What's a Mangrove? And How Does It Work?
These are mangroves—shrub and tree species that live along shores, rivers, and estuaries in the tropics and subtropics. Mangroves are remarkably tough. Most live on muddy soil, but some also grow on sand, peat, and coral rock. They live in water up to 100 times saltier than most other plants can tolerate. They thrive despite twice-daily flooding by ocean tides; even if this water were fresh, the flooding alone would drown most trees. Growing where land and water meet, mangroves bear the brunt of ocean-borne storms and hurricanes.
There are 80 described species of mangroves, 60 of which live exclusively on coasts between the high- and low-tide lines. Mangroves once covered three-quarters of the world's tropical coastlines, with Southeast Asia hosting the greatest diversity. Only 12 species live in the Americas. Mangroves range in size from small bushes to the 60-meter giants found in Ecuador. Within a given mangrove forest, different species occupy distinct niches. Those that can handle tidal soakings grow in the open sea, in sheltered bays, and on fringe islands. Trees adapted to drier, less salty soil can be found farther from the shoreline. Some mangroves flourish along riverbanks far inland, as long as the freshwater current is met by ocean tides.
One Ingenious Plant
How do mangroves survive under such hostile conditions? A remarkable set of evolutionary adaptations makes it possible. These amazing trees and shrubs:
- cope with salt: Saltwater can kill plants, so mangroves must extract freshwater from the seawater that surrounds them. Many mangrove species survive by filtering out as much as 90 percent of the salt found in seawater as it enters their roots. Some species excrete salt through glands in their leaves. These leaves, which are covered with dried salt crystals, taste salty if you lick them. A third strategy used by some mangrove species is to concentrate salt in older leaves or bark. When the leaves drop or the bark sheds, the stored salt goes with them.
- hoard fresh water: Like desert plants, mangroves store fresh water in thick succulent leaves. A waxy coating on the leaves of some mangrove species seals in water and minimizes evaporation. Small hairs on the leaves of other species deflect wind and sunlight, which reduces water loss through the tiny openings where gases enter and exit during photosynthesis. On some mangroves species, these tiny openings are below the leaf's surface, away from the drying wind and sun.
- breathe in a variety of ways: Some mangroves grow pencil-like roots that stick up out of the dense, wet ground like snorkels. These breathing tubes, called pneumatophores, allow mangroves to cope with daily flooding by the tides. Pneumatophores take in oxygen from the air unless they're clogged or submerged for too long.
Roots That Multitask
Root systems that arch high over the water are a distinctive feature of many mangrove species. These aerial roots take several forms. Some are stilt roots that branch and loop off the trunk and lower branches. Others are wide, wavy plank roots that extend away from the trunk. Aerial roots broaden the base of the tree and, like flying buttresses on medieval cathedrals, stabilize the shallow root system in the soft, loose soil. In addition to providing structural support, aerial roots play an important part in providing oxygen for respiration. Oxygen enters a mangrove through lenticels, thousands of cell-sized breathing pores in the bark and roots. Lenticels close tightly during high tide, thus preventing mangroves from drowning.
Ready-to-Roll Seeds
The mangroves' niche between land and sea has led to unique methods of reproduction. Seed pods germinate while on the tree, so they are ready to take root when they drop. If a seed falls in the water during high tide, it can float and take root once it finds solid ground. If a sprout falls during low tide, it can quickly establish itself in the soft soil of tidal mudflats before the next tide comes in. A vigorous seed may grow up to two feet (about 0.6 m) in its first year. Roots arch from the seedling to anchor it in the mud. Some tree species form long, spear-shaped stems and roots while still attached to the parent plant. After being nourished by the parent tree for one to three years, these sprouts may break off. Some take root nearby while others fall into the water and are carried away to distant shores.
A World Traveler
Botanists believe that mangroves originated in Southeast Asia, but ocean currents have since dispersed them to India, Africa, Australia, and the Americas. As Alfredo Quarto, the head of the Mangrove Action Project, puts it, “Over the millions of years since they've been in existence, mangroves have essentially set up shop around the world.” The fruits, seeds, and seedlings of all mangrove plants can float, and they have been known to bob along for more than a year before taking root. In buoyant seawater, a seedling lies flat and floats fast. But when it approaches fresher, brackish water—ideal conditions for mangroves—the seedling turns vertical so its roots point downward. After lodging in the mud, the seedling quickly sends additional roots into the soil. Within 10 years, as those roots spread and sprout, a single seedling can give rise to an entire thicket. It's not just trees but the land itself that increases. Mud collects around the tangled mangrove roots, and shallow mudflats build up. From the journey of a single seed a rich ecosystem may be born.