format) of the trees generated
and selected in the analysis (unann_chrom_cs.pdf).

• exit() This command ends the POY5 session.

5.9 Chromosome Analysis: Annotated Sequences

This tutorial illustrates the analysis of chromosome-level transformations
using annotated sequences, i.e., contiguous strings of sequences with prior
identification of independent regions delineated by pipes "|".

(*Chromosome analysis of annotated sequences*)

read(annotated:("aninv2.fas"))
transform(annotated:(locus_inversion:20,median_solver:caprara,
locus_indel:(10,1.5),circular:false,median:1,swap_med:1))
build(20)
swap()
select()
report("ann_chrom_diag.txt",diagnosis)
report("ann_chrom_diag.pdf",graphdiagnosis)
report("ann_chrom_cs.pdf",graphconsensus)
exit()

• (*Chromosome analysis of annotated sequences*) This first line
of the script is a comment. While comments are optional and do not
affect the analyses, they are useful for housekeeping purposes.

• read(annotated:("aninv2.fas")) This command imports the anno-
tated chromosomal sequence file aninv2. The argument annotated
specifies that the characters are annotated chromosomes (not to be
confused with annotate).

• transform(annotated:(locus_inversion:20,median_solver:
caprara,locus_indel:10,1.5),circular:false,median:1,swap_
med:1))) The transform followed by the argument annotated spec-
ifies the conditions to be applied when calculating chromosome-level
HTUs (medians). The argument locus_inversion applies an inver-
sion distance between chromosome loci with the integer value of 50
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determining the rearrangement cost while using the default caprara
median solver. The argument locus_indel specifies the indel costs for
chromosomal segments, where the integer 10 sets the gap opening cost
and the float 1.5 sets the gap extension cost. The default values are
applied to the circular, median and swap_med arguments to minimize
the time require for these nested search options. To more exhaustively
perform these calculations, trees generated from initial builds can be
imported to the program and reevaluated with values greater than 1
entered for the median and swap med arguments.

• build(20) This commands begins the tree-building step of the search,
generating 20 Wagner trees by random-addition sequence. It is highly
recommended that a greater number of Wagner builds be implemented
when analyzing data for purposes other than this demonstration.

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY5).

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• report("ann_chrom_diag.txt",diagnosis) The report command,
in combination with a file name and the argument diagnosis, outputs
the optimal median states and edge values to the file specified (ann_-
chrom_diag.txt).

• report("ann_chrom_diag.pdf",graphdiagnosis) The report com-
mand, in combination with a file name and the argument graphdiagnosis,
outputs a file (in PDF format) with labeled medians that allow users
to link to the diagnosis file to reconstruct the median states at the
internal tree nodes.

• report("ann_chrom_cs.pdf",graphconsensus) The report command,
in combination with a file name and the argument graphconsensus,
generates a strict consensus file (in PDF format) of the trees generated
and selected in the analysis.

• exit() This command ends the POY5 session.
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5.10 Chromosome Analysis: Unannotated and an-
notated

This tutorial illustrates the analysis of chromosome-level transformation using
both unannotated and annotated sequences. Though similar to the previous
two tutorials, this tutorial differs in that the identifier names must be utilized
when transforming the unannotated chromosomes.

(*Chromosome analysis: Unannotated and annotated sequences*)

read(annotated:("aninv2.fas"),chromosome:("11mito.fas"))
transform(annotated:(locus_inversion:20,median_solver:caprara,
locus_indel:(10,1.5),circular:false,median:1,swap_med:1))
transform((names:("11mito.fas"),(chromosome:(annotate:
(mauve,25.0,0.30,0.01,0.08)))))
transform((names:("11mito.fas"),(fixed_states:("mauveout",
ignore_polymorphism))))
transform(chromosome:(locus_inversion:100,locus_indel:(10,0.9)))
transform(tcm:(1,2),gap_opening:3)
build(20)
swap()
select()
report("annunann_chrom_diag.txt",diagnosis)
report("annunann_chrom_diag.pdf",graphdiagnosis)
report("annunann_chrom_cs.pdf",graphconsensus)
exit()

• (*Chromosome analysis: Unannotated and annotated sequence*)
This first line of the script is a comment. While comments are op-
tional and do not affect the analyses, they are useful for housekeeping
purposes.

• read(annotated:("aninv2.fas"),chromosome:("11mito.fas"))
This command imports the sequence file aninv2.fas containing an-
notated chromosomal sequences (contiguous strings of sequences with
prior identification of independent regions delineated by pipes "|") and
the unannotated chromosomal sequence file 11mito.fas.

• transform(annotated:(locus_inversion:20,median_solver:
caprara,locus_indel:(10,1.5),circular:false,median:1,swap_
med:1)) The transform command followed by the argument annotated
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specifies the conditions to be applied when calculating chromosome-
level HTUs (medians). The argument locus_inversion applies an
inversion distance between chromosome loci with the integer value of
50 determining the rearrangement cost while using the default caprara
median solver. The argument locus_indel specifies the indel costs for
chromosomal segments, where the integer 10 sets the gap opening cost
and the float 1.5 sets the gap extension cost. The default values are
applied to the circular, median and swap_med arguments to minimize
the time require for these nested search options. To more exhaustively
perform these calculations, trees generated from initial builds can be
imported to the program and reevaluated with values greater than 1
entered for the median and swap med arguments.

