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Abstract

We present POY version 5, an open source program for the phylogenetic analysis of diverse data types including qualitative,
aligned sequences, unaligned sequences, genomic data, and user-defined sequences. In addition to the maximum-parsimony opti-
mality criterion supported by POY4, POY5 supports several types of maximum likelihood as well as posterior probability. To
make these analyses feasible, new heuristic search algorithms and parallelization options have been implemented for all criteria.
© The Willi Hennig Society 2014.

Background

POY is an open source phylogenetic analysis pro-
gram for use on a diversity of data types including
morphology, aligned and unaligned sequence data,
and genomic sequences. Previous versions were
released in 2004 (POY 3.0.11, Wheeler et al., 1996–
2005),1 2009 (POY 4.1.3, Var�on et al., 2008, 2010),
and now version 5 (POY 5.1.1, source code Wheeler
et al., 2013). All features of POY4 have been main-
tained and many improved. The presentation here
concentrates on areas of new functionality and effi-
ciency. The main areas of enhancement in POY5 are
the addition of likelihood and Bayesian optimality
criteria and the implementation of within-trajectory
parallelization.

New/improved character types

Continuous characters

‘Continuous’ characters are, as is customary, opti-
mized as additive discrete characters (Farris, 1972) with
a large number of states. POY5 improves the implemen-
tation over POY4. Following the format of TNT
(Goloboff et al., 2003), this character type is specified
by an additional, prepended specification in the Hen-
nig86/NONA input file (Fig. 1). Character states are
specified as integer values that are then decimalized by
character weighting. Hence, a character with states
from 0.0 to 1.000 are coded as 0 to 1000 and set to a
weight of 0.001. Characters are entered as ranges
([low high] or [value] if a single value—this diverges
from TNT). The maximum character value is 262�1.

Prealigned for custom and amino acid sequences

In previous versions of POY, only nucleotide
sequence data could be treated as prealigned data
(unless recoded as qualitative data), respecting the
placement of gap (“-”) states. Without this specification,
input gaps are stripped out and data are treated as
unaligned. POY5 allows the input of amino acid and
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custom (user-specified alphabets such as gene
synteny or developmental) sequence data (e.g.
read (prealigned:(amino acids:(“*.fas”),
tcm:“matrix1”)). In addition to allowing the user
additional flexibility in analytical assumptions, this
new functionality also permits the use of static approx-
imation heuristics for searching on these characters
either manually (transform(static_approx)) or
automatically via the search() command.

Levels for large alphabet sizes (amino acid and custom)

The direct optimization algorithm (DO; Wheeler,
1996; Var�on and Wheeler, 2012) in both its O(n2) and
O(n3) forms, employs a precalculated cost and state
matrix to reduce sequence optimization time. This
matrix has dimensions defined by the number of
potential element combinations at each sequence posi-

tion (
�
Ri¼a
i¼1

� a

i

�� 1
�2

where a=|elements|). This is quite

manageable for sequences with small alphabets (i.e.
DNA with 225 values) but rapidly becomes unwork-
able for alphabets presented by protein sequences
(4,398,042,316,801 values). Larger alphabets presented
by linguistic (Wheeler and Whiteley, 2014), behaviour-
al, and developmental sequences (Schulmeister and
Wheeler, 2004) present an even greater challenge. The
strength and speed of the DO heuristic depends on this
matrix.
To make larger alphabets feasible in unaligned

sequences, we implement a “level” parameter. The
level specifies the maximum number of state combina-
tions for which medians and costs are stored in the
precalculated matrix. For DNA sequences, standard
DO has level 5. Smaller levels reduce the number of
combinations and storage that are required, but also
weakens the heuristic (Fig. 2).

