Atoms, Space Lattices, and Crystals main content.

Atoms, Space Lattices, and Crystals

Part of Harry Frank Guggenheim Hall of Minerals.

a.1_atoms_RM_hero.jpg

Exhibition Text

Audio Transcript
To understand the properties of minerals, we need to see how atoms, the fundamental building blocks of minerals, fit together.

We might visualize atoms as very small balls, or spheres. The size of an atom depends on the particular chemical element and on the number of electrons in its outermost region. The size of the different atoms affects the way in which they can be fitted together.

The models at the left of the case illustrate the geometrical packing of atoms. Atomic packing and physical properties are also determined by the way atoms are connected, or bonded, to each other. Among the various types of bonding recognized, three types are important in minerals. Metallic bonding occurs in the native metals, such as copper. Ionic bonding is typical of minerals like halite, our common table salt. And covalent bonding is present in the mineral diamond.

The smallest grouping of bonded atoms typical of a mineral is called a unit cell. The unit cells, stacked together in three dimensions, form the mineral as a whole. This stacking arrangements is called a space lattice. The model, consisting of large white atoms and small red atoms, shows a simple grouping of three atoms arranged in a space lattice.

It is the regular repetition of the unit cells in space which make minerals crystalline. Surprisingly, there are only a limited number of possible arrangements that will form a space lattice pattern — 14 in all, called the Bravais space lattices. When space lattices and crystals are examined in te