• transform((names:("11mito.fas"),(chromosome:(annotate:
(mauve,25.0,0.30,0.01,0.08))))) Contrary to the transformation
of unannotated chromosomes in tutorial 5.8, in this script it is neces-
sary to identify, using the identifier names, which file the Mauve aligner
will be applied to. Without this identifier, the script will not run. Once
identified, the argument annotate:(mauve) specifies that the program
will use the Mauve aligner [10] to determine locally collinear homol-
ogous blocks (LCB) within the unannotated chromosomal sequences
(chromosome). The float parameters that follow mauve are order de-
pendent, and set the parameters for determining the LCB homologies:
quality, coverage, minimum and maximum LCB length relative to over-
all sequence length. In this case, the LCB quality parameter, which
represents the cost of the LCB divided by its length, is set to the
relatively low value of 25 to facilitate the detection of blocks within the
sequences. Higher LCB quality values will result in more stringent LCB
determination and most likely, fewer local collinear blocks recovered.
The second parameter within the argument annotate:(mauve) sets
the minimum LCB sequence coverage at 30% meaning that if the total
length of an input sequence is, for example, 100, a minimum coverage
of 0.30 would require the total length of all LCBs be at least 30. The
default value of 0.01 or 1% sets the minimum length of a given LCB
relative to the length of the entire sequence (e.g. 100 for a 10,000
nucleotide sequence). The maximum length allowed for an LCB, in this
example 8%, sets the maximum length of a given LCB relative to the
length of the total sequence.

• transform((names:("11mito.fas"),(fixed_states:("mauveout",
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ignore_polymorphism)))) The transform command in combination
with fixed_states is used to produce alignment files (mauveout), which
when read into Mauve [10], can track the movement of LCBs between
sequences. As in the previous line of the script, the unannotated
chromosome file to which fixed_states will be applied, is identified
using the identifier names. Here, Mauve alignment files will be generated
with the names “mauveout_i_j.alignment” where i and j are median
states. Sequence ambiguities will not be resolved to generate additional
medians beyond those determined by the data (ignore_polymorphism).
These files can be used in conjunction with the diagnosis output to
determine inferred rearrangement events. In the analysis of unannotated
chromosomes, the data must be transformed to fixed_states when
using the Mauve aligner.

• transform(chromosome:(locus_inversion:100,locus_indel:
(10,0.9))) The transform command in combination with the argu-
ment chromosome signifies the conditions to be applied when calculating
chromosome-level HTUs (medians). The argument locus_inversion
applies an inversion distance between chromosome loci with the inte-
ger value (100) determining the rearrangement cost. The argument
locus_indel specifies the indel costs for the chromosomal segments,
such that the integer 10 sets the gap opening cost and the float 0.9 sets
the gap extension cost. When selecting appropriate cost parameters
for transformation events it is important to remember that the lowest
cost option for an event will be applied. This transformation will be
applied to both data files.

• transform(tcm:(1,2),gap_opening:3) Both files are transformed such
that the cost of substitutions are 1, indels 2, and there is a gap opening
cost of 3.

• build(20) This commands begins the tree-building step of the search,
generating 20 Wagner trees by random-addition sequence. It is highly
recommended that a greater number of Wagner builds be implemented
when analyzing data for purposes other than this demonstration.

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY5).

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded



5.11. GENOME ANALYSIS: MULTIPLE CHROMOSOMES 199

from memory.

• report("annunann_chrom_diag.txt",diagnosis) The report com-
mand, in combination with a file name and the argument diagnosis,
outputs the optimal median states and edge values to the file specified
(annunann_chrom_diag.txt).

• report("annunann_chrom_diag.pdf",graphdiagnosis) The report
command, in combination with a file name and graphdiagnosis, out-
puts a file (in PDF format) with labeled medians that allow users to
link to the diagnosis file to reconstruct the median states at the internal
tree nodes.

• report("annunann_chrom_cs.pdf",graphconsensus) The report com-
mand, in combination with a file name and the argument graphconsensus,
generates a strict consensus file (in PDF format) of the trees generated
and selected in the analysis.

• exit() This command ends the POY5 session.

5.11 Genome Analysis: Multiple Chromosomes

This tutorial illustrates the analysis of genome-level transformations using
data from multiple chromosomes. Genome data consists of multi-locus,
multi-chromosomal nucleotide sequences, wherein transformations (i.e. indels,
substitutions, and rearrangements) are optimized at the sequence, locus and
chromosomal level. Within the genome data file, individual chromosomes
are separated by the “@” symbol and the individual chromosomes remain
unannotated.

(*Genome Analysis: Multiple Chromosomes*)

read(genome:("gen7.fas"))
transform(tcm:(1,1),gap_opening:1)
transform(chromosome:(annotate:(mauve,25.0,0.30,0.01,0.08)))
transform(fixed_states:("genomeout",ignore_polymorphism))
transform(chromosome:(locus_breakpoint:80,locus_indel:(15,2.5),
median_solver:caprara))
transform(genome:(translocation:100,chrom_indel:(10,0.9)))
build(100)
swap()
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select()
set(root:"taxon5")
report("genome_diag.txt",diagnosis)
report("gen_diag.pdf",graphdiagnosis,"gen_cs.pdf",graphconsensus)
exit()

• (*Genome Analysis: Multiple Chromosomes*) This first line of the
script is a comment. While comments are optional and do not affect
the analyses, they are useful for housekeeping purposes.

• read(genome:("gen7.fas")) This command imports the genomic se-
quence file gen7.fas. The argument genome specifies that the charac-
ters consist of multi-chromosomes.

• transform(tcm:(1,1),gap_opening:1)) The file gen7.fas is trans-
formed such that during the subsequent analysis of this data file, the
cost of substitutions, indels and gap opening cost are all set to 1.

• transform(chromosome:(annotate:(mauve,25.0,0.30,0.01,0.08)))
The argument annotate:(mauve) specifies that the program will use
the Mauve aligner [10] to determine locally collinear homologous blocks
(LCB) within the chromosomal sequences. The float parameters that
follow the mauve option, are order dependent and set the parameters for
determining the LCB homologies: quality, coverage, minimum and max-
imum LCB length relative to overall sequence length. In this case, the
LCB quality parameter, which represents the cost of the LCB divided
by its length, is set to the relatively low value of 25 to facilitate the
detection of blocks within the sequences. Higher LCB quality values will
result in more stringent LCB determination and most likely, fewer local
collinear blocks recovered. The second parameter within the argument
annotate:(mauve) sets the minimum LCB sequence coverage at 30%
meaning that if total length of an input sequence is, for example, 100,
a minimum coverage of 0.30 would require the total length of all LCBs
to be at least 30. The default value of 0.01 or 1% sets the minimum
length of a given LCB relative to the length of the entire sequence (e.g.
100 for a 10,000 nucleotide sequence). The maximum length allowed
for an LCB, in this example 8%, sets the maximum length of a given
LCB relative to the length of the total sequence.