Chromosome and genome

Although POY versions 3 and 4 have facilities for
optimizing chromosomal data (sequences with potential
rearrangement), these required prior annotation of the
data (Vinh et al., 2006, 2007; Wheeler, 2007). POY5
has implemented the MAUVE pairwise genomic aligner
algorithm (Darling et al., 2004), and in concert with
Fixed States optimization (Wheeler, 1999), removes this
limitation, allowing the direct analysis of unannotated
chromosomal data.
This operates via the transform() command after

reading in chromosomal data (Fig. 3). The transform
to Fixed States optimization also allows for a stem
string to be specified (“my_chrom_aligns” in Fig. 3)
that generates a series of files (one for each pair of input
chromosomes) that can be processed by MAUVE to
create graphical images of the sequence similarity and
rearrangements occurring between the two chromo-
somes. This is shown for a set of complete mitochon-
drial genomes of Heteroptera in Fig. 4 where the
transformations between each optimized node on the
tree are displayed. At present, only Fixed States optimi-
zation is possible with the MAUVE aligner.

New optimality criteria

In addition to the parsimony criterion of POY4,
POY5 implements two forms of maximum likelihood
(ML; Wheeler, 2006) and a form of Bayesian posterior
probability (Wheeler, 2014). In each case, facilities exist
for analysis of morphological2 and sequence data in
both static and dynamic homology frameworks. In all

nstates cont;
xread
'My continuous character matrix'
2 5
Alpha      [0 100] [2000 2100]
Beta       [0] [700 800]
Gamma      [3000 3100][3100 3200]
Delta      [900 1000] [3350 3450]
Epsilon    [1220 1320] [1900 2000]
;
cc + 0.1;
proc /;
;

Fig. 1. An example file specifying continuous characters. All charac-
ters are scored as ranges “[x y]” and must be in their own (no other
data type) input file. Reweighting is required to decimalize the states.

Fig. 2. Effect of increased heuristic level on optimality score for
linguistic data under a variety of models (102-11 etc.). Data from
Wheeler and Whiteley (2014).

2Characters with large numbers of states (e.g. ‘continuous’ char-

acters) can be optimized under these criteria, but the user would

have to create appropriate models and weight regimes.
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cases, a variety of models are available from the com-
pletely symmetrical (Jukes and Cantor, 1969; Neyman,
1971) to parameter-rich (Tavar�e, 1986) with a variety of
indel model options.

The optimality criterion is specified using the
transform() command. The criterion can be
switched back and forth between parsimony and likeli-
hood at any time, allowing comparisons between

read(chromosome:("my_chromosome.fasta"))
transform(tcm:(1,1), gap_opening:1)
transform(chromosome:(locus_inversion:100,locus_indel:(10,0.9)))
transform(chromosome:(annotate:(mauve,25.0,0.30,0.005,0.25)))
transform(fixed_states:("my_chrom_aligns", ignore_polymorphism))

Fig. 3. An example script showing the reading of an unnanotated chromosome sequence in FASTA format, setting costs for within-locus substi-
tution and affine indels, setting values for the cost of various chromosomal events (e.g. insertion-deletion of a locus, rearrangement cost), and
pairwise annotation and alignment via the MAUVE algorithm.
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Fig. 4. MAUVE (Darling et al., 2004) annotations of edge transformations between vertex mitochondrial genomes of Heteroptera (and Thrips
outgroup).
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methodologies and optimality criteria (Giribet and
Edgecombe, 2013).

Maximum average likelihood

Following the ML taxonomy of Steel and Penny
(2000) (reviewed by Wheeler, 2012), maximum average
likelihood (MAL) is the form of maximum relative
likelihood where tree likelihoods are integrated (or
averaged) over all possible internal state assignments.
This is the most popular form of likelihood and is
implemented for prealigned sequences in packages such
as RAxML (Stamatakis et al., 2005). POY5 imple-
ments MAL for prealigned sequences and allows gap
characters to be treated as missing data (gap:miss-
ing), with a single parameter (gap:coupled), or
multiple with individual parameters for indels to and
from A, C, G, T or other sequence alphabet elements
(gap:character). Comparisons among MAL imple-
mentations of aligned sequences with gaps treated as
missing are reported in Denton and Wheeler (2012).
When sequence data are unaligned (dynamic data),

