Fossils are minerals made from organisms that have been concealed for a long time. This makes the fossils hard and very study. Pterosaur fossils are especially very rare like all other fossils because a fossil is only capable of becoming a fossil in the right condition and environment. Paleontologists, scientists who study fossils, have identified over a hundred species of pterosaur. Pterosaurs have a very wide range of wingspans which shows people how diverse pterosaurs really are since most people only think of them being big. All of these facts show how amazing pterosaurs really are.

Fossils help scientists understand extinct organisms because of fossilized dung eggs and trackways. It's really amazing that paleontologists can hypothesize all of this information just based on the precise position of the trackway or because of what young pterosaurs looked like in their egg. Pterosaur tracks are called trackways and they tell paleontologists how
Pterosaurs walked, took off (or flying), and landed based on the slight position of the trackway as I mentioned before. Fossilized pterosaur dung is called coprolite, and informs scientists on what pterosaurs ate because of the food remaining in the coprolite.
Pterosaur eggs can explain how pterosaurs developed because the babies still inside of the eggs that paleontologists look at. All three of these true fossils tell scientists about pterosaurs so we can learn about prehistoric organisms.
Pterosaur fossils must be in the right conditions to become fossils so they are very rare. If a fossil were to become a fossil, it must be placed in a proper environment and be buried in soil/sediment which is why lakes are the perfect place: lakes have sediment to cover the organism and are most often calm to not disturb the fossilizing organism. The sediment protects the organism fossilizing from predators, scavengers, and natural causes. Not only being tough, but pterosaur bones are light so it is even harder for them to fossilize. Now you can truly understand how rare pterosaur fossils are.
Pterodactyl guinazuis, a subspecies of pterosaur was average sized but was quite different from other pterosaur species. Pterodactyl guinazuis had their complete lower jaw filled with thin long teeth. Scientists hypothesize that the teeth were not for chewing since they were break easily. Instead, paleontologists believe that their teeth were used for filtering fish and other small organisms out of the water for swallowing.
since the teeth were close together so only water could escape. Once the fish were bitten out, pteranodonto gymnuris would swallow the fish and tiny animals in a similar technique flamingos use today. Flamingos place their beak in the water and then tilted the water that they picked up on the sides of their mouth so they only have to work on tiny animals. Flamingos have a unique adaptation to this technique since they weren't around when pterodactyls were so it can't be true. Pteranodonto gymnuris is a unique interesting pterodactyls. Pterodactyls are one of the most amazing organisms ever because of their ways of living. They thrive while most of the time they were which shows them as an amazing creature. They adapted to have wings which made them even more interesting than they already were. They were all very diverse and were usually dominate in hunting because of their unique techniques. These facts that I learned at the museum have taught me a lot and I thank them.
**S** **P** **E** **R** **O** **D** **A** **U** **S** **T** **O** guinazui:

**Picture**

**Beak:** Pterodaustro guinazui uses its beak to scoop up and strain out tiny animals.

**Eyesocket:** An eye used to sit in this eye socket so the pterosaur could see.

**Skull:** A skull is the bone in a pterosaur's head so that its brain is protected.