• transform(fixed_states:("genomeout",ignore_polymorphism))
The transform command in combination with fixed_states is used
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to produce alignment files ("genomeout") that can be read into Mauve
to track the movement of LCBs between sequences. Here, Mauve
genome alignment files will be generated with the names "genomeout_-
i_j.alignment” where i and j are median states. Sequence ambiguities
will not be resolved to generate additional medians beyond those de-
termined by the data (ignore_polymorphism). These files can be
used in conjunction with the diagnosis output to determine inferred
translocation and rearrangement events. In the analysis of unannotated
chromosomes, the data must be transformed to fixed_states when
using these Mauve aligners.

• transform(chromosome:(locus_breakpoint:80,locus_indel:
(15,2.5),median_solver:caprara)) The command transform fol-
lowed by chromosome specifies the conditions to be applied when calcu-
lating genome-level HTUs HTUs (medians). locus_breakpoint applies
a breakpoint distance between chromosomes with the integer value de-
termining the rearrangement cost. locus_indel specifies the indel
costs for chromosomal segments, where the integer 15 setting the gap
opening cost and the float 2.5 sets the gap extension cost. The median
solver caprara will be employed in the determination of rearrangement
costs.

• transform(genome:(translocation:100,chrom_indel:(10,0.9)))
The argument translocation sets the breakpoint cost for the move-
ment of LCBs from one chromosomal segment to another. The argu-
ment chrom_indel specifies the indel costs for each entire chromosome,
whereby the integer sets the gap opening cost and the float sets the
gap extension cost.

• build(100) This commands begins the tree-building step of the search
that generates by default 100 Wagner trees (by random-addition se-
quence). It is highly recommended that a greater number of Wagner
builds be implemented when analyzing data for purposes other than
this demonstration.

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY5).

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.
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• set(root:"taxon5") The set command specifies the outgroup taxon
(taxon5) is designated as the root, so that all the reported trees have
the desired polarity.

• report("genome_diag.txt",diagnosis) The report command, in
combination with a file name and diagnosis, outputs the optimal
median states and edge values to a specified file (genome_diag.txt).

• report("gen_diag.pdf",graphdiagnosis,"gen_cs.pdf",graphcon-
sensus) The report command, in combination with a file name and
graphdiagnosis, outputs a pdf tree file with labeled medians that
allow users to link to the diagnosis file to reconstruct the median states
at the internal tree nodes. A strict consensus of the trees generated
(gen_cs.pdf) is also reported.

• exit() This command ends the POY5 session.

5.12 Custom Alphabet Character Analysis

This tutorial illustrates the analysis of the custom alphabet character type.
Custom Alphabet characters are those that employ a user-specified alphabet.
With this data type, only insertion-deletion and substitution events are
allowed.

(*Custom Alphabet Character Analysis*)

read(custom_alphabet:("ca1.fas",tcm:("m1.mat")))
transform(level:3)
build(all,10)
swap()
fuse(iterations:5,replace:best,keep:5,swap())
select()
set(root:"One")
report("CA1_trees.tre",trees:(total),"CA1_cs.pdf",graphconsensus)
quit()

• (*Custom Alphabet Character Analysis*) This first line of the script
is a comment. While comments are optional and do not affect the an-
alyses, they are useful for housekeeping purposes.
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• read(custom_alphabet:("ca1.fas",tcm:("m1.mat")))
This command imports the user-defined custom_alphabet character
file ca1.fas and the accompanying transformation matrix m1.mat.

• transform(level:3) This command specifies the heuristic level of
the median sequence calculation.

• build(all,10) This command builds ten trees and turns off all pref-
erence strategies for adding branches and tries all possible addition
positions for all terminals.

• swap() Submits current trees to a round of SPR followed by TBR, the
default settings.

• fuse(iterations:10,replace:best,keep:5,swap()) In this step, up
to 10 swaps of subtrees identical in terminal composition but different
in topology, are performed between pairs of best trees recovered in the
previous step. The cost of the resulting trees is compared to that of the
trees in memory and a subset of the trees containing up to 5 trees of
best cost are retained in memory. These trees are subjected to swapping
under the default settings of swap. This procedure is repeated nine
more times.

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• set(root:"One") The set command specifies the outgroup taxon (One)
is designated as the root, so that all the reported trees have the desired
polarity.

• report("CA1_trees.tre",trees:(total),"CA1_cs.pdf",
graphconsensus) This command reports a series of outputs of the
results of the search. It includes a file containing the optimal trees
in parenthetical notation (CA1_trees.tre) with the associated costs
(trees:(total)). In addition, a strict consensus tree (in PDF format)
of all the most optimal trees, will be reported CA1_cs.pdf.

• quit() This command ends the POY5 session.
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5.13 Break Inversion Character Analysis

This tutorial illustrates the analysis of the break inversion character type.
Break inversion characters are an extension of user-defined custom_alphabet
characters, with insertion-deletion, substitutions and rearrangement events
being considered among alphabet elements.

(*Break Inversion Character Analysis*)

read(breakinv:("ca2.fas",tcm:("m1.mat"),orientation:true))
transform(breakinv:(locus_inversion:20,median_solver:
siepel,median:1,swap_med:1))
build(20)
swap()
select()
report("BInv_diag.txt",diagnosis)
report("BI_trees.tre",trees,"BI_cs.pdf",graphconsensus)
exit()

• (*Break Inversion Character Analysis *) This first line of the
script is a comment. While comments are optional and do not af-
fect the analyses, they are useful for housekeeping purposes.

• read(breakinv:("ca2.fas",tcm:("m1.mat"),orientation:true))
This command imports the user-defined breakinv character file ca2.fas
and the accompanying transformation cost matrix m1.mat. The user
will note that tildes precede some of the characters in the data file.
These tildes, which indicate negative orientation in a Break Inversion
analysis. The argument orientation for these character types is set
as true, such that the tilde (“∼”) that precede some of the characters
in the data file ca2.fas indicates negative orientation. [Note it is not
possible to change this to false.]