MAL in POY requires indel parameterization (i.e. not
missing) and is restricted to the Fixed States heuristic
with summing over input sequences as potential inter-
nal states (DO is implemented via most parsimonious
likelihood, MPL, below).
Qualitative data (as well as prealigned sequence

data) can be analysed by common (CM; Neyman,
1971) and no-common mechanism (NCM; Tuffley and
Steel, 1997) models. In both cases, the Neyman (1971)
transition model is employed with either a single esti-
mated rate for all characters (CM) or potentially
unique rates for each character (NCM). The alphabet
size for qualitative data is not restricted. Because alter-
native models can be specified for different data parti-
tions (e.g. morphological and molecular data),
combined or total evidence (Kluge, 1989) analyses can
be performed under ML.

Most parsimonious likelihood

MPL (Barry and Hartigan, 1987) is a form of ML
in which ancestral states are uniquely identified as
those with highest likelihood. Single state assignments
are made and alternative assignment likelihoods are
not summed at internal nodes. The “dominant” align-
ment in likelihood alignment (Thorne et al., 1991) is
an expression of this idea. POY5 implements a
likelihood DO procedure (Wheeler, 2006) to create
median (ancestral) sequences with heuristically
maximal MPL.
Like MAL above, this form of likelihood can be

applied to prealigned and unaligned sequences, as well
as qualitative data. Unlike MAL, unaligned sequence
optimization is not restricted to Fixed States.

Under both MAL and MPL, when unaligned
sequence data are analysed, rate class parameters are
ignored because classes of characters have no meaning
in a dynamic homology context.

Model specification, estimation, and choice

As with other implementations, POY5 allows for the
specification of a broad variety of models from the
effectively zero parameter JC69/Neyman (Jukes and
Cantor, 1969; Neyman, 1971), through F81 (Felsenstein,
1981), K2P/K80 (Kimura, 1980), F84 (Felsenstein,
1984), HKY85 (Hasegawa et al., 1985), TN93 (Tamura
and Nei, 1993), to GTR (Tavar�e, 1986). Single and mul-
tiple rate distributions are also permitted (for static and
prealigned data) with the discrete Γ and invariant sites
models. The NCM (Tuffley and Steel, 1997) model is
also available. Neyman, NCM, and GTR models allow
any alphabet size (i.e. not limited to DNA nucleotides),
and hence can be employed for qualitative data and
larger alphabet sequences such as proteins. When multi-
ple data partitions are present, they may be assigned
different models.
The estimation of model parameters can be accom-

plished in a variety of ways and with user-speci-
fied intensity and frequency from optimize(model:
never, branch:never) (i.e. only during the initial
transformation to likelihood, set branch lengths to
the proportion of changes on edge) to optimize
(model:always, branch:all_branches) (i.e.
optimize model every time a new tree is encountered,
optimize all branch lengths every time a new tree is
encountered). Initial parameter values may be estimated
to optimize the likelihood of an input tree, or based on
the parsimony character optimization of an input tree.
The model and branch optimization intensity are set
within search options (e.g. swap(spr,all,optimize:
(model:never,branch:join_region))) and can
vary throughout the search, for instance, to begin with
relatively coarse options and progressively refine results
with increasingly demanding options.
Model parameters may also be set directly by the

user and not optimized further. For example, reading
the model (model:“file_name”):

0:0 2:0 1:0 2:0 4:0

2:0 0:0 0:0 1:0 4:0

1:0 2:0 0:0 2:0 4:0

2:0 1:0 2:0 0:0 4:0

4:0 4:0 4:0 4:0 0:0

will be normalized so that the mean rate is 1, and the
rows sum to 0.0. This becomes (with equal equilibrium
frequencies):

4 W.C. Wheeler et al. / Cladistics (2014) 1–8



�0:865 0:192 0:096 0:192 0:384
0:192 �0:865 0:192 0:096 0:384
0:096 0:192 �0:865 0:192 0:384
0:192 0:096 0:192 �0:865 0:384
0:384 0:384 0:384 0:384 �1:538

Q-matrix class constraints can also be specified
(and later optimized) with the (custom:“file_name”)
command. Diagonal elements are ignored, but neces-
sary, and any character can be used as a placeholder
(below we use a dash, “–”). Any ASCII character can
be used to define an associated rate, but the matrix
must be symmetric. For example, the following matrix
will create a model in which three parameters are ulti-
mately optimized (given that the base parameter is
not optimized).

- a c d e
a - c d e
c c - d e
d d d - e
e e e e -

In addition to specifying the model explicitly,
POY5 allows the user to specify one of a number of
information-theoretic criteria to select a model based
on an input tree. The Akaike Information Criterion
(AIC; Akaike, 1974), corrected AIC (AICc; Sugiura,
1978), and Bayesian Information Criterion (BIC; Sch-
warz, 1978) are available. POY5 will optimize the
model to the tree of all available models, and select
the best (based on the information criterion selected)
to be kept in memory. A report is also printed to
show the scores and analysis of model selection (see
Table 1).

Bayesian maximum a posteriori assignment

A form of Bayesian posterior probability analysis,
maximum a posteriori assignment (MAP-A; Wheeler,
2014), is implemented in POY5 via a non-standard
cost matrix (transform(tcm:“matrix_name”)) and
dynamic programming under the parsimony criterion.
In short, a weight function is created either analytically
or numerically (via the accessory program MAPA.ml,
distributed with POY5 source) that allows the identifi-
cation of that tree which maximizes a posteriori vertex
state assignments. This weight matrix is derived from
the character change model (e.g. GTR) and branch-
length distributions (e.g. exponential). As opposed to
the MAP approach (Rannala and Yang, 1996), which
sums all possible state assignment contributions to the
posterior probability, MAP-A uses only those with
maximum probability. In this way, MAP-A is to MAP
what MPL is to MAL. The benefit of this approach lies
largely in its computational efficiency. POY5 does not
offer MC3 search. The MAPA.ml program allows the
specification of a variety of models and prior distribu-
tions on model and branch-length parameters.
MAP-A weights may be employed for either static

or dynamic characters of any alphabet size and, as
with ML models, may vary among partitions and even
individual characters. As with the parsimony and ML
implementations, MAP-A allows for multiple parti-
tion, combined, or “total evidence” analysis.

Performance enhancements

In addition to new features, POY5 has several
performance enhancements over POY4. For standard,

Table 1

Model –‘ K n AICc D x Cum(x)

JC69 538.819 31 49 1256.345 0.000 0.863 0.863
JC69 + G 532.219 32 49 1260.438 4.093 0.111 0.975
K81 533.777 32 49 1263.554 7.209 0.023 0.998
K81 + G 526.763 33 49 1269.127 12.782 0.001 1.000
F81 539.512 34 49 1317.024 60.678 5.754 10�14 1.000
HKY 532.270 35 49 1328.387 72.041 1.961 10�16 1.000
F84 533.315 35 49 1330.477 74.131 6.899 10�17 1.000
F81 + G 533.682 35 49 1331.210 74.865 4.780 10�17 1.000
HKY+G 526.033 36 49 1346.067 89.721 2.840 10�20 1.000
F84 + G 526.518 36 49 1347.037 90.691 1.749 10�20 1.000
TN93 531.899 36 49 1357.799 101.453 8.052 10�23 1.000
TN93 + G 525.841 37 49 1381.318 124.973 6.290 10�28 1.000
GTR 530.724 39 49 1486.116 229.770 1.102 10�50 1.000
GTR+G 523.365 40 49 1536.731 280.386 1.125 10�61 1.000

Example of POY5 output showing scores and analysis of model selection using aicc. Model type, negative log likelihood values (–‘), penalty
parameters, which include the number of branches, and model parameters (K), number of characters (n), AICc values, AICc differences (D),
Akaike weights (x), and cumulative Akaike weights (Cum (x)) are reported. In this example, JC69 garners the best information-theoretic score.
“+G” indicates the addition of the Γ parameter.