• transform(breakinv:(locus_inversion:10,median_solver:siepel,
locus_inversion:20,median:1,swap_med:1)) The transform followed
by the argument breakinv specifies the conditions to be applied when
calculating medians. The argument median _solver:siepel specifies
that the Siepel median from the GRAPPA software package [2] will
be employed. The argument locus_inversion applies an inversion
rearrangement cost of 20 for breakinv elements. The default values are
applied to the median and swap_med arguments to minimize the time
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require for these nested search options. To more exhaustively perform
these calculations trees generated from initial builds can be imported
to the program and reevaluated with values greater than 1 designated
for the median and swap_med arguments.

• build(20) This commands begins the tree-building step of the search
that generates 20 Wagner trees by random-addition sequence. It is
highly recommended that a greater number of Wagner builds be exe-
cuted when analyzing data for purposes other than this demonstration.

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY5).

• select() Upon completion of branch swapping, this command retains
only optimal and topologically unique trees; all other trees are discarded
from memory.

• report("BInv_diag.txt",diagnosis) The report command in com-
bination with a file name and the diagnosis outputs the optimal
median states and edge values to the specified file (BInv_diag.txt).

• exit() This commands ends the POY5 session.

5.14 Maximum Likelihood Analysis: Static

This tutorial illustrates the analysis of static characters under the maximum
average likelihood (MAL) criterion. This analysis is of similar intensity to
that of a search using the GTR model in PhyML. Full maximum likelihood
analyses, (i.e. analyses that include builds under likelihood, sensu PAUP*)
can be computationally intensive, therefore parsimony alternatives to RAS
under likelihood are provided.

(*Static ML analysis: Initial parsimony search*)

read(prealigned:("9.fas",tcm:(1,1)))
search(max_time:00:00:20)
select()

(*Transform static to LK characters. Heuristics follow*)
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set(opt:coarse)
transform(likelihood:(gtr,rates:gamma:(4),priors:estimate,
gap:missing,mal))
swap(all:5,spr,optimize:(model:never,branch:never))
fuse(optimize:(model:never,branch:join_region))
select(best:1)
set(opt:exhaustive)
report("9_MAL.tre",trees:(branches),"9_MAL_lkm.txt",lkmodel)
quit()

• (*Static ML analysis: Initial parsimony search*) This
first line of the script is a comment. While comments are optional and
do not affect the analyses, they are useful for housekeeping purposes.

• read(prealigned:("9.fas",tcm:(1,1))) This command imports the
nucleotide sequence data file 9.fas as prealigned characters and specifies
the transformation cost matrix to be used in calculating the cost of the
tree for these data, such that the cost of substitutions and indels are 1.

• search(max_time:00:00:20) search is a default strategy that will
perform as many builds, swaps, perturbation using ratchet, and tree
fusing for the defined time of 20 minutes. [Note: 20 minutes was
determined to be an adequate amount of time to before this search,
however, in most cases a timed search of 20 minutes would not be
enough time for an in-depth search.]

• select() This command retains only optimal and topologically unique
trees; all other trees are discarded from memory.

• (*Transform static to LK characters. Heuristics follow*)

• set(opt:coarse) This command sets the floating point optimization
strategy for subsequent swapping under likelihood. In this case, the
tolerance of the routines is set to 1e-3 (half the log of a full, exhaustive
search).

• transform(likelihood:(gtr,rates:gamma:(4),priors:estimate,
gap:missing,mal)) The command transform, followed by likelihood,
specifies the conditions to be applied when transforming these static
parsimony characters to static likelihood characters. A GTR + Γ4
model (gtr,rates:gamma:(4)), with empirical equilibrium frequencies
(priors:estimate) under static mal will be employed. Within this
transformation, indels are treated as missing (gap:missing).
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• swap(all:5,spr,optimize:(model:never,branch:never)) This com-
mand swaps using spr within a distance of 5 branches from the join
point. Following each round of SPR, neither the model nor the branches
are optimized during the swap process (optimize:(model:never,
branch:never)).

• fuse(optimize:(model:never,branch:join_region)) This command
performs tree fusing, specifying that the likelihood model is never op-
timized after each round of fusing (optimize:(model:never)), but
that a maximum of five branches are optimized each round of fusing
(optimize:(branch:join_region)).

• select(best:1) This command saves a single optimal topology (with
branch lengths) in memory. All other trees are discarded from memory.

• set(opt:exhaustive) This command sets the floating point optimiza-
tion strategy for subsequent swapping under likelihood. The tolerance
level is set to 1e-6.

• report("9_MAL.tre",trees:(branches),"9_MAL_lkm.txt",
lkmodel) This command reports a series of outputs from the analy-
sis. It includes a file, in parenthetical notation, containing the op-
timal topological tree (9_MAL.tre), along with the branch lengths
trees:(branches)), as well as a file containing the parameter esti-
mates generated by dynamic MPL (9_MAL_lkm.txt). These estimates
include the likelihood score, the variant of likelihood used, the tree
length (sum of branch lengths), the values of the parameter estimates
for the entries of the substitution rate matrix (Q), and the estimate of
the value of the rate variation shape parameter.

• exit() This command ends the POY5 session.

5.15 Maximum Likelihood Analysis: Dynamic

This tutorial illustrates the analysis of dynamic characters under the most
parsimonious likelihood (MPL) criterion. The frequentist model-based simul-
taneous alignment and topology search is a largely unexplored area, and the
heuristics may not be sufficiently. Therefore, it is likely that all but very
simple dynamic MPL analyses will not be possible on basic computers, and
that significant parallelization will need to be implemented to make larger
datasets amenable to analysis under this criterion. For comparative purposes,
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the user is encouraged to run alternative analyses, transforming the data
using elikelihood and to explore the effect of different models on the results
of the analysis.

(*Maximum likelihood analysis: Dynamic*)

read("9.fas")
search(max_time:00:00:20)
select()

(*Transform parsimony DO characters to dyn MPL characters*)

set(opt:coarse)
transform(likelihood:(gtr,rates:gamma:(4),priors:estimate,
gap:coupled,mpl))
swap(spr,all:5)
select(best:1)
set(opt:exhaustive)
report("9_dMPL.tre",trees:(branches),"9_dMPL_lkm.txt",lkmodel,
"9_dMPL.ia",ia)
transform(static_approx)
report("9_sMPL.tre",trees:(branches),"9_sMPL_lkm.txt",lkmodel)
exit()

• (*Maximum likelihood analysis:Dynamic*) This first line of the
script is a comment. While comments are optional and do not af-
fect the analyses, they are useful for separating different components of
an analysis, especially if the script is long.

• read("9.fas") This command imports the nucleotide sequence data
file 9.fas. [Note: unlike the previous tutorial, the characters are not
imported as prealigned.]

• search(max_time:00:00:20) search is a default search strategy that
will perform as many builds, swaps, perturbation using ratchet, and
tree fusing for the defined time of 20 minutes. [Note: 20 minutes was
determined to be an adequate amount of time to before this search,
however, in most cases a timed search of 20 minutes would not be
enough time for an in-depth search.]

• select() Upon completion of branch swapping, this command retains
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only optimal and topologically unique trees; all other trees are discarded
from memory.

• (*Transform parsimony DO characters to dyn MPL characters*)

• set(opt:coarse) Sets coarse granularity for floating point optimization.
In this case, the tolerance of the routines is set to 1e-3 (half the log of
a full, exhaustive search).

• transform(likelihood:(gtr,rates:gamma:(4),priors:estimate,
gap:coupled,mpl)) The command transform, followed by likelihood,
specifies the conditions to be applied when transforming these dynamic
parsimony characters to dynamic likelihood characters. A gtr model,
with empirical equilibrium frequencies (priors:estimate) under dy-
namic mpl will be employed. Within this transformation, atomic indels
are a character state, with rates of nucleotide-to-indel substitution
constrained to be equal to one another (gap:coupled). [Note: Under
dynamic MPL rate variation distribution is not enabled.]

• swap(spr,all:5) This command swaps the tree using spr, specifying
that joins occur within 5 branches from the break point. Iteration of
likelihood model parameters occurs after every join.

• select(best:1) Upon completion of branch swapping, this command
saves 1 of the most optimal (best) topological trees in memory. All
other trees are discarded from memory.

• set(opt:exhaustive) Sets machine precision granularity for floating
point optimization. Optimization is run over multiple iterations until
convergence.

• report("9_dMPL.tre",trees:(branches),"9_dMPL_lkm.txt",
lkmodel,"9_dMPL.ia",ia) This command reports a series of outputs
of the results of the search. It includes a file containing the opti-
mal topological tree (9_dMPL.tre), along with the branch lengths
(trees:(branches)), as well as a file containing the parameter es-
timates generated (9_dMPL_lkm.txt). In addition, a file containing
the implied alignment generated by dynamic MPL (9 dMPL.ia) is also
generated.

• transform(static_approx) This command transforms all the dynamic
characters into static characters.
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• report("9_sMPL.tre",trees:(branches),"9_sMPL_lkm.txt",
lkmodel) This command reports a series of outputs of the results of
the search. It includes a file containing the optimal topological tree
(9_sMPL.tre), along with the branch lengths (trees:(branches)), as
well as a file containing the parameter estimates generated (9_sMPL_-
lkm.txt). These estimates include the likelihood score, the variant of
likelihood used, the tree length (sum of branch lengths), the values of
the parameter estimates for the entries of the substitution rate matrix
(Q), and the estimate of the value of the rate variation shape parameter.

• exit() This commands ends the POY5 session.

5.16 ML Analysis: Partitions and Model Selection

The following script cover the analyses of model selection and partitioned
analysis under the maximum likelihood criterion. The first section of this
tutorial covers the selection of models for, and analysis of, partitioned codons
of protein coding sequences.

(*ML Analysis: Partitions and Model Selection*)

read(prealigned:("coleoptera_nd2.fasta",tcm:(1,1)))
set(codon_partition:("coleop",names:("coleoptera_nd2.fasta")))
build(100)
swap()
select(best:1)
transform(likelihood:(aicc:"coleoptera_cp",rates:gamma:(4)))
swap(spr,all:5,optimize:(model:threshold:1.33,branch:join_delta)
report("codon_LK.tre",trees:(branches),"codon_LK_lkm.txt",lkmodel)
exit()

• (*ML Analysis: Partitions and Model Selection*) This first line
of the script is a comment. While comments are optional and do not
affect the analyses, they are useful for housekeeping purposes.

• read(prealigned:("coleoptera_nd2.fasta",tcm:(1,1))) This com-
mand imports the nucleotide sequence data file coleoptera_nd2.fasta
as prealigned characters. The tcm sets the transformation cost matrix
to be used in calculating the cost of the tree for these data (the cost of
substitutions and indels are 1).
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• set(codon_partition:("coleop",names:("coleoptera_nd2.fasta")))
Specifies that the data be partitioned as codon data, wherein 3 par-
titions will be defined. Each partition will consists of every third
nucleotide position. Three codon partitions named coleop1, coleop2,
and coleop3 will be created. The identifier names signals that the file
coleopteran_nd2.fasta is that from which the partitioning will be
applied.

• build(100) This command begins the tree-building step of the search
by random-addition trees. 100 trees are built.

• swap() The swap command specifies that each of the trees be subjected
to an alternating SPR and TBR branch swapping routine (the default
of POY5).

• select(best:1) Upon completion of branch swapping, this command
selects 1 of the most optimal (best) topological trees in memory. All
other trees are discarded from memory.

• transform(likelihood:(aicc:"coleoptera_cp",rates:gamma:(4)))
The command transform, followed by likelihood, specifies the condi-
tions to be applied when transforming these static parsimony characters
to static likelihood characters. This command runs model selection,
including both the named-rate-matrix-only (RMO) models and RMO
+ gamma:(4) models, and using the corrected AIC (aicc) as the model
selection criterion. The results with all model fits are output to the
file coleoptera_cp, and the best-fit models for each codon position are
automatically stored in memory for subsequent analysis.