W.C. Wheeler et al. / Cladistics (2014) 1–8 5



direct optimization of unaligned nucleic acid sequence
data, POY5 is 2–4 times as fast as POY4 (using the
data of Arango and Wheeler, 2007). Beyond simple
reduction in run times, this speed up significantly
enhances the efficacy of timed search() trajectories.

Parallelization

POY4 implemented parallelization strategies based
on independent trajectories [e.g. individual Random
Addition Sequence (RAS) + TBR replicates assigned
to their own processes]. Parallelization of multiple ran-
dom addition sequence Wagner builds, SPR and TBR
branch swapping, as well as Tree-Fusing (Goloboff,
1999; Moilanen, 1999) and the search() function
was accomplished by dividing the tasks and assigning
them to processes with little to no communication
until these operations were complete. This resulted in
near linear speed up when large numbers of RAS rep-
licates or independent search() commands were
required. The option of parallelizing a single trajectory
was unavailable. POY5 meets this need with the swap
option “parallel” (e.g. swap(tbr, all, paral-
lel)).
Parallel swap tree refinement breaks up the tree

search neighbourhood among parallel processes
increasing communication load, and hence is likely to
be most efficient for large trees and those with time-
consuming optimization options (e.g. likelihood, itera-
tive pass optimization). Figure 5 shows the relation-
ship between execution time (a DO TBR swap on a
dataset of 208 18S rRNA genes) and number of pro-
cesses. The linear regression of time on log number of
processes is �0.427 in comparison with the perfect
�0.693. This suggests that for each doubling in pro-
cessor number, the execution time decreases by a fac-
tor of roughly 1.5. Interestingly, at least for this data

set, this factor continued up to 64 processes for a
reduction in wall-clock execution time by a factor of
nearly 20.
Parallelization of large fixed state optimizations

(such as unannotated chromosomes using the
MAUVE algorithm above) can be achieved using the
“–enable–parmap” compiler option and set (par-
map:n) command (where n is the number of parallel
processes). Parmap is not an Message Passing Inter-
face-based paralellization and requires alternative
source code compilation (Danelluto and DiCosimo,
2012; see POY5 documentation).

Reporting

In addition to the ASCII, Newick, and PDF tree,
consensus, and diagnosis outputs of POY4, POY5 has
added several new reporting options.

Branch lengths

POY5 will report trees with branch lengths. When
the optimality criterion is specified as likelihood,
these are the optimized branch lengths and can be
read back into POY5 or other likelihood implementa-
tions. Under parsimony, the branch lengths are based
on optimized character changes on edges, which can
be ambiguous. To deal with this, the default option
“single” as well as alternatives “min” and “max” are
supported.

Likelihood models and other information

The option “lkmodel” (report(lkmodel)) reports
the likelihood model, costs, and tree length in a style
similar to that of PHYLIP.

Graphic diagnosis

Hyperlinked graphical character diagnosis is avail-
able via report(“file_name”, graphdiagnosis).
This is especially useful for large data sets.

XML interface with Supramap

To promote an interface with Supramap (Janies et al.,
2007; https://supramap.renci.org/supramap/
home), the report command can output diagnosis infor-
mation in XML. This is specified by ending the report
output file name with “.xml”.

Tree distances

Robinson–Foulds (Robinson and Foulds, 1981)
tree distances can be output with report

Fig. 5. Linearity of parallel swap. Data set from Giribet and
Wheeler (1999, 2001).

6 W.C. Wheeler et al. / Cladistics (2014) 1–8



(robinson_foulds). As with other report options,
this may be redirected to a file (Fig. 6).

Distribution

As before, POY5 is available as binaries as well as
source code and documentation at the AMNH (http://
www.amnh.org/our-research/computational-sciences/
research/projects/systematic-biology/poy/download)
and GoogleCode (https://code.google.com/p/poy).
Distributions are now also available through Git-
Hub (https://github.com/AMNH/POY).
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