• swap(spr,all:5,optimize:(model:(threshold:1.33),branch:
join_delta)) This command swaps the tree using spr, with joins
occurring within five branches of the break site. The model parameters
are optimized if the cost of the join under the current model is within
1.33 times the current best cost (proportion 0.33 worse). Only the
branches along the path from the break to the new join location are
optimized (branch:join_delta).

• report("codon_LK.tre",trees:(branches),"codon_LK_lkm.txt",
lkmodel) This command reports a series of outputs of the results of the
search. A file containing a tree, in parenthetical notation, containing
the optimal topological tree (codon_LK.tre), along with the branch
lengths trees:(branches) is reported. In addition, a file containing
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the parameter estimates of the likelihood analysis, i.e. likelihood score,
the variant of likelihood used, the tree length (sum of branch lengths),
the values of the parameter estimates for the entries of the substitution
rate matrix (Q), and the estimate of the value of the rate variation
shape parameter, is also reported (codon_LK_lkm.txt).

• exit() This commands ends the POY5 session.

5.17 Maximum Likelihood Analysis: Morphology

This tutorial illustrates the analysis of morphological data under the maximum
likelihood criterion. In this analysis, qualitative characters are transformed
to likelihood using different models. In addition, different alphabet sizes are
applied to different ranges of characters within the same dataset.

(*Maximum Likelihood Analysis: Morphology*)

read("morpho.ss")
transform(likelihood:(ncm))
search()
report("Morpho_ncm.tre",trees:(total))
transform(range:("morpho.ss",0,99),(likelihood:(jc69,
alphabet:min)))
transform(range:("morpho.ss",100,173),(likelihood:(jc69,
alphabet:5)))
report("Morpho_jc69.tre",trees:(total,branches))
exit()

• (*Maximum Likelihood Analysis: Morphology*) This first line of
the script is a comment. While comments are optional and do not affect
the analyses, they are useful for housekeeping purposes.

• read("morpho.ss") This command imports the Hennig86 morphologi-
cal data file morpho.ss.

• transform(likelihood:(ncm)) The transform command followed by
likelihood, specifies the conditions to be applied when transforming
these morphological characters to likelihood characters. A ncm model,
which is an extension of the Neyman model, will be employed. With
this model, each character is free to evolve at its own rate on every edge
of the tree. Because these characters evolve at their own rate, gamma
options are ignored.
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• search() The search command followed by empty parentheses will
perform a timed search under the default parameters, i.e. for at most
one hour using at most 2 GB of memory.

• report("Morpho_ncm.tre",trees:(total)) This command reports
a tree file, in parenthetical notation, containing the most optimal
topological tree (Morpho_ncm.tre) under the ncm model, with the
associated costs in square brackets (trees:(total)).

• transform(range:("morpho.ss",0,99),(likelihood:(jc69,alpha-
bet:min))) The transform command followed by the likelihood ar-
gument transforms the first 100 characters of the morphological data
file morpho.ss to a Neyman model (jc69) with the alphabet size being
the observed number of states in the dataset.

• transform(range:("morpho.ss",100,173),(likelihood:(jc69,
alphabet:5))) The transform command followed by the likelihood
argument transforms the next 74 characters of the morphological data
file morpho.ss to a Neyman model (jc69) with the alphabet size being
5, which could include unobserved states in the dataset.

• report("Morpho_jc69.tre",trees:(total,branches)) This command
reports a tree file, in parenthetical notation, containing the optimal
topological tree (Morpho_jc69.tre) under the jc69 model, along with
the branch lengths trees:(branches).

• exit() This command ends the POY5 session.

5.18 ML Analysis: Morphology and Molecular

This tutorial illustrates the analysis of both morphological and molecular
data under the maximum likelihood criterion. Within this analysis an ncm
model is applied to ‘static’ data, while a tn93 is applied to unaligned data.

(*Maximum Likelihood Analysis: Combined Data*)

read("morpho.ss")
read(prealigned:("28s.aln"),tcm:(1,1))
transform(likelihood:(ncm))
read("18s.fas")
transform((names:("18s.fas"),(likelihood:(tn93,rates:none,
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priors:estimate,gap:coupled,mpl))))
search(max_time:00:01:00)
swap(all,optimize:(model:never,branch:join_region))
report("All_LK.tre",trees:(branches),"All_lkm.txt",lkmodel)
exit()

• (*Maximum Likelihood Analysis: Combined Data*) This first line
of the script is a comment. While comments are optional and do not
affect the analyses, they are useful for housekeeping purposes.

• read("morpho.ss") This command imports the morphological data
file morpho.ss in Hennig86 format.

• read(prealigned:("28s.aln"),tcm:(1,1)) This command imports
the prealigned nucleotide sequence file 28s.aln, and sets the trans-
formation cost matrix to be used in calculating the cost of the tree for
these data, such that the cost of both substitutions and indels are set
to 1.

• transform(likelihood:(ncm)) The command transform, followed by
likelihood, specifies the conditions to be applied when transforming
these dynamic parsimony characters to dynamic likelihood characters.
An ncm model, where each character is free to evolve at its own rate on
every edge of the tree, will be employed.

• read("18s.fas") This command reads in the molecular data file of
unaligned sequences (18s.fas).

• transform((names:("18s.fas"),(likelihood:(tn93,rates:none,
priors:estimate,gap:coupled,mpl)))) The command transform,
followed by likelihood, specifies the conditions to be applied when
transforming these dynamic parsimony characters to dynamic likelihood
characters. Because this script includes both static (morphology and
prealigned) and dynamic data, it is necessary to identify, using the
identifier names, which file the mpl model will be applied to—in this
case the 18s.fas data file. A tn93 model, with estimated equilibrium
frequencies will be employed. In this model, indels will be treated as
coupled.

• search(max_time:00:01:00) Specifies that the program will attempt
as many builds, swaps, ratchets and tree fusings as possible within the
specified time of one hour. All trees with the optimal score found are
stored in memory.



5.18. ML ANALYSIS: MORPHOLOGY AND MOLECULAR 215

• swap(all,optimize:(model:never,branch:join_region)) Submits
the current trees to a round of SPR and TBR swapping. Following each
round, the model is never optimized, but a maximum of five branches
(the new edge, and the two edges on either side of the join site) are
optimized (branch:join_region).

• report("All_LK.tre",trees:(branches),"All_lkm.txt",lkmodel)
This command reports a series of outputs of the results the search. A
file containing a tree, in parenthetical notation, containing the op-
timal topological tree (All_LK.tre), along with the branch lengths
trees:(branches) is reported. In addition, a file containing the pa-
rameter estimates of the likelihood analysis, i.e. likelihood score, the
variant of likelihood used, the tree length (sum of branch lengths), the
values of the parameter estimates for the entries of the substitution
rate matrix (Q), and the estimate of the value of the rate variation
shape parameter, is also reported (All_lkm.txt).

• exit() This commands ends the POY5 session.
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Chapter 6

POY5 Frequently Asked
Questions

This FAQ is supplementary documentation that aims to answer the most
frequently poised questions to the POY5 developers and on the POY5 google
groups.

Q. What does POY stand for?
Q. I would like to visualize the implied alignment generated from my

analysis, how do I do this?
Q. Looking at the implied alignment generated from my POY5 analysis,

it looks very ‘gappy’. Why?
Q. I encountered a problem while running an analysis that I think

might be a bug in the program, how should I report this?
Q. My script won’t run and I don’t know where I went wrong. What

should I do?
Q. When I run POY5 in parallel, I get multiple, identical outputs to the

screen, why?
Q. In running an analysis of custom alphabet characters, with the char-

acters being transformed to level 5, I got the following error "seg
fault:11". In a previous analysis, the characters were transformed
to level 4, and that worked without issue. What’s wrong?
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Q. In running an analysis using a *.ss or Hennig86 file, I encountered
a ‘syntax’ error, however, the characters continued to load and the
analysis seemed to run. Is something wrong?

Q. My FASTA file contains sequences that are of poor ‘quality’, espe-
cially in the 5 prime and 3 prime regions of the sequences. How
should these data files be prepared for analysis in POY5?

Q. I read in a tree that was generated from a previous analysis, however,
the cost reported in the output window of the Interactive Console
is different, why is this the case?

Q. Having run an analysis in POY5, I imported my tree file into TNT,
but the tree costs are different. Is this an error?

Q. In trying to calculate Jackknife support values, I believe that all the
values are inflated for the resulting tree. Why?

Q. Why is my prealigned data not treated as prealigned?
Q. Is it possible to exclude certain terminals from an analysis?
Q. Is it possible to report parsimony branch lengths in POY5?
Q. I would like to import trees from an earlier run, at what stage of

the analysis should this be performed?
Q. Why is the root in the diagnosis file that I reported at the end of

my analysis, not the same as the root that I set?
Q. What are "Numerical.linesearch; Very large slope in optimization

function" warnings?
Q. What does the "Numerical.brent; hit max number of iterations"

warning mean?
Q. Why are likelihood scores worse/different than other applications?
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Q. What does POY stand for?

A. POY is a meta-acronym, which comes from an older program YAPP
(Yet Another Phylogeny Program) that was written in C. This program, which
was an extension of MALIGN, was the first designed around direct optimization.
This program was rewritten in Ocaml (Ocaml YAPP), which was shortened
to OY. The subsequent parallelization of this program yielded POY.

Q. I would like to visualize the implied alignment generated from my
analysis, how do I do this?

A. The implied alignment can be exported from POY5 in two ways:

The first is to export the implied alignment, using the command report.
The implied alignment will be output in FASTA format (see implied_-
alignments (Section 3.3.19)).

The second is to transform using static_approx and report using the
phastwinclad option (see phastwinclad (Section 3.3.19)). This will produce
a file Hennig86 format.

These files can subsequently be imported into other programs such as Win-
clada or Mesquite, for visualization.

Q. Looking at the implied alignment generated from my POY5 analysis, it
looks very ‘gappy’. Why?

A. POY is not, nor has it ever been an alignment program. Non-
homologous, independent insertions are assigned their own columns with
POY5, hence, the number of columns will expand with the number of insertions.

Q. I encountered a problem while running an analysis that I think might
be a bug in the program, how should I report this?

A. All error and bug reports should be made directly to the POY5 Mail
Group. Before posting to this group, it is advised that the user search the
history of previously posed questions, to make sure that it has not been
answered previously. When reported to the Mail Group, users should include
the following information:
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– What steps will reproduce the problem;
– What is the expected output and what do you see instead;
– What version of the program are you using and on which operating system?

Q. My script won’t run and I don’t know where I went wrong. What
should I do?

A. If a script won’t run, the first thing to do is to check that there are
no hidden characters in the script file. When constructing a script or a
transformation cost matrix, it is important to do so in a text editor such as
Notepad (for Windows), TextEdit (for Mac), or Nano (for Linux). Generating
these files in a word processing application such as Microsoft Word may lead
to the insertion of hidden characters, which can result in an error.

Secondly, the user is advised to check the log. If none was set, the user is
advised to do so and rerun the script. The log will give some indication as to
which errors were encountered, or which warnings were issued.

Q. When I run POY5 in parallel, I get multiple, identical outputs to the
screen, why?

A. It is likely that POY5 was not properly compiled in parallel. You should
check the make options.

Q. In running an analysis of custom alphabet characters, with the charac-
ters being transformed to level 5, I got the following error "seg fault:11".
In a previous analysis, the characters were transformed to level 4, and that
worked without issue. What’s wrong?

A. This is most likely an ‘out of memory’ error and is system specific
and difficult to predict. This is beyond the control of the program. Storage
and set up time increase combinatorially with level number.

Q. In running an analysis using a *.ss or Hennig86 file, I encountered
a ‘syntax’ error, however, the characters continued to load and the analysis
seemed to run. Is something wrong?

A. Syntax errors are of the form:
Error: Syntax error
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Error: Unrecognized command between characters 93 and 94
Information: The file Fly.ss defines 9 static homology characters,
0 unaligned sequences, and 0 trees, containing 5 taxa

Hennig86 or *.ss files, have no formal definition. POY5 does its best to
parse the file properly, but it is incumbent upon the user to make sure that
the data was read/parsed correctly. If an error such as this is encountered,
the user should report the data (report(data)) to verify. A similar caution
should be taken with NEXUS files, as very often files that have been generated
and exported from other programs are not in the correct NEXUS format.

Q. My FASTA file contains sequences that are of poor ‘quality’, especially
in the 5 prime and 3 prime regions of the sequences. How should these data
files be prepared for analysis in POY5?

A. In cases such as this, partitioning the data is highly recommended.
Partitioning or fragmenting the data can help to ameliorate the effects of poor
sequences or missing data. Moreover, when a data file contains sequences that
were downloaded from a data base such as GenBank, very often there is a lack
of overlap of many of the sequences, as different studies may have utilized
different priming regions. How best to ‘chop’ up your data is discussed in
the POY5 Heuristics chapter.

Q. I read in a tree that was generated from a previous analysis, however,
the cost reported in the output window of the Interactive Console is dif-
ferent, why is this the case?

A. If you are reading in a tree generated from a previous analysis it is
important to make sure that the same transformation cost matrix has been
applied to the data. In addition, the tree must be fully resolved, otherwise it
will be resolved arbitrarily.

Q. Having run an analysis in POY5, I imported my tree file into TNT, but
the tree costs are different. Is this an error?

A. When importing POY5 tree files into another program, such as TNT,
it is important to mirror the same ‘conditions’ as to those in POY5 during
the time of analysis, i.e. same cost matrix, gaps treated as a fifth state.
The correct data file associated with this tree file, must also be imported—
this corresponds to the implied alignment that is associated with this tree.
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In addition, the tree must be fully resolved, otherwise it will be resolved
arbitrarily.

Q. In trying to calculate Jackknife support values, I believe that all the
values are inflated for the resulting tree. Why?

A. Although it is possible to calculate Jackknife and Bootstrap support
values for trees constructed using dynamic homology characters, it is not
recommended since resampling of dynamic characters occurs at the fragment,
rather than nucleotide, level. (Of course this is a mute point if the dataset
consists of a multitude of fragments.) Consequently, the bootstrap and
jackknife support values calculated for dynamic characters are not directly
comparable to those calculated based on static character matrices. In order to
perform character sampling at the level of individual nucleotides, the dynamic
characters must be transformed into static characters using static_approx
argument of the command transform (Section 3.3.26) prior to executing
calculate support. The static_approx is conditioned or based on that tree.

Q. Why is my prealigned data not treated as prealigned?

A. By default, upon importing prealigned sequence data, the gaps are
removed and the sequences are treated as dynamic homology characters. To
preserve the alignment the data must be imported using the prealigned
argument of the command read. Unless specified using the prealigned, data
that is read by the program is UNALIGNED and the gaps are stripped from
the data file.

Q. Is it possible to exclude certain terminals from an analysis?

A. The exclusion of terminals (or for that matter, characters) is eas-
ily achieved by selecting, with the use of the identifiers. For example
select(terminals,not files:("Taxa_removed.txt")) will exclude all the
taxa that are included in this file. This is the inverse of select(terminals,
files:("Taxa_keep.txt")). Alternatively, if the user does not wish to gen-
erate a terminals file, the taxon names can be specified using the not names
identifier, e.g. select(terminals,not names:("Taxon1","Taxon4")).

Q. Is it possible to report parsimony branch lengths in POY5?

A. Yes it is. This is achieved by reporting branches, along with the
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trees, and specifying the collapse mode. For example report("Run1.tre",
trees:(branches:single)) will report a tree to the file Run1.tre with the
parsimony branch lengths included. The argument single specifies that zero
length branches will be collapsed.

Q. I would like to import trees from an earlier run, at what stage of the
analysis should this be performed?

A. When running a script that includes reading in trees from a previous
analysis, these trees must be read in after the build stage. If the trees are
read in before the build they will be replaced by the trees generated during
the build.

Q. Why is the root in the diagnosis file that I reported at the end of my
analysis, not the same as the root that I set?

A. This is because the tree length heuristics may be based on an alternate
rooting scheme than that used for the newick or graphic trees output.

Q. What are "Numerical.linesearch; Very large slope in optimization
function" warnings?

A. These messages normally appear in the Dynamic likelihood routines.
They indicate that the gradient of the parameters for the current data-set has
a large absolute slope and the numerical routine may not converge properly.
Normally, because of multiple passes of the optimization routine, we easily
break out of these regions and the routine will stabilize.

Under static likelihood data this warning message is rarely seen and may
be an issue. One should rediagnose the tree for stabilization of the parameters
of the model.

Q. What does the "Numerical.brent; hit max number of iterations" warn-
ing mean?

A. This happens when the numerical routine does not converge in a
maximum number of steps. This is usually an acceptable situation to happen
as more optimization rounds will likely occur over the data.

Q. Why are likelihood scores worse/different than other applications?
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A. There are a number of issues to consider. If the values are close under
the same model of evolution then numerical issues due to finite precision
arithmetic of decimal numbers can cause slight rounding errors in an analysis
to build up. Although we use standard techniques to limit the accumulation
of these errors, they inevitably occur and small differences in likelihood scores
are absolutely normal and should not be a concern. These differences even
occur within the same application run on different architectures and compiler
options.

If the model is not hierarchical then comparisons are not relevant. Unfor-
tunately, the number of states in the model of evolution matters, as well as
cost assignments of Maximum Parsimonious Likelihood (MPL) and Maximum
Average Likelihood (MAL). Thus, a four state model of evolutions’ likelihood
score cannot be compared directly with a five state model. There is added
cost that result from the probability of an additional state in an analysis.

One should also check that the exhaustive option is set for the optimi-
zation routines. It is set by default but ensure that, if it changed somewhere
in the script, one sets it back–especially if one plans to do application com-
parisons.
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